(3.237.20.246) 您好!臺灣時間:2021/04/14 09:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:徐倚中
研究生(外文):Yi-Chung Hsu
論文名稱:Zeolitic imidazolate framework-8 靜相毛細管柱於變壓器油中氣體分離之探討
論文名稱(外文):Evaluation of Zeolitic Imidazolate Framework-8 Coated Capillary Column for Separation of Transformer Oil Gases
指導教授:張宏維張宏維引用關係
指導教授(外文):Hung-Wei Chang
口試委員:施正雄呂家榮張宏維
口試委員(外文):Jeng-Shong ShihChia-Jung LuHung-Wei Chang
口試日期:2014-07-04
學位類別:碩士
校院名稱:輔仁大學
系所名稱:化學系
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:93
中文關鍵詞:金屬有機骨架材料沸石咪唑酯骨架材料氣相層析多孔層開管柱
外文關鍵詞:metal organic frameworkszeolitic imidazolate frameworkgas chromatographyporous layer open tubular column
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  Zeolitic imidazolate frameworks ( ZIFs ) 是一種多孔性的金屬有機骨架材料(metal organic frameworks, MOFs),本研究使用以2-methylimidazol連結中心金屬 Zn2+ 而成四面體結構的ZIF-8作為氣相層析儀之靜相物,來分離溶於油浸式變壓器內絕緣油的易燃氣體(total combustible gases, TCG),包含氫氣、一氧化碳、甲烷、乙烷、乙烯和乙炔等氣體作為本研究的故障氣體。
  而薄膜的製備在於利用二次長晶法(secondary growth method)將ZIF-8以共價鍵的形式生長於毛細管壁上,形成多孔塗層開管管柱(porous layer open tubular column, PLOT),此管柱的阻流因子為0.88,以氬氣為載流氣體在定溫33oC的環境下能於5分鐘內分離所有故障氣體,此層析時間比商品化的碳分子篩carboxen 1010毛細管短上許多,並計算出各故障氣體的吸附焓與熵。此外ZIF-8管柱在40oC下,以51.45 cm / sec 的流速,對CH4有最小理論板數1887 / m,且經由多次實驗CH4對H2的解析度平均為6.18,相對標準差為1.28%,並能以頂空採樣法對故障氣體進行校正。綜合研究 結果顯示,.ZIF-8塗層毛細管柱具有相當好的再現性與選擇性可用 來快速分離緣油中的故障氣體。

 Zeolitic imidazolate frameworks ( ZIFs ) is a new subclass porous metal organic frameworks (MOFs). ZIF-8, which is constructed in tetrahedral frameworks by zinc ion at center and 2-methylimidazole as linker, was exploiter as stationary phase for capillary gas chromatographic separation of total combustible gases (TCG), including hydrogen (H2), carbon monoxide (CO), methane (CH4), ethane (C2H6), ethylene (C2H4), and acetylene (C2H2), dissolved in power transformer insulating oil. ZIF-8 was uniformly deposited on the inner wall of conventional capillary as porous layer open tubular (PLOT) column stationary phase via secondary growth method with 0.88 resistance factor (F) value. A single ZIF-8 capillary column fully all separated TCG under 33 oC isothermal condition without the need of temperature programming using argon as carried gas. The separation time of ZIF-8 capillary column was less then 5 minutes, which is much shorter than commercial available carbon molecular, sieve PLOT Carboxen 1010 capillary column. For CH4, the optimized value of the theoretical plates was 1887 plates/m, and optimum velocity was 51.45 cm/sec under 40oC. The adsorption enthalpies and entropies of TCG on ZIF-8 were calculated. The average resolution for H2 and CH4 onZIF-8 coated capillary column was 6.18 with 1.28% relative standard deviation. With repeatable separation, ZIF-8 coated capillary column were applied with headspace sampler for TCG calibration. The fabricated ZIF-8 coated capillary column has been shown to be very promising for good reproducibility and selectivity for fast separation of TCG. 
