(3.227.208.0) 您好!臺灣時間:2021/04/18 13:39
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:劉銘隆
研究生(外文):Liu, Ming-Lung
論文名稱:多輸入多輸出正交分頻多工系統在通道超估時的半盲蔽通道估測研究
論文名稱(外文):An Improved Semi-Blind Equalization of MIMO OFDM Systems in Channel Order Overestimation
指導教授:余金郎余金郎引用關係
指導教授(外文):Yu, Jung-Lang
口試委員:余金郎劉鴻裕陳益生
口試委員(外文):Yu, Jung-LangLiu, Hong-YuChen, Yi-Sheng
口試日期:2014-06-26
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:多輸入多輸出(MIMO-OFDM)堆疊矩陣區塊法 stacked block matrix scheme(SBMS)
外文關鍵詞:Column-Anchored-Zeroforcing-Equalizer (CAZE)Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM)Stacked Block Matrix Scheme (SBMS)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:121
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
摘要
多根傳送多根接收的正交分頻多工調變(MIMO-OFDM)技術廣泛應用在我們周遭。在無線通訊的環境下會因為多路徑的影響(Multipath Fading Channel)而產生ISI,ICI等通訊干擾,一般可以使用循環字首(cyclic prefix, CP)或是(Zero Padding ,ZP)等技術去解決這類問題。本論文討論在CP-OFDM架構中,超估時會發生的問題及如何解決。另外在應用堆疊矩陣區塊法(Stacked Block Matrix Scheme ,SBMS)技術來加快其收斂速度 。
大多數的通道估測技術,因為通道超估的狀況下使得估測出來的效能變差,所以我們在本篇提出堆疊矩陣區塊法(Stacked Block Matrix Scheme ,SBMS)來增加數倍OFDM等效資料來使估測效能變好,也加快其收斂速度,但此方法必須先知道通道影響和長度,若是通道長度不如我們所預期則通道估策效果將會變差。針對這個問題,我們將會利用堆疊矩陣區塊法SBMS方法與運用(Column-Anchored-Zeroforcing, CAZE) 技術結合等化器來改善通道估測技術,使在通道超估的狀態下能正常使用且收斂速度更快。

Abstract

Multiple-input multiple-output orthogonal frequency division multiplexing (MIMO-OFDM) technology is widely used in our daily life nowadays. In wireless communication environments, because of the impact of multipath (Multipath Fading Channel) arising ISI, ICI and other communications interference.Using cyclic prefix (cyclic prefix, CP) or (Zero Padding, ZP) and other technologies to solve these problems in most cases . This paper discusses issues in CP-OFDM architecture, the channel estimation techniques may fail under channel order overestimation. In contrast, the SBMS we used in this study that produces a great amount of data to accelerate the convergence rate.
The channel estimation techniques may fail under channel order overestimation. To overcome the overestimation problem . We propose stacked block matrix scheme (SBMS). It will increase the equivalent samples for every OFDM symbols and accelerate the convergence rate. This method must first know the length of the channel. If the channel length is not known correctly. The performance of the channel estimation strategy will degrade. To overcome this problem, we will use the (SBMS) and (CAZE) combined equalizer to improve channel estimation. Under channel order overestimation, the system can still be used successfully and can accelerate the convergence rate .

目錄 目次
摘要 ........i
英文摘要 ........ii
誌謝 ........iii
目錄 ........iv
表目錄 ........vi
圖目錄 ........vii
第一章 緒論.......1
1.1 正交分頻多工(OFDM)系統介紹...2
1.2 Guard Interval-循環字首(Cyclic Prefix, CP) 概述...6
1.3 通道估測(Blind Channel Estimation)介紹...7
1.4 論文架構...9
第二章 MIMO-CP-OFDM系統架構下之CAZE等化器技術討論...11
2.1 多輸入多輸出(MIMO)的CP-OFDM系統架構........11
2.2 介紹CAZE等化器解決通道超估時的方法與應用...17
2.3 符元偵測(Symbol Detection)運算...20
2.31 等化器...21
2.4 總結...22


第三章 以堆疊矩陣區塊法(SBMS)為基礎的CAZE等化器...23
3.1 堆疊矩陣區塊法方法介紹...23
3.2 堆疊矩陣區塊法步驟...24
3.3 符元偵測(Symbol Detection)運算...25
3.3.1 SBMS結合CAZE等化器運用...26
3.3.2 等化器...29
3.4 總結...30
第四章 電腦模擬....32
第五章 結論與未來展望...48
參考文獻...50

