(3.92.96.236) 您好!臺灣時間:2021/05/07 16:16
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

: 
twitterline
研究生:來修帆
研究生(外文):Hsiu-Fan, Lai
論文名稱:具高電壓變異容忍度與高延遲解析度之全數位晶片內延遲量測電路設計
論文名稱(外文):High Delay Resolution and High Supply Voltage Variation Tolerance All-Digital On-Chip Delay Measurement Circuit Design
指導教授:盛鐸
指導教授(外文):Duo, Sheng
口試委員:盛鐸林寬仁鄭經華
口試委員(外文):Duo, ShengKuan-Jen, LinChing-Hwa, Cheng
口試日期:2013-12-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:60
中文關鍵詞:晶片內延遲量測電壓變異
外文關鍵詞:OCDMvoltage variation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:188
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
在本篇論文中,兩個具高電壓變異容忍度與高延遲解析度之全數位晶片內延遲量測電路設計應用於高效能的系統晶片中被提出,其中一個電路為所提出的晶片內延遲量測電路,另一個則為所提出的寬範圍晶片內延遲量測電路。所提出的兩個晶片內延遲量測電路不僅不需要任何額外的自我偏壓或校正電路即可對電壓變異擁有高抵抗能力而且亦具有高的延遲量測解析度。
所提出的晶片內延遲量測電路被實現在TSMC 90nm標準CMOS 製程中,從模擬結果顯示其延遲量測解析度可以被改善至 1.04ps,並且隨著 + 10% 的供應電壓變異其平均延遲解析度為 11fs。所提出的寬範圍晶片內延遲量測電路被實現在TSMC 0.18μm標準CMOS 製程中,從模擬結果顯示其延遲量測解析度可以被改善至大約 1ps,並且隨著 + 10% 的供應電壓變異其平均延遲變異量為 0.923%。本篇所提出的兩個晶片內延遲量測電路皆能使用全數位設計的方式來實現,因此它們皆非常適合於系統晶片的應用以及易整合於系統中。

In this thesis, two high delay resolution and high supply voltage variation tolerance all-digital on-chip delay measurement (OCDM) circuits for the high performance system-on-chip (SoC) applications are proposed. One is proposed OCDM circuit and the other is proposed wide-range OCDM circuit. Both of proposed OCDM circuits not only have a high immunity to supply voltage variations without extra self-biasing or calibration circuit, but also achieve high delay measurement resolution.
The proposed OCDM circuit is implemented in TSMC 90nm standard CMOS technology, and simulation results show that delay measurement resolution can be improved to 1.04ps, and the average delay resolution is 11fs with + 10% supply voltage variation. The proposed wide-range OCDM circuit is implemented in TSMC 0.18μm CMOS technology, and simulation results show that delay measurement resolution can be improved to about 1ps, and the average delay variation is 0.692% with + 10% supply voltage variation.
The proposed OCDM circuits can be implemented in all-digital design manner, making it very suitable for SOC application as well as system-level integration.

Abstract (In Chinese)……………………………………………………………………. i
Abstract………………………………………………………………………………….ii
Acknowledgement (In Chinese)………………………………………………………..iii
Content………………………………………………………………………………….iv
List of Table……………………………………………………………………………..v
List of Figure…………………………………………………………………………...vi
Chapter 1 Introduction…………………………………………………………………1
1.1 Motivation………………………………………………………..………...…1
1.2 OCDM Architecture Overview …………………………………….………...6
1.3 Thesis Organization…………………………………………………………...9
Chapter 2 Vernier Delay Line with Low Supply Sensitivity Design…...........………11
2.1 Vernier Delay Line Architecture Overview.....…………………………...11
2.2 Proposed Vernier Delay Line with Low Supply Sensitivity Ⅰ...……..……13
2.3 Proposed Vernier Delay Line with Low Supply Sensitivity Ⅱ...…………..18
2.4 Summary ………...………………...………………………………………..22
Chapter 3 On-Chip Delay Measurement Design ………….…………………………23
3.1 Proposed OCDM Architecture Overview …………………….…….………23
3.2 Proposed Wide-Range OCDM Architecture Overview ……………………27
3.3 Circuit Design……………………………………………………………….34
3.3.1 Phase Detector……………………….……….….............................34
3.3.2 Interpolator….…………………………………….……………...38
3.4 OCDM Design Flow………………………………………….……………..44
3.5 Summary……………………………………………………………….……46
Chapter 4 Experimental Results………………………..…………………………….47
4.1 Proposed OCDM Architecture Experimental Results ……...........................47
4.1.1 Simulation Results…………………………………………………...47
4.2 Proposed Wide-Range OCDM Architecture Experimental Results………...48
4.2.1 Simulation Results…………………………………………………...48
4.2.2 Measurement Methodology………………………………………….51
4.3 Summary………………………………………………………………..…...55
Chapter 5 Conclusions and Future Work…………………..………………………...56
Reference……………………………………………………………………………….58




