跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/09 14:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:丁翊
研究生(外文):TING YI
論文名稱:鐵酸鉍摻雜鈦酸鉍鈉陶瓷的光伏效應
論文名稱(外文):Photovoltaic responses of (Na0.5Bi0.5)TiO3-doped BiFeO3 ceramics
指導教授:杜繼舜
指導教授(外文):Tu, Chi-Shun
口試委員:陳炳宜陳正劭杜繼舜
口試委員(外文):Chen, Pin-YiChen, Cheng-SaoTu, Chi-Shun
口試日期:2014-07-05
學位類別:碩士
校院名稱:輔仁大學
系所名稱:物理學系碩士班
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:71
中文關鍵詞:光伏效應XRDSEM介電常數導電性磁性鐵電性X光吸收光譜
外文關鍵詞:photovoltaic responsesstructuredielectric permittivityconductivitymagnetic propertiesferroelectricX-ray absorption spectroscopy
相關次數:
  • 被引用被引用:4
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究 BiFeO3-100x%(Bi0.5Na0.5)TiO3, (x=0.005, 0.05)複鐵性陶瓷的光伏效應,並探討結構、介電常數、導電性、磁性及鐵電性,以及X光吸收光譜。光伏效應方面,研究此材料的開路電壓、短路電流、轉換效率,並使用P-N junction model對I-V特性圖進行fitting。預期摻雜鐵電性(Bi0.5 Na0.5)TiO3 後可以進行高電場的電極化,並提升轉換效率。結構方面由X光繞射與SEM來分析,針對(110) 切向峰來研究菱方晶系的夾角αR及晶格常數a,並觀察晶粒大小的變化。變溫介電方面觀察頻率色散是否改善及介電極大值發生的溫度範圍,為接近(TN)尼爾溫度的磁電耦合特徵,並經由介電常數虛部來計算導電性。磁滯曲線方面,BFO-5%BNT有磁性增強的現象,可能是由於鐵離子(Fe3+=>Fe4+)變價或Fe-O-Fe角度變化所致,並由同步輻射X光吸收光譜來判定。
This work study BiFeO3-100x% (Bi0.5Na0.5)TiO3 (x=0.005,0.05) multiferroic ceramics and their photovoltaic responses, structure, dielectric permittivity, conductivity, magnetic properties, ferroelectric, and X-ray absorption spectroscopy. Open-circuit voltage, short-circuit current, and the I-V curve without illumination had been measured, using P-N junction model to do the data fitting. Ferroelectric (Bi0.5Na0.5)TiO3 doping maybe can do the high E-field poling in order to increase the conversion efficiency. Use XRD & SEM to analyze the structure, α angle, and lattice parameter at plane (110), and to compare the grain sizes due to different NBT compounds. The temperature point closes to the Nèel temperature (TN), suggested the magnetoelectric coupling. Conductivity can be calculate by the imagine part of dielectric permittivity. The enhanced ferromagnetism in BFO-5%BNT may due to variation of oxidation valences of Fe ion (Fe3+=>Fe4+) and/or the angle changing of Fe-O-Fe, we use the X-ray absorption spectroscopy to determine.
