跳到主要內容

臺灣博碩士論文加值系統

(44.222.189.51) 您好!臺灣時間:2024/05/24 19:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳盈靜
研究生(外文):CHEN, YING-CHING
論文名稱:以蛋白質體學分析葡萄糖酸內酯及海藻酸丙二醇對牛乳蛋白之凝聚作用
論文名稱(外文):Proteomic analysis of glucono-δ-lactone and propylene glycol alginate-induced coagulation of milk proteins
指導教授:謝榮峯謝榮峯引用關係
指導教授(外文):HSIEH, JUNG-FENG
口試委員:曾湘文李文泰
口試委員(外文):TSENG, HSIAN-WENLI, WEN-TAI
口試日期:2014-10-30
學位類別:碩士
校院名稱:輔仁大學
系所名稱:食品科學系碩士班
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:103
語文別:英文
論文頁數:94
中文關鍵詞:葡萄糖酸內酯海藻酸丙二醇蛋白質體學二維電泳
外文關鍵詞:Glucono-δ-lactonePropylene glycol alginateProteomicsTwo-dimensional electrophoresis
相關次數:
  • 被引用被引用:0
  • 點閱點閱:196
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
牛乳中含有 2.8% 的蛋白質,而牛乳蛋白是由 80% 的酪蛋白(αS1-、αS2-、β- 與κ-酪蛋白) 與 20% 的乳清蛋白 (α-乳白蛋白、β-乳球蛋白與血清白蛋白) 組成。葡萄糖酸內酯 (glucono-δ-lactone, GDL) 及海藻酸丙二醇 (propylene glycol alginate, PGA) 為市面上用途廣泛的食品級添加物。本研究目的是以蛋白質體學分析葡萄糖酸內酯與海藻酸丙二醇對牛乳蛋白凝聚之影響。當牛乳與葡萄糖酸內酯 (0.5 M) 於 30oC 下作用 1 小時後,牛乳中約有 90.7% 蛋白凝聚形成沉澱物,牛乳中蛋白質含量由 29.2 ± 1.1 mg mL-1 下降至 2.7 ± 1.1 mg mL-1 。質地剖面分析結果得知以 0.5 M 葡萄糖酸內酯酸化作用所製成之起士 (5.0 ± 0.4 N) 與市售起士質地 (5.2 ± 0.2 N) 無顯著差異。由 SDS-PAGE 結果得知酪蛋白及部份的β-乳球蛋白皆會因葡萄糖酸內酯而導致沉澱。當牛乳與海藻酸丙二醇 (1%) 於 30oC 下作用 1 小時後,牛乳中約有 75.8% 蛋白凝聚形成沉澱物,牛乳中蛋白質含量由 29.2 ± 0.6 mg mL-1 下降至 7.0 ± 0.3 mg mL-1。由 SDS-PAGE 結果得知酪蛋白及部份血清白蛋白、β-乳球蛋白、α-乳白蛋白皆會因海藻酸丙二醇經疏水性作用而導致凝聚。此外,透過掃描式電子顯微鏡圖像顯示,隨著葡萄糖酸內酯或海藻酸丙二醇濃度增加,其牛乳蛋白分子間之網狀結構呈現緊密之趨勢。二維電泳結果顯示,牛乳蛋白會隨著葡萄糖酸內酯或海藻酸丙二醇濃度增加而產生凝聚作用。綜合牛乳與葡萄糖酸內酯及海藻酸丙二醇反應之結果得知,藉由蛋白質體學可清楚了解個別牛乳蛋白與葡萄糖酸內酯及海藻酸丙二醇之作用機制,因此在未來可應用蛋白質體學分析方法於食品工業上預測乳製品中蛋白質變化。

