跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 13:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:張凱傑
研究生(外文):Kai-Jie Chang
論文名稱:雙反應槽共沉澱法合成鋰離子電池正極材料與電化學研究
論文名稱(外文):Synthesis and Electrochemical Characterizations of the Cathode Material for Lithium Ion Battery via Co-Precipitation with a Dual-Continue Reactor
指導教授:劉茂煌
指導教授(外文):Mao-Huang Liu
口試委員:陳壽椿陳金銘劉茂煌
口試委員(外文):Show-Chuen ChenJin-Ming ChenMao-Huang Liu
口試日期:2014-07-28
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:135
中文關鍵詞:雙反應槽共沉澱法高體積能量密度鋰鎳鈷氧正極材料勻相摻雜非勻相修飾
外文關鍵詞:Dual-continue reactorCo-precipitationLiNi0.8Co0.2O2Mg dopedMn modified
相關次數:
  • 被引用被引用:0
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:5
  • 收藏至我的研究室書目清單書目收藏:0
本研究以連續的雙反應槽共沉澱法合成三種鋰電池正極材料。第一種高密實正極材料是以雙反應槽共沉澱法控制兩槽中的pH值,個別為10.5和11.5,成功製備出高體積能量密度的LiNi0.8Co0.2O2 (LNC)正極材料,並比較由單反應槽和雙反應槽共沉澱法合成出的材料物性和電性差異。由掃描式電子顯微鏡(SEM)檢視沉澱出的Ni0.8Co0.2(OH)2 (NC),觀察到經過此雙反應槽合成,其球型化效果佳,粒子大小較均勻且能使材料二次粒子的微結構變得更緻密。在X光繞射儀分析上,一次粒子晶粒尺寸(D值)為雙反應槽共沉澱法製得的先驅物較大。再經過高溫燒結後得到的LiNi0.8Co0.2O2振實密度也以雙反應槽合成相對較高。電化學測試部分,兩材料以重量能量密度(mAh/g)計算的放電電容量差距並不大,但是雙反應槽共沉澱法確實能大幅提升材料的體積能量密度(mAh/cm3)。
第二種是鎂摻雜LiNi0.8Co0.2O2 (LNC)正極材料,於第一反應槽(pH=10.5)先製備NC,再於第二槽(pH=11.2)提高先驅物的結構緻密度並沉積Mg(OH)2進行表面改質,合成出Mg(OH)2-Ni0.8Co0.2(OH)2 (Mg-NC),經高溫燒結得到勻相Mg摻雜的Mg-LiNi0.8Co0.2O2 (Mg-LNC),Mg摻雜的濃度比例為2.5 mol%,希望藉此提升材料體積能量密度和獲得修飾效果。以SEM、XRD、能量散射光譜儀(EDS)和感應耦合電漿原子發射光譜(ICP)檢測分析後,證實Mg元素均勻摻雜至Mg-LNC結構中,且有高振實密度。在電化學性質和熱分析方面(DSC),Mg-LNC因Mg金屬摻雜而有電容量較低的現象,但能有較佳的大電流放電能力,循環壽命和熱安全性。由此可知,利用雙反應槽可提高材料體積能量密度之外,同時可摻雜Mg元素增加材料的穩定性。
第三種錳元素修飾LiNi0.8Co0.2O2 (LNC)正極材料,主要是於第二反應槽中修飾合成Mn(OH)2-Ni0.8Co0.2(OH)2 (Mn-NC),藉由Mn金屬在高溫燒結時擴散速率較慢,非勻相摻雜至材料結構中,使材料表面的Mn含量較高,而中心材料維持為LNC,形成非勻相的三元材料Mn-LiNi0.8Co0.2O2 (Mn-LNC),Mn元素約為Ni+Co濃度比例的12 mol%。將Mn-LNC與勻相的三元材料LiNi0.7Co0.2Mn0.1O2 (LNCM)進行比較。同樣以SEM、EDS和ICP進行物性分析,發現Mn-LNC的材料粒子有不同的形貌存在,且Mn含量也有分布不均的現象,電容相對較低,但在循環壽命和熱安全性上皆有較佳的效果。
There are three parts in this study which is based on co-precipitation with an innovative dual-continue reactor. The following are three parts in the experiment of this study:
1. This study conducts the co-precipitation method to design a dual-continue reactor and prepare a high tap-density LiNi0.8Co0.2O2 (LNC). The precursor of LNC cathode material can grow to be a large particle in the first reactor with a low pH condition (pH=10.5), and then the precursor of LNC can continually grow to be a dense particle in the second reactor with a high pH condition (pH=11.5). The physical and electrochemical performances of material from first reactor were then compared with second reactor. The particle sizes of LNC were 10-13μm. The tap-density of LNC from first reactor and second reactor were 2.18 and 2.35 g/cm3, respectively. Electrochemical test included charged-discharge capacity. The energy density of volume for second LNC (455.42 mAh/cm3) was higher than first LNC (411.07 mAh/cm3).