摘要 i
目錄 iii
圖目錄 vii
表目錄 x
第一章 緒論 1
1.1. 前言 1
1.2. 管柱效能探討 3
1.2.1. 選擇因子 6
1.2.2. 解析度 7
1.2.3. 理論板高之理論 7
1.3. 金屬有機骨架材料 10
1.3.1. 金屬有機骨架材料發展與介紹 10
1.3.2. 金屬有機骨架材料於分析化學之應用 13
1.3.2.1. 於氣態樣品採集中的應用 13
1.3.2.2. 於固相萃取與固相微萃取的應用 13
1.3.2.3. 金屬有機骨架材料用於管柱的發展與應用 15
1.3.3. Zeolitic Imidazolate Frameworks, ZIFs有 16
1.4. 結晶晶格學 17
1.4.1. 基本結晶學 18
1.4.2. 晶體系統 18
1.4.3. 晶格 20
1.4.4. 米勒指標 22
1.4.5. X光繞射分析與應用 23
1.4.5.1. 分析原理 23
1.4.5.2. 立方晶系繞射圖形面指標之標示法 24
1.5. 油浸式變壓器中的故障氣體 27
1.5.1. 氣體的形成 27
1.5.2. 故障判斷方法 29
1.5.3. 檢測故障氣體濃度之方法 31
第二章 實驗器材及方法 35
2.1. 實驗藥品及儀器設備 35
2.1.1. 實驗藥品及試劑 35
2.1.2. 儀器設備 36
2.2. 材料合成與鑑定 38
2.2.1. 金屬有機骨架材料 ZIF-8 powder合成 38
2.2.2. 晶種溶液(seeding solution)配製 38
2.2.3. 二次生長液(secondary growth solution)配製 39
2.2.4. 於玻璃蓋玻片上合成ZIF-8薄膜 39
2.2.5. ZIF-8管柱製備 40
2.2.5.1. 毛細管前處理 40
2.2.5.2. 將毛細管塗覆混有ZIF-8 powder之PEI薄膜 40
2.2.5.3. 將毛細管塗覆ZIF-8薄膜 41
2.3. 儀器設置與參數 42
第三章 實驗結果與討論 43
3.1. ZIF-8 粉末合成與鑑定 43
3.2. ZIF-8薄膜合成與鑑定 50
3.2.1. 製備ZIF-8薄膜於薄璃蓋玻片上 51
3.2.2. 浸泡生長液時間對玻璃蓋玻片上ZIF-8膜厚的影響 53
3.2.3. 管柱浸泡二次生長液時間與膜厚的關係 56
3.3. ZIF-8管柱合成與鑑定 57
3.3.1. PEI膜對分離效果之影響 57
3.3.2. 管柱鑑定 58
3.4. ZIF-8 column管柱性質之討論 62
3.4.1. 定性分析 62
3.4.2. 溫度與流速對ZIF-8 column分離效果的影響 63
3.4.3. 故障氣體之adsorption enthalpy探討 65
3.4.4. 理論板高之探討 69
3.4.5. 重複測試 72
3.5. 儀器架構圖 73
3.6. 與carboxen-1010 column分離效果之差異 74
3.7. 定量分析 76
3.8. 分析絕緣油樣品 81
第四章 結論 83
參考文獻 85
附錄 94
(1) Yaghi, O. M.; Davis, C. E.; Li, G.; Li, H.: Selective Guest Binding by Tailored Channels in a 3-D Porous Zinc(II)−Benzenetricarboxylate Network. Journal of the American Chemical Society 1997, 119, 2861-2868.
(2) Yaghi, O. M.; O'Keeffe, M.; Ockwig, N. W.; Chae, H. K.; Eddaoudi, M.; Kim, J. Reticular synthesis and the design of new materials. Nature 2003, 423, 705-714.