摘要 i
ABSTRACT ii
致謝辭 iii
CONTENTS v
LIST OF FIGURES vii
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Perovskites Photovoltaic Solar Cells 1
1.2 Characteristic of BiFeO3 ceramic 3
1.3 P-N junction solar cell 5
1.4 Review 6
Chapter2Theoretical Analysis 8
2.1 XRD 8
2.2 Lattice Geometry 11
2.3 Dielectric Permittivity 13
2.4 Magnetic Properties 15
2.5 Ferroelectric Hysteresis Loop 15
2.6 P-N Junction Photovoltaic Model 18
2.7 External Quantum Efficiency 24
2.8 X-ray Absorption Spectroscopy 25
Chapter3Experimental Procedure 28
3.1 BNT-Doped BiFeO3 Sample Preparation 28
3.1.1 Mixing powder 25
3.1.2 First ball milling 26
3.1.3 Dry and Sieving 27
3.1.4 Calcining 28
3.1.5 High-energy ball milling 29
3.1.6 Pressing 30
3.1.7 Sintering 30
3.2 Dielectric Permittivity Measurement 30
3.3 Ferroelectric Hysteresis Loop 30
3.4 Magnetic Properties Measurement 32
3.5Photovoltaic response 32
3.6 SEM Measurement 34
3.7 Synchrotron X-ray Absorption Spectroscopy 34
Chapter4 Results and Discussion 36
4.1 Structure & Sample Morphologies 36
4.2 XRD (110) Reflections Analysis 37
4.3 Dielectric Permittivity and Conductivity 39
4.4 Magnetic Properties and X-ray Absorption 43
4.5 Photovoltaic Responses 47
4.5.1 Open-Circuit Voltage & Short-Circuit Current 47
4.5.2 I-V characteristic 50
4.5.3 Fitting with PN-junction model 51
4.5.4 Conversion Efficiency 52
Chapter5 Conclusions 56
References 59
[1] Mark Pelow, “Perovskite Is the New Black in the Solar World”, IEEE Spectrum (2014) , <http://spectrum.ieee.org/green-tech/solar/perovskite-is-the-new-black-in-the-solar-world/> (2014)
[2] Akihiro Kojima et al., “Organometal Halide Perovskites as Visible-Light Sensitizers for Photovoltaic”, J. AM. CHEM. SOC. 131, 6050–6051(2009)
[3] Mingzhen Liu et al., “Efficient planar heterojunction perovskite solar cells by vapour deposition”, Nature 501, 395-398(2013)
[4] Ilya Grinberg et al., “Perovskite oxides for visible-light-absorbing ferroelectric and photovoltaic materials”, Nature 503, 509-512(2013)
[5] S. Y. Yang et al., “Above-bandgap voltages from ferroelectric photovoltaic devices”, Nature Nanotechnology 5, 143-146(2010)
[6] C. S. Tu et al., “Calcium-doping effects on photovoltaic response and structure in multiferroic BiFeO3 ceramics”, Journal of Applied Physics 114, 124105 (2013)
[7] 林灯祺, “複鐵性BiFeO3陶瓷之結構相變與摻BaTiO3效應”, 天主教輔仁大學物理學系碩士論文, (2010)
[8] 楊偉群, “複鐵性BiFeO3陶瓷A-site離子置換之效應”, 天主教輔仁大學物理學系碩士論文, (2011)
[9] 游皓翔, “0.9BiFeO3-0.1BaTiO3 與 (Bi0.9Ba0.1)(Fe0.9Ti0.1)O3 複鐵性陶瓷之介電、磁性與結構研究”, 天主教輔仁大學物理學系碩士論文, (2010)
[10] 杜浩群, “光致電效應在複鐵陶瓷BiFeO3”, 天主教輔仁大學物理學系碩士論文, (2012)
[11] 江明達, “複鐵性BFO陶瓷之光伏效應與分析”, 天主教輔仁大學物理學系碩士論文, (2013)
[12] 顏維德, “摻雜奈米鈷之複鐵性BiFeO3陶瓷之光伏效應與結構研究”, 天主教輔仁大學物理學系碩士論文, (2014)
[13] 林張鴻, “無鉛鈦酸鉍鈉摻鈦酸鋇壓電陶瓷特性與分析”, 天主教輔仁大學物理學系碩士論文, (2013)
[14] Steve M. Young et al., “First-Principles Calculation of the Bulk Photovoltaic Effect in Bismuth Ferrite”, PRL 109, 236601 (2012)
[15] C.-M. Hung et al., “Photovoltaic phenomena in BiFeO3 multiferroic ceramics”, J Appl. Phys. 84, 1508 (1998)
[16] C-S Tu et al., “The origin of photovoltaic responses in BiFeO3 multiferroic ceramics”, J. Phys.: Condens. Matter 24 , 495902 (2012)