2. This study added a function of cathode material modification in this system. As same as the first part, the precursor of LNC cathode material can grow to be a large particle in the first reactor with low pH condition (pH=10.5), then it can continually grow to be a dense particle and modified the surface of the precursor by using Mg(OH)2 in the second reactor with high pH condition (pH=11.2). In this way, the Ni0.8Co0.2(OH)2 (NC) and Mg(OH)2-Ni0.8Co0.2(OH)2 (Mg-NC) precursor were synthesized simultaneously. Next they were sintered to LNC and homogeneously Mg doped LiNi0.8Co0.2O2 (Mg-LNC), respectively. The average of Mg doping concentration in the Mg-LNC was 2.5 mol%. After analyzing physical properties, it confirmed that Mg element has homogeneously doped in the structure of Mg-LNC. Moreover, the Mg-LNC has higher tap-density than the pristine LNC cathode material. In terms of electrochemical and thermal analysis of LNC and Mg-LNC, it showed that Mg-LNC has lower capacity, but better rate capacity, cycle life, and thermal stability because the electrochemically inactive Mg doped the cathode material. On the contrary, Mg was effective in stabilizing the structure of the cathode material.

3. This study replaced magnesium with manganese in the second reactor, and synthesized the Mn(OH)2-Ni0.8Co0.2(OH)2 (Mn-NC) precursor. Respecting the low diffusion rate of metal ions, this study expected to synthesize heterogeneously Mn modified LiNi0.8Co0.2O2 (Mn-LNC) after calcination. It had different composition of the particles from the surface to the core: high concentration at the surface but kept the core as LNC. The average of Mn concentration in the Mn-LNC is 12 mol%. Then the physical, electrochemical and thermal examinations of Mn-LNC were compared with homogeneous LiNi0.7Co0.2Mn0.1O2 (LNCM). The capacity of Mn-LNC was lower than LNCM, this attributed to the heterogeneous Mn content of Mn-LNC particles, but this method improved the electrochemical characteristics enhanced the cycle life and thermal stability.
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的與動機 3
第二章 文獻回顧 7
2-1 鋰離子二次電池簡介 7
2-1-1 鋰離子電池工作原理 7
2-2 LiNi1-xCoxO2正極材料介紹 8
2-2-1 LiNi1-xCoxO2結構[27] 8
2-3 利用化學共沉澱法合成不同性質之正極材料 10
2-3-1 化學共沉澱法製備高振實密度的球形LiNi0.8Co0.2O2 10
2-3-2 以共沉澱法優化Ni1/3Co1/3Mn1/3(OH)2先驅物 12
2-3-3 以氫氧根共沉澱法製備LiNi1/3Co1/3Mn1/3O2正極材料 14
2-3-4 以連續共沉澱法製備球狀LiNi0.8Co0.15Mn0.05O2正極材料 17
2-3-5 優化LiNi0.5Co0.2Mn0.3O2化學共沉澱法之製備條件 20
2-4 正極材料表面改質 23
2-4-1 LiMn2O4 coated LiCoO2 23
