(3.236.231.14) 您好!臺灣時間:2021/04/11 22:58
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:楊宗儒
研究生(外文):Zong-Ru,Yang
論文名稱:應用於高頻超音波影像系統之全數位高延遲解析度發射波束成像器設計
論文名稱(外文):All-Digital Wide Range and High Resolution Transmit Beamformer for High-Frequency Ultrasonic Imaging Application
指導教授:盛鐸
指導教授(外文):Duo Sheng
口試委員:林寬仁黃執中盛鐸
口試委員(外文):Kuan-Jen LinChih-Chung HuangDuo Sheng
口試日期:2014-06-25
學位類別:碩士
校院名稱:輔仁大學
系所名稱:電機工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:53
中文關鍵詞:波束成像器設計高頻超音波影像系統
外文關鍵詞:Transmit BeamformerHigh-Frequency Ultrasonic Imaging Application
相關次數:
  • 被引用被引用:2
  • 點閱點閱:123
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:2
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文提出一個應用於高頻超音波系統之波束形成器,並以積體電路來實現波束形成器。本論文提出之波束形成器以波束延遲線以及全數位延遲鎖定迴路來組成,以兩個電路的配合來產生高頻超音波影像系統的波束形成器需要的延遲時間,並可以滿足不同對焦深度所需要的延遲時間,本篇論文以TSMC 0.18μm的製程來模擬,波束延遲線的延遲細胞元可以產生395ps~1043ps的延遲時間並且可以達到的解析度可以達到20ps以下,由本篇論文提出的波束延遲線可以同時滿足5mm、7.5mm、10mm深度時超音波聚焦所需要的延遲時間,解決傳統上使用FPGA沒有辦法滿足波束成像器的最高延遲解析度的問題。
超音波系統的超音波對焦時所需要的理想延遲時間本篇論文使用matlab FieldⅡ來進行模擬,超音波對焦時的優劣由聚焦時的解析度來衡量,理想延遲時間所造成的延遲解析度在5mm,7.5mm、10mm聚焦時分別為0.0352mm、0.0352mm、0.0558mm,以本論文所提出之波束延遲器所產生的延遲時間讓超音波聚焦產生的延遲解析度在5mm,7.5mm、10mm深度時分別為0.0392mm、0.0434mm、0.06mm。
本篇論文以數位方式來控制延遲線,可以降低以傳統電壓方式傳遞控制碼會因電壓變動產生控制碼不準確的問題,除此之外本篇所提出之波束控制器可以同時達到高延遲以及寬的延遲範圍來提供超音波系統所要求之延遲時間。

In this thesis, a beamformer circuit is proposed for the high ultrasonic imaging system and implemented with integrated circuits. The beamformer circuit was consisted of a beamformer delay line(BDL) and all digital delay lock loop(ADDLL),and used these two blocks to generate the delay time for the high frequency ultrasonic imaging system in different focus distances. This thesis implemented it with integrated circuits and simulated the circuit under TSMC 0.18μm process. The delay cells of beamformer delay line can generate the delay time between 395ps and 1043ps. The highest resolution of the proposed DCDL can reach lower than 20ps besides the delay range can provide the requirements of delay time when the ultrasound focus at 5mm,7.5mm and 10mm In order to solved the problem that the poor resolution of the beamformer circuit was implemented with FPGA.
This thesis utilized the matlab FieldⅡ to obtain the ideal delay time when the high frequency ultrasonic imaging system focus powerfully. The quality of focusing can measure with resolution. The resolution of focus points at 5mm,7.5mm,10mm which was inserted the ideal delay time for beamformer will produced 0.0352mm,0.0352mm and 0.0558mm respectively. When the ultrasound imaging system used the propose beamformer, the resolution of focus points at 5mm,7.5mm,10mm was 0.0392mm,0.0434mm and 0.06mm respectively.
The proposed delay line was controlled with digital code that can solve the unstable problem of the conventional voltage controlled delay line when technology scales down. Finally the proposed beamformer not only can provide high resolution but also can generate the wide delay range for high frequency ultrasonic imaging system.