表目錄
表1.1 IEEE 802.11a的OFDM調變規格...3
表1.2 OFDM系統的優缺點比較...4
表1.3 IEEE 802.11g的OFDM操作模式...4
表1.4 LTE架構物理層參數...5
表3.1 取自相關矩陣比較...31
表4.1 電腦模擬參數設定...34

圖目錄
圖1.1 OFDM系統架構方塊圖...3
圖1.2 CP架構表示圖...6
圖2.1 多輸入多輸出正交分頻多工系統方塊圖...12
圖 4.1a NRMSE vs SNR(均勻通道)...40
圖 4.1b NRMSE vs SNR(指數通道)...40
圖 4.2a NRMSE vs G (均勻通道)...41
圖 4.2b NRMSE vs G (指數通道)....41
圖 4.3a NRMSE vs OFDM symbols (均勻通道)...42
圖 4.3b NRMSE vs OFDM symbols (指數通道)....42
圖 4.4a BER vs SNR(dB) (均勻通道)NS=100.....43
圖 4.4b BER vs SNR(dB) (指數通道) NS=100....43
圖 4.5a BER vs SNR(dB) (均勻通道) NS=1000...44
圖 4.5b BER vs SNR(dB) (指數通道) NS=1000...44
圖 4.6a BER vs SNR(dB) (均勻通道) NS=2000...45
圖 4.6b BER vs SNR(dB) (指數通道) NS=2000...45
圖 4.7a BER vs OFDM symbols (均勻通道)...46
圖 4.7b BER vs OFDM symbol (指數通道)....46
圖 4.8a BER vs G (均勻通道)...47
圖 4.8b BER vs G (指數通道)....47