Milk contains 2.8% proteins which is an important source of nutrition for humans. Milk proteins composed of 80% caseins (αS1-, αS2-, β- and κ-casein) and 20% whey proteins (α-lactalbumin, β-lactoglobulin, and serum albumin). Glucono-δ-lactone (GDL) and propylene glycol alginate (PGA) are widely as food grade additives. The objective of this study was to analyze the GDL and PGA-induced coagulation of milk proteins by proteomic approach. The addition of GDL (0.5 M) to milk caused the milk proteins coagulated after a 1 h incubation period at 30oC. Approximately 90.7% of the milk proteins were coagulated into the milk pellet fraction, and the total protein in the milk decreased from 29.2 ± 1.1 mg mL-1 (control) to 2.7 ± 1.1 mg mL-1. The texture profile analysis showed that cheese-treated products (5.0 ± 0.4 N) by 0.5 M GDL direct acidification were similar with commercial cheese (5.2 ± 0.2 N). SDS-PAGE analysis showed that caseins and a portion of β-LG were coagulated because of GDL. Besides, the addition of PGA (1%) to milk caused the milk proteins coacervated after a 1 h incubation period at 30oC. Approximately 75.8% of the milk proteins were coagulated into the milk pellet fraction, and the total protein in the milk decreased from 29.2 ± 0.6 mg mL-1 to 7.0 ± 0.3 mg mL-1. SDS-PAGE analysis showed that caseins and a portion of serum albumin, α-LA and β-LG were coagulated by hydrophobic association of PGA. Moreover, the scanning electron microscope images indicated that milk protein molecules constructed by fine strands in a dense arrangement with the concentration of GDL or PGA. Two-dimensional electrophoresis analysis indicated that milk proteins were coagulated by increasing GDL or PGA concentrations. In conclusion, the mechanism of individual milk proteins with GDL and PGA is recognized clearly by proteomic approach. Therefore, the proteomic approach could be utilized in food industry to predict the changes of proteins in dairy products in the future.
I.Experimental motivation and objective.................1
II.Literature review....................................3
A. Milk............................................3
1. The compositions of milk........................3
2. Milk proteins...................................3
3. Caseins.........................................4
4. Whey proteins...................................5
B. Glucono-δ-lactone (GDL).........................9
1. The application of GDL..........................9
C. Propylene glycol alginate (PGA)................10
1. The application of PGA.........................10
D. Proteomics.....................................14
1. Two-dimensional electrophoresis (2-DE).........16
2. Mass spectrometry..............................16
3. Proteins databases.............................17
4. The application of proteomics in food industry.18
Ⅲ.Materials and methods................................20
A. Experimental design.............................20
B. Materials.......................................22
1. Preparation of milk samples.....................22
C. Methods.........................................22
1. Preparation of cheese…..........................22
2. Determination of cheese hardness................23
3. Preparation of milk samples containing various concentrations of GDL or PGA...........................23
4. Determination of protein concentrations and pH value..................................................24
5. Scanning electron microscope analysis.................................................................25
6. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE)..................................25
7. Two-dimensional electrophoresis (2-DE) ...............................................................29
8. Statistical analysis..................................................................................31
Ⅳ.Results and discussions....................................................................................32
A.Part 1: Proteomic profiling of the coagulation of milk proteins induced by glucono-δlactone.................32
1. Effects of GDL concentration on the hardness of cheese................................................32
2. Effects of GDL on the coagulation of milk proteins....................................................33
3. Microstructure of MPF samples.........................................................................35
4. Analysis of the effects of GDL on caseins and whey proteins using SDS-PAGE............................37
5. 2-DE analysis of the effects of GDL on caseins and whey proteins......................................40
B.Part 2: Proteomic profiling of the coacervation of milk proteins induced by propylene glyco alginate........53
1. Effects of PGA on the coacervation of milk proteins...................................................53
2. Microstructure of MPF samples.........................................................................54
3. Analysis of the effects of PGA on caseins and whey proteins using SDS-PAGE............................55
Ⅴ. Conclusions................................................................................................69
Ⅵ. References................................................................................................70

Contents of tables
Table 1. Characteristic of bovine milk proteins...............................................................8
Table 2. Buffer solutions for SDS-PAGE used in this study....................................................27
Table 3. Buffer solutions for 2-DE used in this study........................................................30

Contents of figures
Figure 1. Average composition of mil.....................................................................7
Figure 2. The structure of glucono-δ-lactone............................................................12
Figure 3. The structure of propylene glyco algnate......................................................13
Figure 4. The schematic illustration of proteome analysis by 2-DE-MS....................................15
Figure 5. The experimental design in this study.........................................................21

Figure 6. Texture profile analysis parameters hardness of commercial cheese and for cheese made with GDL
(0, 0.1, 0.2, 0.3, 0.4 or 0.5M................................................................44

Figure 7. Changes in the total content of milk with various concentrations of GDL.......................45

Figure 8. Scanning electron microscope images MPF samples treated with various concentrations of GDL. A: 0.2 M; B: 0.3 M; C: 0.4 M; D: 0.5 M.....................................................................................46