[17] C.-M. Hung et al., “Photo-induced electric phenomena in anti ferromagnetic BiFeO3 ceramics”, J. Appl. Phys. 113, 17D905 (2013)
[18] Yao Wang et al., “Enhanced ferroelectricity in Ti-doped multiferroic BiFeO3 thin films”, Appl. Phys. Lett. 89, 052903 (2006)
[19] S. J. Kim et al., “Multiferroic Properties of Ti-doped BiFeO3 Ceramics”, Journal of the Korean Physical Society 56, 439-442(2010)
[20] Annurak Prasatk hetragarn et al., "Ferroelectromagnetic characteristic of Na-doped 0.75BiFeO3-0.25BaTiO3 multiferroic ceramics”, Ceramics International 39, S245-S248(2013)
[21] Bing Guo et al., “Optical properties of BiFeO3–(Na0.5Bi0.5)TiO3 thin films deposited on glass substrates by chemical solution deposition”, Materials Letters 71, 60–62 (2012)
[22] Z.M. Tian et al., “Enhanced multiferroic properties and tunable magnetic behavior in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solutions”, Materials Science and Engineering B 177, 74– 78 (2012)
[23] Z.M. Tian et al., “Coexistence of room temperature ferroelectricity and ferrimagnetism in multiferroic BiFeO3–Bi0.5Na0.5TiO3 solid solution”, Journal of Alloys and Compounds 509, 8144– 8148 (2011)
[24] Charles Kittel, Introduction to solid state physics, (John Wiley & Sons, United States of America, 2005)
[25] Wikipedia, “Quantum efficiency”, Wikipedia ,http://en.wikipedia.org/wiki/External_quantum_efficiency
[26] 王健源,林玄哲與黃界閔, “X光吸收近邊緣結構(XANES)與延伸X光吸收近邊緣細微結構(EXAFS)分析法”, 書面報告-台灣大學化學系 (2000)
[27] C.-S. Tu et al., “Origins of dielectric response and conductivity in (Bi1-xNdx)FeO3 multiferroic ceramics”, Journal of Applied Physics 110, 114114 (2011)
[28] Wikipedia, “Miller index”, Wikipedia (2014), <http://en.wikipedia.org/wiki/Miller_index > (2014)
[29] Wikipedia, “Rhombohedron”, Wikipedia (2013), <http://en.wikipedia.org/wiki/Rhombohedron> (2014)
[30] Martine Gautier-Soyer, “X-ray Absorption Spectroscopy: A Tool to Study the Local Atomic and Electronic Structure of Ceramics”, Journal of the European Ceramic Society 18, 2253–2261(1998)
[31] Rattikorn Yimnirun et al., “Identification of Mn Site in BaTiO3 by Synchrotron X-Ray Absorption Spectroscopy Measurements”, Ferroelectrics 381, 130-143 (2009)
[32] M. Vračar , “Jahn-Teller distortion around Fe4+ in Sr(FexTi1−x)O3−δ from x-ray absorption spectroscopy,x-ray diffraction, and vibrational spectroscopy”, PHYSICAL REVIEW B 76, 174107(2007)
[33] Maki Okube et al., “Oxidation state and effective pair potential of Fe4+ ions in perovskite-type SrFeO3 annealed under high oxygen pressure”, J. Phys.: Conf. Ser. 121, 092004(2008)
[34] M. Katsikini & E. C. Paloura., “Example: Fe K edge NEXAFS spectra”, X-ray Absorption Fine Structure for materials characterization, <http://users.auth.gr/katsiki/Fe_k_edge.htm>, (2014)
[35] O. J. Durá et al., “Ionic conductivity of nanocrystalline yttria-stabilized zirconia: Grain boundary and size effects”, PHYSICAL REVIEW B 81, 184301(2010)
[36] S. Y. Yang et al., “Photovoltaic effects in BiFeO3”, Appl. Phys. Lett. 95, 062909 (2009)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