(3) Rowsell, J. L. C.; Yaghi, O. M. Metal–organic frameworks: a new class of porous materials. Microporous and Mesoporous Materials 2004, 73, 3-14.
(4) Cussen, E. J.; Claridge, J. B.; Rosseinsky, M. J.; Kepert, C. J. Flexible Sorption and Transformation Behavior in a Microporous Metal-Organic Framework. Journal of the American Chemical Society 2002, 124, 9574-9581.
(5) Rowsell, J. L. C.; Millward, A. R.; Park, K. S.; Yaghi, O. M. Hydrogen Sorption in Functionalized Metal−Organic Frameworks. Journal of the American Chemical Society 2004, 126, 5666-5667.
(6) Skoulidas, A. I. Molecular Dynamics Simulations of Gas Diffusion in Metal−Organic Frameworks:  Argon in CuBTC. Journal of the American Chemical Society 2004, 126, 1356-1357.
(7) Chang, N.; Gu, Z.-Y.; Yan, X.-P. Zeolitic Imidazolate Framework-8 Nanocrystal Coated Capillary for Molecular Sieving of Branched Alkanes from Linear Alkanes along with High-Resolution Chromatographic Separation of Linear Alkanes. Journal of the American Chemical Society 2010, 132, 13645-13647.
(8) 施正雄: 儀器分析原理與應用 Principles and applications of instrumental analysis; 五南: 臺北市, 2012.
(9) Golay, M. J. E. Height equivalent to a thoretical plate of an open tubular column lined with a porous layer. Analytical Chemistry 1968, 40, 382-384.
(10) van Deemter, J. J.; Zuiderweg, F. J.; Klinkenberg, A. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chemical Engineering Science 1995, 50, 3869-3882.
(11) Golay, M. J. E.: Gas chromatography, edit. by Desty, D. H. (Butterworths, 1958)
(12) Li, J.-R.; Kuppler, R. J.; Zhou, H.-C. Selective gas adsorption and separation in metal-organic frameworks. Chemical Society Reviews 2009, 38, 1477-1504.
(13) 魏文英;方鍵;孔海寧;韓金玉;常賀英. 金屬有機骨架材料的合成及應用. 化學進展 2005, 17, 1110-1115.
(14) Nijkamp, M. G.; Raaymakers, J.; van Dillen, A. J.; de Jong, K. P. Hydrogen storage using physisorption - materials demands. Appl. Phys. A-Mater. Sci. Process. 2001, 72, 619-623.
(15) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M. A route to high surface area, porosity and inclusion of large molecules in crystals. Nature 2004, 427, 523-527.
(16) Ni, Z.; Jerrell, J. P.; Cadwallader, K. R.; Masel, R. I. Metal−Organic Frameworks as Adsorbents for Trapping and Preconcentration of Organic Phosphonates. Analytical Chemistry 2007, 79, 1290-1293.
(17) Gu, Z.-Y.; Wang, G.; Yan, X.-P. MOF-5 Metal−Organic Framework as Sorbent for In-Field Sampling and Preconcentration in Combination with Thermal Desorption GC/MS for Determination of Atmospheric Formaldehyde. Analytical Chemistry 2010, 82, 1365-1370.
(18) Gu, Z.-Y.; Yang, C.-X.; Chang, N.; Yan, X.-P. Metal–Organic Frameworks for Analytical Chemistry: From Sample Collection to Chromatographic Separation. Accounts of Chemical Research 2012, 45, 734-745.
(19) Yang, C. X.; Yan, X. P. Application of Metal-Organic Frameworks in Sample Pretreatment. Chin. J. Anal. Chem. 2013, 41, 1297-1301.
(20) Zhou, Y.-Y.; Yan, X.-P.; Kim, K.-N.; Wang, S.-W.; Liu, M.-G. Exploration of coordination polymer as sorbent for flow injection solid-phase extraction on-line coupled with high-performance liquid chromatography for determination of polycyclic aromatic hydrocarbons in environmental materials. Journal of Chromatography A 2006, 1116, 172-178.