Figure 9. Changes in the SDS-PAGE profiles of milk with various concentrations of GDL (0, 0.1, 0.2, 0.3, 0.4 or 0.5 M) at 30°C for 1 h............................................................................................47

igure 10. Densitograms corresponding to SDS-PAGE of milk proteins with various concentrations of GDL (0, 0.1, 0.2, 0.3, 0.4 or 0.5 M) at 30°C for 1 h............................................................................48

Figure 11. Two-dimensional polyacrylamide gel electrophoresis of milk proteins...........................49

Figure 12. Changes in the two-dimensional polyacrylamide gel electrophoresis profiles of milk proteins after treatment with various concentrations of GDL (0, 0.3, 0.4 or 0.5 M) at 30°C for 1 h..........................50

Figure 13. Relative abundance of 14 milk proteins spots after treatment with various concentrations of GDL at 30°C for 1 h.......................................................................................................51

Figure 14. Reaction scheme for the effect of GDL on the coagulation of milk proteins.....................52

Figure 15. Changes in the total protein content of milk with various concentrations of PGA...............61

Figure 16. Scanning electron microscope images showing the structure of various concentrations of PGA. (A): 0.6%; (B): 0.8% or (C): 1%..........................................................................................62

Figure 17. Changes in the SDS-PAGE profiles of milk with various concentrations of PGA (0, 0.2, 0.4, 0.6, 0.8 or 1%) at 30°C for 1 h...........................63

Figure 18. Densitograms corresponding to SDS-PAGE of milk proteins with various concentrations of PGA (0, 0.2, 0.4, 0.6, 0.8 or 1%) at 30°C for 1 h...............................................................................64

Figure 19. Two-dimensional polyacrylamide gel electrophoresis of milk proteins...........................65

Figure 20. Changes in the two-dimensional polyacrylamide gel electrophoresis profiles of milk proteins after treatment with various concentrations of PGA (0, 0.8 or 1%) at 30°C for 1 h...................................66

Figure 21. Relative abundance of 17 milk proteins pots after treatment with various concentrations of PGA (0, 0.8 or 1%) at 30°C for 1 h...........................................................................................67

Figure 22. Reaction scheme for the effect of PGA on the coacervation of milk proteins....................68