參考文獻

[1]J. Chuang and N. Sollenberger, “Beyond 3G: Wideband Wireless Data Access Based on OFDM and Dynamic Packet Assignment,” IEEE Communication Magazine, vol. 32, no. 1, pp. 78-87, 2000.
[2]H. Bölcskei, R. W. Heath, Jr., and A. J. Paulraj, “Blind Channel Identification and Equalization in OFDM-Based Multi-Antenna Systems,” IEEE Trans. Signal Processing, vol. 50, pp. 96-109, Jan. 2002.
[3]E. Dahlman, S. Parkvall, and J. Skold, 4G LTE/LTE-Advanced for Mobile Broadband, Academic Press, 2011.
[4]S. Parkvall, E. Englund, A. Furuskär, E. Dahlman, T. Jönsson, and A. Paravati, “LTE Evolution towards IMT-Advanced and Commercial Network Performance,” IEEE Ericsson Research, Sweden, pp. 153, 2010.
[5]K. T. Lee and J. S. Seo, “Pilot-Aided Iterative Frequency Offset Estimation for Digital Video Broadcasting (DVB) Systems,” IEEE Trans. Consumer Electronics, vol. 53, no. 1, pp. 11-16, Feb. 2007.
[6]ANSI, “American National Standard for Telecommunications-Network and Customer Installation Interfaces-Asymmetric Digital Subscriber Line (ADSL) Metallic Interface,” ANSI, New York, Tech. Rep. ANSIT1.413 1995, J. A. C. Bingham, Editor, Aug. 1995.
[7]L. J. Cimini, Jr., “Analysis and Simulation of a Digital Mobile Channel Using Orthogonal Frequency Division Multiplexing,” IEEE Trans. Comm., vol. COM-33, no. 7, pp. 665-675, July 1985.
[8]A. Doufexi, S. Armour, M. Butler, A. Nix, D. Bull, J. McGeehan, and P. Karlsson, “A Comparison of the HIPERLAN/2 and IEEE 802.11a Wireless LAN Standards,’’ IEEE Comm. Mag., vol. 40, no. 5, pp. 172-180, May 2002.
[9]R. R. Mosier and R. G. Clabaugh, “Kineplex a Bandwidth Efficient Binary Transmission System,” AIEE Trans. on Comm. vol. 76, pp. 723-728, Jan. 1958.
[10]G. C. Porter, “Error Distribution and Diversity Performance of a Frequency Differential PSK HF Model,” IEEE Trans. on Comm. vol. COM-16, pp. 567-575, Aug. 1968.
[11]M. S. Zimmerman and A. L. Kirsch, “The AN/GSC-10(KATHRYN) Variable Rate Data Modem for HF Radio,” IEEE Trans. on Comm. vol. COM-15, pp. 197-205, Apr. 1967.
[12]B. Muquet, Z. Wang, G. B. Giannakis, M. D. Courville, and P. Duhamel , “Cyclic
Prefixing or Zero Padding for Wireless Multicarrier Transmissions,” IEEE Trans. Comm. vol. 50, pp. 2136 -2148, Dec. 2002.
[13]R. W. Heath, Jr. and B. Giannakis, “Exploiting Input Cyclostationarity for Blind Channel Identification in OFDM Systems,” IEEE Trans. Signal Processing, vol. 47, no. 3, pp. 848-856, Mar. 1999.
[14]X. Cai and A. Akansu, “A Subspace Method for Blind Channel Identification in OFDM Systems,” in Proc. Int. Conf. Comm., vol. 2, New Orleans, LA, pp. 929-933, June 2000.
[15]M. Morelli and U. Mengali, “A Comparison of Pilot-Aided Channel Estimation Methods for OFDM Systems,” IEEE Trans. Signal Processing, vol. 49, no. 12, pp. 3065-3073, Dec. 2001.
[16]B. Song, G. Lin, and W. Zhang, “Comb Type Pilot Aided Channel Estimation in OFDM Systems with Transmit Diversity,” IEEE Trans. Broadcasting, vol. 52, no. 1, pp. 50-57, Mar. 2006.
[17]C. C. Tu and B. Champagne, “Subspace-Based Blind Channel Estimation for MIMO-OFDM Systems With Reduced Time Averaging,” IEEE Trans. on Vehicular Technology, vol. 59, no. 3, pp. 1539-1544, Mar. 2010.
[18]J. G. Kim and J. T. Lim, “Subspace-Based Iterative Semi-blind Channel Estimation for MIMO-OFDM Considering Residual Error,” IEEE Trans. on Vehicular Technology, vol. 58, no. 8, pp. 4660-4665, Oct. 2009.
[19]H. Ali, A. Doucet, and Y. Hua, “Blind SOS Subspace Channel Estimation and Equalization Techniques Exploiting Spatial Diversity in OFDM Systems,” Digital Signal Processing, vol. 14, pp. 717-202, Mar. 2004.
[20]Y. H. Zeng and T. S. Ng, “A Semi-bland Channel Estimation Method for Multi-User-Multi-Antenna OFDM Systems,” IEEE Trans. Signal Processing, vol. 52, no. 5, pp. 1419-1429, 2004.
[21]J. L. Yu and W. R. Kuo, “Fast Semi-blind Channel Estimation for MIMO-OFDM Systems with Virtual Carriers,” in proc. 1st IEEE International Conference on Communications in China (ICCC), pp. 356-361. Aug. 2012.
[22]J. L. Yu, C. Chen, and M. Lee, “Blind Channel Estimation for SIMO OFDM Systems without Cyclic Prefix,” in proc. International Conference on Wireless Communications Networking and Mobile Computing, pp. 1-4, Sept. 2006.
[23]J. Zhu, Z. Ding, and X. R. Cao, “Column-Anchored Zero forcing Blind Equalization for Multiuser Wireless FIR Channels,” IEEE Journal on Selected Areas in Communication, vol. 17, no. 3, pp. 411-423, Mar. 1999.
[24]S. Ma and T. S. Ng, “Semi-Blind Time-Domain Equalization for MIMO-OFDM Systems,” IEEE Trans. on Vehicular Technology, vol. 57, no. 4, pp. 2219-2227, July 2008.
[25]H. Bölcskei, R. W. Heath, Jr. and A. J. Paulraj, “Blind Channel Identification and Equalization in OFDM-based Multi Antenna Systems,” IEEE Trans. Signal Processing, vol. 50, no. 1, pp. 96-109, Jan. 2002.
[26]T. Zemen, C. F. Mecklenbrauker, J. Wehinger, and R. R. Muller, “Iterative Joint Time-Variant Channel Estimation and Multi-User Detection for MC-CDMA,” IEEE Trans. Comm., vol. 5, no. 6, pp. 1469-1478, June 2006.
[27]R. Vershynin, “How Close is the Sample Covariance Matrix to the Actual Covariance matrix,” [online] Available: http://arxiv.org/PS_cache/arxiv/pdf/1004/1004.3484v1.pdf

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