[1]Abhishek Jain, Andrea Veggeti, Dennis Crippa, and Pierluigi Rolandi, “On-chip delay measurement circuit,” Proc. 17th IEEE European Test Symposium (ETS), May.2012, pp. 1 -6.
[2]Masahiro Sasaki, Nguyen Ngoc Mai Khanh, and Kunihiro Asada, “A circuit for on-chip skew adjustment with jitter and setup time measurement,”Proc. IEEE Asian Solid State Circuits Conference (A-SSCC), Nov.2010. pp. 1-4.
[3]Songwei Pei, Huawei Li, and Xiaowei Li, “A high-precision on-chip path delay measurement architecture,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2012, 20, (9), pp. 1565-1577
[4]Ming-Chien Tsai, Ching-Hwa Cheng and Chiou-Mao Yang, “An all-digital high-precision built-in delay time measurement circuit,”26th IEEE VLSI Test Symposium, 2008, pp. 249-254.
[5]Ching-Che Chung, and Wei-Jung Chu, “An all-digital on-chip jitter measurement circuit in 65nm CMOS technology ,”Proc. International Symposium on VLSI Design, Automation, and Test (VLSI-DAT), pp. 1-4, Apr.2011.
[6]Xiaoxiao Wang, Mohammad Tehranipoor, and Ramyanshu Datta, “Path-RO: a novel on-chip critical path delay measurement under process variations,” Proc. of IEEE/ACM International Conference on Computer-Aided Design, Nov.2008, pp. 640-646.
[7]Xiaoxiao Wang, Mohammad Tehranipoor, SeniorSaji George, Dat Tran, and LeRoy Winemberg,“Design and analysis of a delay sensor applicable to process/environmental variations and aging measurements,” IEEE Transactions Very Large Scale Integration (VLSI) System, vol. 20, no. 8, pp. 1405-1418, Aug. 2012.
[8]S. Schidl, K. Schweiger, W. Gaberl., and H. Zimmermann,“Analogously tunable delay line for on-chip measurements with subpicosecond resolution in 90 nm CMOS,” Electron. Lett., 2012, 48, (15), pp. 910–911.
[9]D. Sheng, and Jhih-Ci Lan,“A monotonic and low-power digitally controlled oscillator using standard cells for SoC applications,” Proc. 4th Asia Symposium on Quality Electronic Design (ASQED), pp. 123-127, July. 2012.
[10]Hsuan-Jung Hsu, Chun-Chieh Tu, and Shi-Yu Huang, “A high-resolution all-digital phase-locked loop with its application to built-in speed grading for memory,” Proc. IEEE VLSI-DAT, Apr. 2008, pp. 267-270.
[11]Hsuan-Jung Hsu, and Shi-Yu Huang,“A low-jitter ADPLL via a suppressive digital filter and an interpolation-based locking scheme,” IEEE Trans. on Very Large Scale Integration (VLSI) Systems, 2011, 19, (1), pp. 165-170.
[12]Ching-Che Chung, Duo Sheng, Sung-En Shen, “A wide-range all digital duty-cycle corrector with output clock phase alignment in 65nm CMOS technology,” IEICE Electronics Express, Aug. 2011, pp. 1245-1251.
[13]Ching-Che Chung, Chiun-Yao Ko, Sung-En Shen, “Built-in self-calibration circuit for monotonic digitally controlled oscillator design in 65-nm CMOS technology,” IEEE Transactions Circuits and System Ⅱ, vol. 58, no. 3, pp. 149-153, Mar. 2011.
[14]D. Sheng, and Jhih-Ci Lan,“A monotonic and low-power digitally controlled oscillator with portability for SoC applications,” Proc. IEEE 54th International Midwest Symposium Circuits and Systems (MWSCAS), pp. 1-4, Aug. 2011.
[15]Byoung-Mo Moon, Young-June Park, and Deog-Kyoon Jeong, “Monotonic wide-range digitally controlled oscillator compensated for supply voltage variation,” IEEE Transactions Circuits and System Ⅱ, vol. 55, no. 10, pp. 1036-1040, Oct. 2008

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