Aebersold, R., & Goodlett, D. R. (2001). Mass Spectrometry in Proteomics. Chemical Reviews, 101, 269-295.
Ahmed, M., & Dickinson, E. (1991). Foaming of aqueous solutions of protein + propylene glycol alginate. Food Hydrocolloids, 4, 395-402.
Almécija, M. C., Ibáñez, R., Guadix, A., & Guadix, E. M. (2007). Effect of pH on the fractionation of whey proteins with a ceramic ultrafiltration membrane. Journal of Membrane Science, 288, 28-35.
Anema, S. G., Loweb, E. K., & Lee, S. K. (2004). Effect of pH at heating on the acid-induced aggregation of casein micelles in reconstituted skim milk. Food Science and Technology, 37, 779-787.
Ausar, S. F., Bianco, I. D., Badini, R. G., Castagna, L. F., Modesti, N. M., Landa, C. A., & Beltramo, D. M. (2001). Characterization of casein micelle precipitation by chitosan. Journal of Dairy Science, 84, 361-369.
Baeza, R., Gugliotta, L. M., & Pilosof, A. M. R. (2003). Gelation of β-lactoglobulin in the presence of propylene glycol alginate: kinetics and gel properties. Colloids and Surfaces B: Biointerfaces, 31, 81-93.
Baeza, R., Sanchez, C. C., Pilosof, A. M., & Patino, J. M. (2004). Interfacial and foaming properties of prolylenglycol alginates. Effect of degree of esterification and molecular weight. Colloids and Surfaces B: Biointerfaces, 36, 139-145.
Bairoch, A., & Apweiler, R. (1999). The SWISS-PROT protein sequence data bank. Nucleic acids research, 27, 49-54.
Banon, S., & Hardy, J. (1992). A Colloidal Approach of Milk Acidification by Glucono-Delta-Lactone. Journal of Dairy Science, 75, 935-941.
Barros, R. M., Ferreira, C. A., Silva, S. V., & Malcata, F. X. (2001). Quantitative studies on the enzymatic hydrolysis of milk proteins brought about by cardosins precipitated by ammonium sulfate. Enzyme and microbial technology, 29, 541-547.
Boeckmann, B., Bairoch, A., Apweiler, R., Blatter, M. C., Estreicher, A., Gasteiger, E., Martin, M. J., Michoud, K., O'Donovan, C., Phan, I., Pilbout, S., & Schneider, M. (2003). The SWISS-PROT protein knowledgebase and its supplement TrEMBL in 2003. Nucleic acids research, 31, 365-370.
Bramaud, C., Aimar, P., & Daufin, G. (1997). Whey protein fractionation: isoelectric precipitation of alpha-lactalbumin under gentle heat treatment. Biotechnology and Bioengineering, 56, 391-397.
Brookes, P. S., Pinner, A., Ramachandran, A., Coward, L., Barnes, S., Kim, H., & Darley-Usmar, V. M. (2002). High throughput two-dimensional blue-native electrophoresis: a tool for functional proteomics of mitochondria and signaling complexes. Proteomics, 2, 969-977.
Carbonaro, M. (2004). Proteomics: present and future in food quality evaluation. Trends in Food Science & Technology, 15, 209-216.
Ceballosa, L. S., Moralesa, E. R., de la Torre Adarve, G., Castrob, J. D., Martínezc, L. P., & Sanz Sampelayoa, M. R. (2009). Composition of goat and cow milk produced under similar conditions and analyzed by identical methodology. Journal of Food Composition and Analysis, 22, 322-329.
Chaiyasut, C., & Tsuda, T. (2001). Isoelectric points estimation of proteins by electroosmotic flow: pH relationship using physically adsorbed proteins on silica gel. Chromatography, 22, 91-95.
Chen, M. J., Chen, K. N., & Lin, C. W. (2004). Sequential Quadratic Programming for Development of a New Probiotic Dairy Tofu with Glucono‐δ‐Lactone. Journal of food science, 69, 344-350.
d'Ayala, G. G., Malinconico, M., & Laurienzo, P. (2008). Marine derived polysaccharides for biomedical applications: chemical modification approaches. Molecules, 13, 2069-2106.
De Wit, J. N. (1998). Nutritional and functional characteristics of whey proteins in food products. Journal of Dairy Science, 81, 597-608.
Dickinson, E. (1998). Stability and rheological implications of electrostatic milk protein-polysaccharide interactions. Trends in Food Science & Technology, 9, 347-354.
Dickinson, E. (2006). Structure formation in casein-based gels, foams, and emulsions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 288, 3-11.
Donato, L., Alexander, M., & Dalgleish, D. G. (2007). Acid gelation in heated and unheated milks: interactions between serum protein complexes and the surfaces of casein micelles. Journal of Agricultural and Food Chemistry, 16, 4160-4168.
Elshereef, R., Budman, H., Moresoli, C., & Legge, R. L. (2010). Monitoring the fractionation of a whey protein isolate 339 during dead-end membrane filtration using fluorescence and chemometric methods. Biotechnology Progress, 26, 168-178.
Euston, S. R., Finnigan, S. R., & Hirst, R. L. (2002). Kinetics of droplet aggregation in heated whey protein-stabilized emulsions: effect of polysaccharides. Food hydrocolloids, 16, 499-505.