2-4-2 MgO coated LixNiyCo1-yO2 29
2-4-3 MgO coated LiCoO2[10] 31
2-4-4 SiOx coated LiNi0.8Co0.2O2 33
2-4-5 AlPO4 coated LiNi0.8Co0.2O2 35
2-4-6 AlPO4 and Co3(PO4)2 coated LiNi0.8Co0.2O2 38
2-4-7 Al2O3 coated LiNi0.8Co0.2O2 41
2-4-8 Ni3(PO4)2 coated LiNi0.8Co0.15Al0.05O2 43
2-5 正極材料金屬摻雜 46
2-5-1 Sr2+ doped LiNi0.8Co0.2O2 46
2-5-2 Ce doped LiNi0.8Co0.2O2 48
2-5-3 Mn doped LiNi0.8Co0.2O2 50
2-5-4 Zr doped LiNi0.8Co0.2O2 52
2-5-5 Ca doped LiNi0.8Co0.2O2 54
2-5-6 Mg doped LiNi0.8Co0.2O2 56
2-5-7 Mg gradient-doped LiNi0.5Mn1.5O4 58
2-6 非勻相(heterogeneous)的三元材料 62
2-6-1 concentration-gradient Li[Ni0.67Co0.15Mn0.18]O2 62
2-6-2 concentration-gradient LiNixCo(1-2x)MnxO2 65
2-6-3 Surface pillaring layer- LiNi0.62Co0.14Mn0.24O2 66
2-7 化學共沉澱法原理-相對飽和濃度 70
第三章 儀器設備和實驗方法 71
3-1 實驗藥品及耗材 71
3-2 實驗儀器設備 72
3-3 實驗架構流程圖 74
3-3-1 雙反應槽共沉澱法合成高密實LiNi0.8Co0.2O2、均勻Mg摻雜LiNi0.8Co0.2O2 和非勻相Mn修飾 LiNi0.8Co0.2O2正極材料 74
3-4 實驗方法-雙反應槽化學共沉澱法 75
3-4-1 雙反應槽共沉澱法合成球狀先驅物Ni0.8Co0.2(OH)2 76
3-4-2 雙反應槽共沉澱法合成球狀先驅物Ni0.8Co0.2(OH)2 和Mg(OH)2-coated Ni0.8Co0.2(OH)2 79
3-4-3 雙反應槽共沉澱法合成球狀先驅物Mn(OH)2-coated Ni0.8Co0.2(OH)2 82
3-4-4 單水氫氧化鋰粉碎前處理 85
3-4-5 先驅物混合單水氫氧化鋰燒結成正極材料 86
3-5 材料物理性質鑑定與分析 87
3-5-1 pH值 87
3-5-2 掃描式電子顯微鏡 (SEM) 87
3-5-3 能量散射光譜儀 (Energy Dispersive Spectroscopy) 87
3-5-4 振實密度 (Tap Density) 88
3-5-5 真實密度 (True Density) 88
3-5-6 X光射線繞射儀 (X-Ray Diffraction) 88
3-5-7 感應耦合電漿原子發射光譜 (ICP-OES) 89
3-6 鈕釦型電池製作與電化學性能測試 89
3-6-1 正極極板製作 89
3-6-2 鈕釦型電池之組裝 92
3-6-3 電化學分析測試 94
第四章 結果與討論 96
4-1 雙反應槽共沉澱法合成LiNi0.8Co0.2O2正極材料 96
4-1-1 Ni0.8Co0.2(OH)2表面型態分析 96
4-1-2 Ni0.8Co0.2(OH)2晶體結構分析 98
4-1-3 LiNi0.8Co0.2O2表面型態分析 100
4-1-4 LiNi0.8Co0.2O2晶體結構分析 101
4-1-5 LiNi0.8Co0.2O2之活化充放電測試 102
4-2 雙反應槽共沉澱法合成勻相Mg摻雜的LiNi0.8Co0.2O2 正極材料 105
4-2-1 NC、Mg-NC之晶體結構分析 105
4-2-2 NC、Mg-NC之表面型態和元素分析 106
4-2-3 LNC、Mg-LNC之晶體結構分析 108
4-2-4 LNC、Mg-LNC之表面型態分析 109
4-2-5 Mg-LNC之EDS、ICP元素分析 110
4-2-6 LNC、Mg-LNC之活化充放電測試 111
4-2-7 LNC、Mg-LNC之大電流充放電測試 112
4-2-8 LNC、Mg-LNC之循環充放電測試 114
4-2-9 LNC、Mg-LNC之交流阻抗分析 115
4-2-10 LNC、Mg-LNC之DSC熱分析 117
4-3 雙反應槽共沉澱法合成非勻相Mn修飾的LiNi0.8Co0.2O2正極材 料 118
4-3-1 NCM、Mn-NC之晶體結構分析 118
4-3-2 NCM、Mn-NC之表面型態和元素分析 119
4-3-3 LNCM、Mn-LNC之晶體結構分析 121
4-3-4 LNCM、Mn-LNC之表面型態分析 122
4-3-5 LNCM、Mn-LNC之EDS表面元素分析 123
4-3-6 LNCM、Mn-LNC之活化充放電測試 124
4-3-7 LNCM、Mn-LNC之循環充放電測試 125
4-3-8 LNCM、Mn-LNC之交流阻抗分析 126
4-3-9 LNCM、Mn-LNC之DSC熱分析 127
第五章 結論 129
5-1 雙反應槽共沉澱法合成LiNi0.8Co0.2O2正極材料 129
5-2 雙反應槽共沉澱法合成勻相Mg摻雜的LiNi0.8Co0.2O2 正極材料 130
5-3 雙反應槽共沉澱法合成非勻相Mn修飾的LiNi0.8Co0.2O2正極材 料 131
第六章 參考文獻 132




1.許雪萍,鋰離子二次電池正極材料介紹,工業材料,110期,p.48-56.