(21) Cui, X.-Y.; Gu, Z.-Y.; Jiang, D.-Q.; Li, Y.; Wang, H.-F.; Yan, X.-P. In Situ Hydrothermal Growth of Metal−Organic Framework 199 Films on Stainless Steel Fibers for Solid-Phase Microextraction of Gaseous Benzene Homologues. Analytical Chemistry 2009, 81, 9771-9777.
(22) He, C.-T.; Tian, J.-Y.; Liu, S.-Y.; Ouyang, G.; Zhang, J.-P.; Chen, X.-M. A porous coordination framework for highly sensitive and selective solid-phase microextraction of non-polar volatile organic compounds. Chemical Science 2013, 4, 351-356.
(23) Yu, L.-Q.; Yan, X.-P. Covalent bonding of zeolitic imidazolate framework-90 to functionalized silica fibers for solid-phase microextraction. Chemical Communications 2013, 49, 2142-2144.
(24) Chang, N.; Gu, Z.-Y.; Wang, H.-F.; Yan, X.-P. Metal–Organic-Framework-Based Tandem Molecular Sieves as a Dual Platform for Selective Microextraction and High-Resolution Gas Chromatographic Separation of n-Alkanes in Complex Matrixes. Analytical Chemistry 2011, 83, 7094-7101.
(25) Yu, Y. B.; Ren, Y. Q.; Shen, W.; Deng, H. M.; Gao, Z. Q. Applications of metal-organic frameworks as stationary phases in chromatography. Trac-Trends Anal. Chem. 2013, 50, 33-41.
(26) Chen, B.; Liang, C.; Yang, J.; Contreras, D. S.; Clancy, Y. L.; Lobkovsky, E. B.; Yaghi, O. M.; Dai, S. A Microporous Metal–Organic Framework for Gas-Chromatographic Separation of Alkanes. Angewandte Chemie International Edition 2006, 45, 1390-1393.
(27) Gu, Z.-Y.; Yan, X.-P. Metal-Organic Framework MIL-101 for High-Resolution Gas-Chromatographic Separation of Xylene Isomers and Ethylbenzene. Angewandte Chemie-International Edition 2010, 49, 1477-1480.
(28) Gu, Z.-Y.; Jiang, J.-Q.; Yan, X.-P. Fabrication of Isoreticular Metal-Organic Framework Coated Capillary Columns for High-Resolution Gas Chromatographic Separation of Persistent Organic Pollutants. Analytical Chemistry 2011, 83, 5093-5100.
(29) Li, L.-M.; Wang, H.-F.; Yan, X.-P. Metal-organic framework ZIF-8 nanocrystals as pseudostationary phase for capillary electrokinetic chromatography. ELECTROPHORESIS 2012, 33, 2896-2902.
(30) Münch, A. S.; Seidel, J.; Obst, A.; Weber, E.; Mertens, F. O. R. L. High-Separation Performance of Chromatographic Capillaries Coated with MOF-5 by the Controlled SBU Approach. Chemistry – A European Journal 2011, 17, 10958-10964.
(31) Ahmad, R.; Wong-Foy, A. G.; Matzger, A. J. Microporous Coordination Polymers As Selective Sorbents for Liquid Chromatography. Langmuir 2009, 25, 11977-11979.
(32) Yang, C.-X.; Liu, S.-S.; Wang, H.-F.; Wang, S.-W.; Yan, X.-P. High-performance liquid chromatographic separation of position isomers using metal-organic framework MIL-53(Al) as the stationary phase. Analyst 2012, 137, 133-139.
(33) Ameloot, R.; Liekens, A.; Alaerts, L.; Maes, M.; Galarneau, A.; Coq, B.; Desmet, G.; Sels, B. F.; Denayer, J. F. M.; De Vos, D. E. Silica–MOF Composites as a Stationary Phase in Liquid Chromatography. European Journal of Inorganic Chemistry 2010, 2010, 3735-3738.