摘要 i
英文摘要 ii
誌謝 iii
目錄 iv
表目錄 v
圖目錄 vi
第一章 緒論 1
1.1研究動機 1
1.2論文架構 4
第二章 超音波系統介紹 5
2.1超音波系統架構 5
2.2波束成像原理 6
2.3波束成像器設計回顧(1) 14
2.4波束成像器設計回顧(2) 16
第三章 超音波系統波束形成器 17
3.1 全數位發射波束成像器架構 17
3.2 波束成像延遲線架構 18
3.3 延遲細胞元架構回顧 21
第四章 全數位延遲鎖定迴路 32
4.1數位控制以及電壓控制延遲線 32
4.2 全數位延遲鎖定迴路概述 32
4.2.1 相位和頻率偵測器 33
4.2.2 時間數位轉換器 35
4.2.3數位控制器 36
4.3 全數位延遲鎖定迴路模擬結果 38
第五章 實驗結果 41
5.1 設計流程 41
5.2 系統模擬 41
5.2量測規劃 48
第六章 結論與未來展望 49
參考文獻 50

1.黃麗嘉,超音波影像設備市場,工研院產業情報網(IEK), file:///D:/Users/USER/Downloads/003%20%20%20%20%20%20%20%20%20%20%20%20%20%209900018-3%20(1).pdf ,2014.
2.中華民國生物醫學工程學會,生物醫學工程導論,滄海書局, 2008。
3.C. -H. Hu, X. -C. Xu, J. M. Cannata, J. T. Yen, and K. K. Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 2, pp. 317-323, Feb. 2006.
4.G. Gurun, J. S. Zahorian, A. Sisman, M. Karaman, P. E. Hasler, and F. L. Degertekin, “An analog integrated circuit beamformer for high-frequency medical ultrasound imaging,” IEEE Trans. Biomedical Circuits and Systems, vol. 6, no. 5, pp. 454-467, Oct. 2012.
5.J. A. Jensen, “Simulation of advanced ultrasound systems using Field II,” Proc. IEEE International Symposium on Biomedical Engineering, vol. 1, pp. 636-639, 2004.
6.C. -H. Hu, X. -C. Xu, J. M. Cannata, J. T. Yen, and K. Kirk Shung, “Development of a real-time, high-frequency ultrasound digital beamformer for high-frequency linear array transducers,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 53, no. 2, pp. 317-323, Feb. 2006.
7.G. I. Athanasopoulos, S. J. Carey, and J. V. Hatfield, “Circuit Design and Simulation of a transmit beamforming ASIC for high-frequency ultrasonic imaging systems,” IEEE Trans. Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 7, pp. 1320-1311, July 2011.
8.I. Kim, H. Kim, F. Griggio, R. L. Tutwiler, T. N. Jackson, S. T. -McKinstry, and K. Choi, “CMOS ultrasound transceiver chip for high-resolution ultrasonic imaging systems,” IEEE Trans. Biomedical Circuits and Systems, vol. 3, no. 5, pp. 293-303, Oct. 2009.
9.J. Dunning, G. Garcia, J. Lundberg, and E. Nuckolls, “An all-digital phase-locked loop with 50-cycle lock time suitable for high-performance microprocessors,” IEEE J. Solid-State Circuits, vol. 30, pp. 412-422, Apr. 1995.
10.T. Olsson and P. Nilsson, “A digitally controlled PLL for SoC applications,” IEEE J. Solid-State Circuits, vol. 39, no. 5, pp. 751-760, May 2004.
11.E. Roth, M. Thalmann, N. Felber, and W. Fichtner, “A delay-line based DCO for multimedia applications using digital standard cells only,” Proc. IEEE International Solid-State Circuits Conference, pp. 432-433, Feb. 2003.
12.P. -L. Chen, C. -C. Chung, and C. -Y. Lee, “A portable digitally controlled oscillator using novel varactors,” IEEE Trans. Circuits and Syst. II, Express Briefs, vol. 52, no. 5, pp. 233-237, May 2005.
13.D. Sheng, C. -C. Chung, and C. -Y. Lee, “An ultra-low-power and portable digitally controlled oscillator for SoC applications,” IEEE Trans. Circuits and Syst. II, Exp. Briefs, vol. 54, no. 11, pp. 954-958, Nov. 2007.
14.R. -J. Yang and S. -I. Liu, “A 40–550 MHz harmonic-free all-digital delay-locked loop using a variable SAR algorithm,” IEEE J. Solid-State Circuits, vol. 42, no. 2, pp. 361-373, Feb. 2007.
15.Ching-Che Chung, “Automatic Synthesis of Timing-Locked Loops for SoC Designs,” Ph.D Dissertation, Institute of Electronics College of Electrical Engineering and Computer Science, National Chiao Tung University, Hsinchu, Taiwan, Republic of China, Oct. 2003.
16.K. E. Thomenius, "Evolution of ultrasound beamformers," proc. IEEE Ultrasonics Symposium,vol. 2, pp. 1615-1622, 1996

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