Gygi, S. P., & Aebersold, R. (2000). Mass spectrometry and proteomics. Current Opinion in Chemical Biology, 4, 489-494.
Haginaka, J. (2000). Enantiomer separation of drugs by capillary electrophoresis using proteins as chiral selectors. Journal of Chromatography A, 875, 235-54.
Hambletona, A., Debeauforta, F., Bonnottec, A., & Voilleya, A. (2009). Influence of alginate emulsion-based films structure on its barrier properties and on the protection of microencapsulated aroma compound. Food Hydrocolloids, 23, 2116-2124.
Hassan, A. N., Frank, J. F., & Elsoda, M. (2003). Observation of bacterial exopolysaccharide in dairy products using cryo-scanning electron microscopy. International Dairy Journal, 13, 755-762
Hayes, K. D., & Nielsen, S. S. (2000). Plasmin levels in fresh milk whey and commercial whey protein products. Journal of Dairy Science, 83, 387-94.
Hsieh, J. F., & Pan, P. H. (2012). Proteomic Profiling of the Coagulation of Milk Proteins Induced by Chymosin. Journal of Agricultural and Food Chemistry, 29, 2039-2045.
Hsieh, J. F., Yua, C. J., Chang, J. Y., Chenb, S. T., & Tsai, H. Yu. (2014). Microbial transglutaminase-induced polymerization of β-conglycinin and glycinin in soymilk: A proteomics approach. Food Hydrocolloids, 35, 678-685
Jensen, H. B., Poulsen, N. A., Andersen, K. K., Hammershøj, M., Poulsen, H. D., & Larsen, L. B. (2012). Distinct composition of bovine milk from Jersey and Holstein-Friesian cows with good, poor, or noncoagulation properties as reflected in protein genetic variants and isoforms. Journal of Dairy Science, 95, 6905-6917.
Kvasnicka, F. (2003). Proteomics: general strategies and application to nutritionally relevant proteins. Journal of Chromatography B: Analytical Technologies in the Biomedical and Life Sciences, 787, 77-89.
Larsen, L. B., Wedholm, A., Moller, H. S., Andren, A., & Lindmark- nsson, H. (2007). Proteomic study of correlations between milk yield and whey protein composition. Journal of Animal and Feed Sciences, 16, 200-206.
Lee, W. J., & Lucey, J. A. (2003). Rheological properties, whey separation, and microstructure in set-style yogurt: effects of heating temperature and incubation temperature. Journal of Texture Studies, 34, 515-536.
Lee, A. C., & Hong, Y. H. (2009). Coacervate formation of α-lactalbumin-chitosan and β-lactoglobulin-chitosan complexes. Food Research International, 42, 733-738.
Le, A., Barton, L. D., Sanders, J. T., & Zhang, Q. (2011). Exploration of bovine milk proteome in colostral and mature whey using an ion-exchange approach. Journal of Proteome Research, 10, 692-704.
Lee, C. Y., & Kuo, M. I. (2011). Effect of γ-polyglutamate on the rheological properties and microstructure of tofu. Food Hydrocolloids, 25, 1034-1040.
Lindmark-Månsson, H., Timgren, A., Aldén, G., & Paulsson, M. (2005). Two-dimensional gel electrophoresis of proteins and peptides in bovine milk. International Dairy Journal, 15, 111-121.
Liu, Y., & Guo, R. (2008). pH-dependent structures and properties of casein micelles. Biophys Chemistry, 136, 67-73.
Livney, Y. D., & Dalgleish, D. G. (2004). Specificity of disulfide bond formation during thermal aggregation in solutions of beta-lactoglobulin B and kappa-casein A. Journal of Agricultural and Food Chemistry, 52, 5527-5532.
Lopez, M. F., Berggren, K., Chernokalskaya, E., Lazarev, A., Robinson, M., & Patton, W. F. (2000). A comparison of silver stain and SYPRO Ruby Protein Gel Stain with respect to protein detection in two-dimensional gels and identification by peptide mass profiling. Electrophoresis, 21, 3673-83.
Lopes, A. S., Garcia, J. S., Catharino, R. R., Santos, L. S., Eberlin, M. N., & Arruda, M. A. (2007). Cloud point extraction applied to casein proteins of cow milk and their identification by mass spectrometry. Analytica Chimica Acta, 590, 166-72.
Lucey, J. A., & Singh, H. (1997). Formation and physical properties of acid milk gels: a review. Food Research International, 30, 529-542.
Lucey, J. A., Teo, C. T., Munro, P. A., & Singh, H. (1998). Microstructure, permeability and appearance of acid gels made from heated skim milk. Food Hydrocolloids, 12, 159-165.
Lucey, J. A., Tamehana, M., Singh, H., & Munro, P. A. (1998). A comparison of the formation, rheological properties and microstructure of acid skim milk gels made with a bacterial culture or glucono-δ-lactone. Food Research International, 31, 147-155.
Lucey, J. A., & Singh, H. (2003). Acid coagulation of milk. Fox, P. F., & McSweeney, P. L. H. editor. Advanced Dairy Chemistry—1 Proteins.US: Springer-Verlag. p.1007.