2.B. J. Landi, M. J. Ganter, C. D. Cress, R. A. D. Leo, R. P. Raffaelle, Energy Environ. Sci., 2 (2009) 638–654.
3.C. Deng, L. Liu, W. Zhou, K. Sun, D. Sun, Electrochim. Acta, 53 (2008) 2441.
4.G. G. Amatucci, N. Pereira, T. Zheng, I. Plitz, J. M. Tarascon, J. Power Sources, 81-82 (1999) 39-43.
5.呂學隆,鋰電池正極材料技術與產業趨勢(一)-總體市場供需與發展,Industrial Economics & Knowledge Center, 2011/9.
6.K. H. Dai, Y. T. Xie, Y. J. Wang, Z. S. Song, Qilu, Electrochim. Acta, 53 (2008) 3257.
7.Y. Chen, G. X. Wang, K. Konstantinov, H. K. Liu, S. X. Dou, J. Power Sources, 119–121 (2003) 184-188.
8.Y. H. Jouybari, S. Asgari, J. Power Sources, 196 (2011) 337.
9.S. Zhang , C. Deng, B. L. Fu, S. Y. Yang, L. Ma, Powder Technol., 198 (2010) 373–380.
10.H. Zhao, L. Gao, W. Qiu, X. Zhang, J. Power Sources, 132 (2004) 195–200.
11.表面改質對LiMn2O4陰極材料之充放電特性效應探討,廖宏奇,國立成功大學材料科學與工程學系研究所碩士論文,2005.
12.K. S. Tan, M. V. Reddy, G. V. Subba Rao, B. V. R. Chowdari, J. Power Sources, 141 (2005) 129-142.
13.H. Omanda, T. Brousse, C. Marhic, D. M. Schleicha, J. Electrochem. Soc., 151 (6) (2004) A922-A929.
14.L. Liu, G. Su, Q. Xiao, Y. Ding, C. Wang, D. Gao, Mater. Chem. Phys., 100 (2006) 236–240.
15.M. Balasubramanian, J. McBreen, K. Pandya, K. Aminec, J. Electrochem. Soc., 149 (9) (2002) A1246-A1249.
16.K. S. Lee, S. T. Myung, J. S. Moon, Y. K. Sun, Electrochim. Acta, 53 (2008) 6033–6037.
17.P. He, H. Wang, L. Qi, T. Osaka, J. Power Sources, 158 (2006) 529.
18.H. Chen, J. M. Wang, T. Pan, Y. L. Zhao, J. Q. Zhang, C. N. Cao, J. Power Sources, 143 (2005) 243–255.
19.A. V. Bommel, J. R. Dahn, Chem. Mater., 21 (2009) 1500–1503.
20.不同具奈米結構鋰鈷鎳正極材料之合成與電化學動力學分析,郝家侃,天主教輔仁大學化學系研究所碩士論文,2008.
21.M. H. Lee, Y. J. Kang, S. T. Myung, Y. K. Sun, Electrochim. Acta, 50 (2004) 939.
22.Y. K. Sun, D. H. Kim, H. G. Jung, S. T. Myung, K. Amine, Electrochim. Acta, 55 (2010) 8621–8627.
23.Z. Huang, J. Gao, X. He, J. Li, C. Jiang, J. Power Sources, 202 (2012) 284–290.
24.Y. K. Sun, S. T. Myung, B. C. Park, J. Prakash, I. Belharouak, K. Amine, nature materials, 8 (2009) 320-324.
25.M. Winter, J. O. Besenhard, M. E. Spahr, P. Novak, Adv. Mater., 10 (1998) 725-763.
26.楊家諭,二次鋰離子電池性能介紹,工業材料,126 期, p.115-124.
27.費定國,鋰離子電池混合型鋰鎳鈷氧化物陰極材料製程與國內研究近況,工業材料,180期,p.162-169.
28.J. Cho, H. S. Jung, Y. C. Park, G. B. Kim, H. S. Lim, J. Electrochem. Soc., 147 (1) (2000) 15-20.
29.J. Molenda, M. Molenda, Metal, Ceramic and Polymeric Composites for Various Uses, 30 622.
30.J. Ying, C. Wan, C. Jiang, Y. Li, J. Power Sources, 99 (2001) 78-84.
31.K. K. Cheralathan, N. Y. Kang, H. S. Park, Y. J. Lee, W. C. Choi, Y. S. Ko, Y.-K. Park, J. Power Sources, 195 (2010) 1486-1494.
