跳到主要內容

臺灣博碩士論文加值系統

(44.192.20.240) 您好!臺灣時間:2024/02/24 00:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:廖英淇
論文名稱:帕金森氏症病患在二氧化碳反應與姿態變換下的通氣響應與腦血流調控關聯分析
論文名稱(外文):The Coupling and Interaction between Ventilatory Response and Cerebral Autoregulation based on Carbon Dioxide Reactivity and Posture Change for Parkinson’s
指導教授:廖英淇
口試委員:林賢龍葉守正陳文雄
口試日期:2014-06-20
學位類別:碩士
校院名稱:逢甲大學
系所名稱:生醫資訊暨生醫工程碩士學程
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:88
中文關鍵詞:自律神經病變通氣響應腦血流調控腦血管反應腦血管電導指數
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:
  • 下載下載:18
  • 收藏至我的研究室書目清單書目收藏:0
神經退化是一種無法修復的疾病,而在老年人口持續增加的時代,神經退化這類型的病例同時也伴隨著成長。為了及早發現神經病變的症狀以及相關病變機制,因此本研究著重於研究自律神經病變患者例如帕金森氏之腦血流調控與通氣響應間的交互作用對於病情的影響。這交互作用是以觀察腦血管反應(CVMR)為指標在於13位45歲以下正常人 (45-)、10位45歲以上正常人 (45+)、13位帕金森氏症 (PD)、以及20位糖尿病自律神經病變 (DAN) 受測者在於平躺、站立、與低血碳酸狀態。站立姿態是利用傾斜台把受測者仰起至75度,而低血碳酸狀態則是利用1秒吸氣1秒吐氣過度換氣維持3分鐘以低體內二氧化碳分壓。本研究所參考參數為腦血流速 (CBFV)、動脈血壓 (ABP)、心律 (HR)、氣末二氧化碳分壓(PETCO2)、以及利用這些參數所計算出的腦血管電導指數 (CVCi)。分析方法以Levenberg-Marquardt 演算法執行S型曲線的非線性迴歸在於 CBFV與CVCi 對PETCO2 的變化與其他參數對PETCO2 的變化的線性迴歸以及這些參數在於時間上的變化。實驗結果發現帕金森氏病患的腦血流控制範圍以及 S 型曲線的直線部分相較於正常人要小 (49.50 vs 65.99% 與 1.66 vs 2.44 mmHg) 並且邏輯式迴歸可用於PD群組但並不適用於DAN群組。本研究的結果可用於未來分析其他自律神經病變群組於未來通氣響應與腦血流調控整合模型開發之參考數據。
Nerve degeneration is a non-reversible disease. Nowadays, with the number of elderly people increasing, the number of nerve disorder cases are increasing as well. In order to be able to diagnose and begin treatment earlier, more knowledge to aid in understanding the symptoms and underlying mechanisms of nervous system disorder is needed. Thus, this study will focus on patients with autonomic dysfunction, such as Parkinson&;#39;s, and how the interactions between cerebral autoregulation and ventilatory control is affected. For this purpose, the study will investigate the interaction between cerebral autoregulation and ventilatory response, using cerebral vasomotor reactivity (CVMR) as an indicator, for 13 under 45 years old healthy subjects (45-), 10 over 45 years old healthy subjects (45+), 13 subjects with Parkinson&;#39;s (PD), as well 20 subjects with more severe autonomic neuropathy (diabetic autonomic neuropathy: DAN) during supine, head-up tilt (HUT), and hypocapnia. HUT was achieved using a tilt table that erected the subject to 75° while hypocapnia was achieved by hyperventilation at 1 second inhalation and exhalation for 3 minutes. Specific parameters used in the study are cerebral blood flow velocity (CBFV), arterial blood pressure (ABP), heart rate (HR), partial pressure of end-tidal carbon dioxide (PETCO2), and breathing rate (BR) as well as the calculated parameter, cerebrovascular conductance index (CVCi). Methods of analysis employs non-linear logistic regression fitted with a sigmoidal curve using the Levenberg-Marquardt algorithm for changes in CBFV and CVCi to changes in PETCO2 along with linear regressions for other parameter changes to changes in PETCO2 as well as temporal analysis to study parameter changes over time. Results of this study found that the range of cerebral blood flow as well as the range of the linear portion of curve fit for PD is much smaller than that of healthy subjects (49.50 vs 65.99% and 1.66 vs 2.44 mmHg respectively) and that logistic regression analysis is suitable for PD but not for DAN (77% vs 50% successful fit). The outcome of this study can be used in the future to develop a series of analysis that can be used for other groups with autonomic dysfunction to aid in developing an integrated model of cerebral autoregulation and ventilatory control.