(34) Park, K. S.; Ni, Z.; Cote, A. P.; Choi, J. Y.; Huang, R.; Uribe-Romo, F. J.; Chae, H. K.; O'Keeffe, M.; Yaghi, O. M. Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proceedings of the National Academy of Sciences of the United States of America 2006, 103, 10186-10191.
(35) Stacy W. Kish.: http://science.energy.gov/news/featured-articles/2010/06-17-10-s/ (accessed December 2013).
(36) Cambridge Crystallographic Data Centre(CCDC).: http://www.
ccdc.cam.ac.uk/pages/Home.aspx (accessed December 2013)
(37) 許樹恩; 吳泰伯: X光繞射原理與材料結構分析; 中國材料科學學會: 新竹市, 1996.
(38) Eckert, M. Disputed discovery: the beginnings of X-ray diffraction in crystals in 1912 and its repercussions. Acta Crystallographica Section A 2012, 68, 30-39.
(39) Eckert, M. Max von Laue and the discovery of X-ray diffraction in 1912. Annalen der Physik 2012, 524, A83-A85.
(40) Bandyopadhyay, S. S. a. M. N. Duval Triangle: A Noble Technique for DGA in Power Transformers. International Journal of Electrical and Power Engineering 2010, 4, 193-197.
(41) 油中氣體分析. http://www.hamlintek.com/gio.htm (accessed May 2014)
(42) ASTM D 3612-02, Standard Test Method for Analysis of Gases Dissolved in Electrical Insulating Oil by Gas Chromatography:
http://www.astm.org/Standards/D3612.htm (accessed June 2014)
(43) IEEE C57.104, IEEE Guide for the Interpretation of Gases Generated in Oil-Immersed Transformers:http://ieeexplore.ieee.
org/xpls/abs_all.jsp?arnumber=182866&tag=1 (accessed June 2014)
(44) IEC 60599, Mineral oil-impregnated wquipments in service - guide to the interpretation of dissolved and free gases analysis: http://webstore.iec.ch/webstore/webstore.nsf/ArtNum/038001 (accessed May 2014)
(45) Yaghi, O. M. http://yaghi.berkeley.edu/gallery.html (accessed December 2013).
(46) Huang, Y.-P.; Lin, I. J.; Chen, C.-C.; Hsu, Y.-C.; Chang, C.-C.; Lee, M.-J. Delivery of small interfering RNAs in human cervical cancer cells by polyethylenimine-functionalized carbon nanotubes. Nanoscale Research Letters 2013, 8.
(47) de Zeeuw, J.; Bromps, B.; Vezza, T.; Morehead, R.; Stidsen, G. Advances in Porous Layer Open Tubular Columns. Am. Lab. 2010, 42, 38-46.
(48) Fan, L.; Yan, X.-P. Evaluation of isostructural metal–organic frameworks coated capillary columns for the gas chromatographic separation of alkane isomers. Talanta 2012, 99, 944-950.
(49) Anderson, J. L.; Armstrong, D. W. Immobilized Ionic Liquids as High-Selectivity/High-Temperature/High-Stability Gas Chromatography Stationary Phases. Analytical Chemistry 2005, 77, 6453-6462.
(50) Gonnord, M. F.; Guiochon, G.; Onuska, F. I. Narrow bore open tubular columns for improvement of gas chromatographic analysis time. Analytical Chemistry 1983, 55, 2115-2120.
(51) E. Bich, J. M., and E. Vogel. The Viscosity and Thermal Conductivity of Pure Monatomic Gases From Their Normal Boiling Point up to 5000 K in the Limit of Zero Density and at 0.101325 MPa. Journal of Physical and Chemical Reference Data Reprints 1990, 19, 1289-1305.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