32.M. Noh, J. Cho, J. Electrochem. Soc., 160 (1) (2013) A105-A111.
33.L. J. Li, X. H. Li, Z. X. Wang, H. J. Guo, P. Yue, W. Chen, L. Wu, Powder Technol., 206 (2011) 353–357.
34.H. J. Kweon, S. J. Kim, D. G. Park, J. Power Sources, 88 (2000) 255–261.
35.G. R. Hu, X. R. Deng, Z. D. Peng, K. Du, Electrochimica Acta, 53, (2008), 2567–2573.
36.J. F. Xiang, C. X. Chang, L. J. Yuan, J. T. Sun, Electrochem. Commun., 10 (2008) 1360–1363.
37.D. J. Lee, B. Scrosati, Y. K. Sun, J. Power Sources, 196 (2011) 7742–7746.
38.T. K. Fey, V. Subramanian, C. Z. Lu, lonics, 7 (2001) 210.
39.C. H. Chen, J. Liu, M. E. Stoll, G. Henriksen, D. R. Vissers, K. Amine, J. Power Sources, 128 (2004) 278–285.
40.M. H. Kim, H. S. Shin, D. Shin, Y. K. Sun, J. Power Sources, 159 (2006) 1328–1333.
41.S. H. Oh, S. M. Lee, W. I. Cho, B. W. Cho, Electrochim. Acta, 51 (2006) 3637–3644.
42.C. W. Wang, X. L. Ma, J. G. Cheng, J. T. Sun, Y. H. Zhou, J. Solid State Electrochem., 11 (2007) 361–364.
43.J. F. Xiang, C. X. Chang, F. Zhang, J. T. Sun, J. Alloys and Compounds, 475 (2009) 483–487.
44.H. W. Tang, F. S. Zhao, Z. R. Chang, X. Z. Yuan, H. J. Wang, J. Electrochem. Soc., 156 (6) (2009) A478-A482.
45.Y. E. Eli, A. Kraytsberg, Adv. Energy Mater., 2 (2012) 922–939.
46.L. Liu, K. Sun, N. Zhang, T. Yang, J. Solid State Electrochem., 13 (2009) 1381–1386.
47.C. Hu, H. Yi, H. Fang, B. Yang, Y. Yao, W. Ma, Y. DaiInt, J. Electrochem. Sci., 5 (2010) 1457 – 1463.
48.Y. Kim, D. Kim, ACS Appl. Mater. Interfaces, 4 (2012) 586−589.
49.J. Cho, G. Kim, Electrochem. Solid-State Lett., 2 (6) (1999) 253-255.
50.W. S. Yoon, K. Y. Chung, K. W. Nam, K. B. Kim, J. Power Sources, 163 (2006) 207–210.
51.Z. F. Ma, X. Q. Yang, X. Z. Liao, X. Sun, J. McBreen, Electrochem. Commun., 3 (2001) 425-428.
52.J. Cho, Solid State Ionics, 160 (2003) 241–245.
53.M. H. Liua, H. Ta. Huang, C. M. Lin, J. M. Chen, S. C. Liao, Electrochim. Acta, 120 (2014) 133–139.
54.Y. K. Sun, D. H. Kim, H. G. Jung, S. T. Myung, K. Amine, Electrochim. Acta, 55 (2010) 8621–8627.
55.Z. Huang, J. Gao, X. He, J. Li, C. Jiang, J. Power Sources, 202 (2012) 284–290.
56.Y. Cho, P. Oh, J. Cho, Nano Lett., 13 (2013) 1145−1152.
57.Y. K. Sun, D. H. Kim, C. S. Yoon, S. T. Myung, J. Prakash, K. Amine, Adv. Funct. Mater., 20 (2010) 485–491.
58.Y. K. Sun, B. R. Lee, H. J. Noh, H. Wu, S. T. Myung, K. Amine, J. Mater. Chem., 21 (2011) 10108–10112.
59.Y. K. Sun, Z. Chen, H. J. Noh, D. J. Lee, H. G. Jung, Y. Ren, S. Wang, C. S. Yoon, S. T. Myung, K. Amine, nature mater., 11 (2012) 942-947.
60.S. K. Jung, H. Gwon, J. Hong, K. Y. Park, D. H. Seo, H. Kim, J. Hyun, W. Yang, K. Kang, Adv. Energy Mater., 4 (2014) 1300787.
61.G. An, P. Yu, M. Xiao, Z. Liu, Z. Miao, K. Ding, L. Mao, Nanotechnology, 19 (2008) 275709.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top