摘要 i
Abstract ii
Table of Contents iii
List of Tables v
List of Figures vi
Chapter 1 - Introduction 1
1.1 Foreword 1
1.2 Motivation 2
1.3 Purpose 2
1.4 Literature Review 2
1.5 Thesis Structure 4
Chapter 2 - Background 5
2.1 Autonomic Nervous System 5
2.2 Assessment of Autonomic Dysfunction 6
2.2.1 Sudomotor Testing 6
2.2.2 Cardiovagal Testing 7
2.2.3 Adrenergic Testing 7
2.3 Ventilatory Control 7
2.3.1 Peripheral Chemoreceptors 8
2.3.2 Central Chemoreceptors 9
2.4 Cerebral Auto-regulation 9
2.4.1 Cerebral Vasomotor Reactivity (CVMR) 10
2.4.2 Cerebrovascular Conductance Index (CVCi) 10
Chapter 3 - Materials and Methods 11
3.1 Subjects 12
3.2 Data Acquisition Protocol 12
3.3 Data Acquisition 13
3.4 Data Analysis 14
3.4.1 Data Organization 14
3.4.2 Cerebrovascular Conductance Index (CVCi) 14
3.4.3 CO2 Reactivity 14
3.4.4 Temporal Analysis 15
3.4.5 Statistical Analysis 15
Chapter 4 - Results and Discussion 16
4.1 Experimental Results 16
4.1.1 CBFV Response to CO2 17
4.1.2 CVCi Response to CO2 26
4.1.3 Cardiovascular and Respiratory Responses to CO2 33
4.1.4 Temporal Analysis 39
4.2 Discussion 47
Chapter 5 - Conclusion and Future Work 51
Glossary 52
Appendix I 57
[1] Department of Statistics Ministry of the Interior, &;quot;Three Age Groups Population by Area,&;quot; [Online]. Available: http://statis.moi.gov.tw/micst/stmain.jsp?sys=100. [Accessed 6 October 2013].
[2] Department of Statistics Ministry of the Interior, &;quot;Simple life table of 2011,&;quot; 18 1 2011. [Online]. Available: http://sowf.moi.gov.tw/stat/Life/T05-lt-quary.html. [Accessed 6 October 2013].
[3] M. A. Pfeifer, C. R. Weinberg, D. Cook, J. D. Best, A. Reenan and J. B. Halter, &;quot;Differential Changes of Autonomic Nervous System Function with Age in Man,&;quot; The American Journal of Medicine, vol. 75, no. 2, pp. 249-258, August 1983.
[4] K. Ide, M. Eliasziw and M. J. Poulin, &;quot;Relationship between Middle Cerebral Artery Blood Velocity and End-Tidal PCO2 in the Hypocapnic-Hypercapnic range in humans,&;quot; Journal of Applied Physiology, vol. 95, no. 1, pp. 129-137, July 2003.
[5] J. A. H. R. Claassen, R. Zhang, Q. Fu, S. Witkowski and B. D. Levine, &;quot;Transcranial Doppler Estimation of Cerebral Blood Flow and Cerebrovascular Conductance during Modified Rebreathing,&;quot; Journal of Applied Physiology, vol. 102, no. 3, pp. 870-877, March 2007.
[6] A. Battisti-Charbonney, J. Fisher and J. Duffin, &;quot;The Cerebrovascular response to carbon dioxide in humans,&;quot; The Journal of Physiology, vol. 589, no. 12, pp. 3039-3048, June 2011.
[7] K. Peebles, L. Celi, K. McGrattan, C. Murrell, K. Thomas and P. N. Ainslie, &;quot;Human Cerebrovascular and Ventilatory CO2 Reactivity to End-Tidal, Arterial and Internal Jugular Vein PCO2,&;quot; The Journal of Physiology, vol. 584, no. 1, pp. 347-357, October 2007.
[8] H. Yoshizaki, A. Yoshida, F. Hayashi and Y. Fukuda, &;quot;Effect of Posture Change on Control of Ventilation,&;quot; Japanese Journal of Physiology, vol. 48, no. 4, pp. 267-273, June 1998.
[9] J. M. Serrador, R. L. Hughson, J. M. Kowalchuk, R. L. Bondar and A. W. Gelb, &;quot;Cerebral Blood Flow during Orthostasis: Role of Arterial CO2,&;quot; American Journal of Physiology - Regulatory, Intergrative and Comparative Physiology, vol. 290, no. 4, pp. R1087-R1093, April 2006.