Makhal, S., Kanawjia, S. K., & Gir, A. (2013). A dual-acidification process for the manufacture of direct-acidified Cottage cheese. International Journal of Dairy Technology, 66, 552-561.
Martin, F., Cayot, N., Marin, A., Journaux, L., Cayot, P., Gervais, P., & Cachon, R. (2009). Effect of oxidoreduction potential and of gas bubbling on rheological properties and microstructure of acid skim milk gels acidified with glucono-delta-lactone. Journal of Dairy Science, 92, 5898-5906.
Martinez, M. J., Pizones Ruiz-Henestrosa, V. M., Carrera Sánchez, C., Rodríguez Patino, J. M., & Pilosof, A. M. (2012). Interfacial and foaming interactions between casein glycomacropeptide (CMP) and propylene glycol alginate. Colloids and Surfaces B: Biointerfaces, 95, 214-221.
Müller-Buschbaum, P., Gebhardt, R., Roth, S. V., Metwalli, E., & Doster, W. (2007). Effect of calcium concentration on the structure of casein micelles in thin films. Biophysical Journal, 93, 960-968.
Narambuena, C. F., Ausar, F. S., Bianco, I. D., Beltramo, D. M., & Leiva, E. P. (2005). Aggregation of casein micelles by interactions with chitosans: a study by Monte
Carlo simulations. Journal of Agricultural and Food Chemistry, 53, 459-463.
Nesvizhskii, A. I., Vitek, O., & Aebersold, R. (2007). Analysis and validation of proteomic data generated by tandem mass spectrometry. Nature methods, 4, 787-797.
Oeffner, S. P., Qu, Y., Just, J., Quezada, N., Ramsing, E., Keller, M., Cherian, G., Goddick, L., & Bobe, G. (2013). Effect of flaxseed supplementation rate and processing on the production, fatty acid profile, and texture of milk, butter, and cheese. Journal of Dairy Science, 96, 1177-1188.
Pedreschi, R., Hertog, M., Lilley, K. S., & Nicolaï, B. (2010). Proteomics for the food industry: opportunities and challenges. Critical Reviews in Food Science and Nutrition, 50, 680-692.
Pérez, O. E., Carrera-Sánchez, C., Rodríguez-Patino, J. M., & Pilosofa, Ana, M. R. (2007). Adsorption dynamics and surface activity at equilibrium of whey proteins and hydroxypropyl–methyl–cellulose mixtures at the air-water interface. Food Hydrocolloids, 21, 794-803.
Phadungath, C. (2005). The mechanism and properties of acid-coagulated milk gels. Songklanakarin Journal of Science and Technology, 27, 433-448.
Pisano, A., Packer, N. H., Redmond, J. W., Williams, K. L., & Gooley, A. A. (1994). Characterization of O-linked glycosylation motifs in the glycopeptide domain of bovine kappa-casein. Glycobiology, 4, 837-844.
Pocker, Y., & Green, E. (1973). Hydrolysis of D-glucono-delta-lactone. I. General acid-base catalysis, solvent deuterium isotope effects, and transition state characterization. Journal of the American Chemical Society, 10, 113-119.
Rodríguez Patino, J. M., & Pilosof, Ana. M. R. (2011). Protein-polysaccharide interactions at fluid interfaces. Food Hydrocolloids, 25, 1925-1937.
Sarker, D. K., & Wilde, P. J. (1999). Restoration of protein foam stability through electrostatic propylene glycol alginate-mediated protein–protein interactions. Colloids and Surfaces B: Biointerfaces, 15, 203-213.
Sinquin, A., Houzelle, M. C., Hubert, P., & Choplin, L. (1996). Amphiphilic Derivatives of Propylene Glycol Alginate: A Revisit of Their Physicochemical Behavior in Dilute Aqueous Solution. Langmuir, 12, 3779-3782.
Sundekilde, U. K., Barile, D., Meyrand, M., Poulsen, N. A., Larsen, L. B., Lebrilla, C. B., German, J. B., & Bertram, H. C. (2012). Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds. Journal of Agricultural and Food Chemistry, 60, 6188-6196.
Tercinier, L., Ye, A., Anema, S. G., Singh, A., & Singh, H. (2014). Interactions of casein micelles with calcium phosphate particles. Journal of Agricultural and Food Chemistry, 62, 5983-5992.
Trop, M., & Kushelevsky, A. (1985). The Reaction of Glucono Delta Lactone with Proteins. Journal of Dairy Science, 68, 2534–2535.
Wal, J. M. (2002). Cow's milk proteins/allergens. Annals of Allergy, Asthma & Immunology, 89, 3-10.
Wong, D.W., Camirand, W. M., & Pavlath, A. E. (1996). Structures and functionalities of milk proteins. Critical Reviews in Food Science and Nutrition, 36, 807-844.
Xiong, Y. L. (2009). Dairy Proteins. Tarté, R. editor. Ingredients in Meat Products. New York : Springer-Verlag. p. 132.
Xu, C., Garrett, W. M., Sullivan, J., Caperna, T. J., & Natarajan, S. (2006). Separation and identification of soybean leaf proteins by two-dimensional gel electrophoresis and mass spectrometry. Phytochemistry, 67, 2431-2440.
Yilmazer, G., Carrillo, A. R., & Kokini, J. L. (1991). Effect of Propylene Glycol Alginate and Xanthan Gum on Stability of O/W Emulsions. Journal of food science, 56, 513-517.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