[10] P. Low, &;quot;Overview of the Autonomic Nervous System,&;quot; Merck Sharp &; Dohme Corp., a subsidiary of Merck &; Co., Inc., May 2013. [Online]. Available: http://www.merckmanuals.com/professional/neurologic_disorders/autonomic_nervous_system/overview_of_the_autonomic_nervous_system.html. [Accessed 2 October 2013].
[11] J. Duffin, &;quot;The Role of the Central Chemoreceptors: A modeling perspective,&;quot; Respiratory Physiology and Neurobiology, vol. 173, no. 3, pp. 230-243, October 2010.
[12] P. N. Ainslie and J. Duffin, &;quot;Integration of Cerebrovascular CO2 Reactivity and Chemoreflex Control of Breathing: Mechanisms of Regulation, Measurement, and Interpretation,&;quot; American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, vol. 296, no. 5, pp. R1473-R1495, May 2009.
[13] E. W. Lang, J. Lagopoulos, J. Griffith, K. Yip, A. Yam, Y. Mudaliar, H. M. Mehdorn and N. W. Dorsch, &;quot;Cerebral vasomotor reactivity testing in head injury: the link between pressure and flow,&;quot; Journal of Neurology, Neurosurgery &; Psychiatry, vol. 74, no. 8, pp. 1053-1059, 2003.
[14] C. Terborg, F. Gora, C. Weiller and J. Rother, &;quot;Reduced vasomotor reactivity in cerebral microangiopathy A study with near-infrared spectroscopy and transcranial Doppler sonography,&;quot; Stroke, vol. 31, no. 4, pp. 924-929, 2000.
[15] J. M. Serrador, F. A. Sorond, M. Vyas, M. Gagnon, I. D. Iloputaife and L. A. Lipsitz, &;quot;Cerebral pressure-flow relations in hypertensive elderly humans: transfer gain in different frequency domains,&;quot; Journal of applied physiology, vol. 98, no. 1, pp. 151-159, 2005.
[16] H. Markus and M. Cullinane, &;quot;Severely impaired cerebrovascular reactivity predicts stroke and TIA risk in patients with carotid artery stenosis and occlusion,&;quot; Brain, vol. 124, no. 3, pp. 457-467, 2001.
[17] F. Vernieri, P. Pasqualitti, M. Matteis, F. Passarelli, E. Troisi, P. M. Rossini, C. Caltagirone and M. Silvestrini, &;quot;Effect of collateral blood flow and cerebral vasomotor reactivity on the outcome of carotid artery occlusion,&;quot; Stroke, vol. 32, no. 7, pp. 1552-1558, 2001.
[18] C.-C. Chiu and S.-J. Yeh, &;quot;Assessment of cerebral autoregulation using time-domain cross-correlation analysis,&;quot; Computers in Biology and Medicine, vol. 32, no. 6, pp. 471-480, November 2001.
[19] A. Xie, J. B. Skatrud, B. Morgan, B. Chenuel, R. Khayat, K. Reichmuth, J. Lin and J. A. Dempsey, &;quot;Influence of cerebrovascular function on the hypercapnic ventilatory response in healthy humans,&;quot; The Journal of Physiology, vol. 577, no. 1, pp. 319-329, November 2006.
[20] C. K. Willie, D. B. Macleod, A. D. Shaw, K. J. Smith, Y. C. Tzeng, N. D. Eves, K. Ikeda, J. Graham, N. C. Lewis, T. A. Day and P. N. Ainslie, &;quot;Regional brain blood flow in man during acute changes in arterial blood gases,&;quot; The Journal of Physiology, pp. 3261-3275, 2012.
[21] R. V. Immink, J. Truijen, N. H. Secher and J. J. Van Lieshout, &;quot;Transient influence of end-tidal carbon dioxide tension on the postural restraint in cerebral perfusion,&;quot; Journal of Applied Physiology, pp. 816-823, 2 July 2009.
[22] N. L. Jones, D. G. Robertson and J. W. Kane, &;quot;Difference between end-tidal and arterial PCO2 in exercise,&;quot; Journal of Applied Physiology, vol. 47, no. 5, pp. 954-960, November 1979.
[23] R. Zhang, J. H. Zuckerman, C. A. Giller and B. D. Levine, &;quot;Transfer function analysis of dynamic cerebral autoregulation in humans,&;quot; American Journal of Physiology - Heart and Circulatory Physiology, vol. 274, pp. H233-H241, January 1998.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top