跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 02:05
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝承志
研究生(外文):Cheng-Chih Hsieh
論文名稱:一基於影像辨識的找尋掃地機器人充電座新方法
論文名稱(外文):A New Approach of Finding Wall Power-Adapter Location for Clearing Robot Based on Imaging Recognition
指導教授:陳佑冠
指導教授(外文):Yu-Kumg Chen
口試委員:吳添勝周昌筧
口試委員(外文):Tien-Sheng WuChang-Chien Chou
口試日期:2014-07-09
學位類別:碩士
校院名稱:華梵大學
系所名稱:電子工程學系碩士班
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:63
中文關鍵詞:掃地機器人自動充電影像辨識室內定位無線導引角度影像辨識幾何辨識
外文關鍵詞:Cleaning RobotAutomatical ChargingImage RecognitionIndoor PositioningWireless CommunicationImaging Angle RecognitionDistance Curve DiagramGeometric Image Recognition
相關次數:
  • 被引用被引用:1
  • 點閱點閱:601
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:1
3C產品在居家生活中有許多的應用,例如掃地機器人替我們做清掃的動作。自動充電為掃地機器人的一項重要的功能。目前市面上的掃地機器人主要是利用老鼠走迷宮的演算法或無線通訊技術方式來達到室內定位與尋找充電座的位置。其先利用RFID、Wi-Fi、ZigBee等方式的無線導引掃地機器人找到充電座位置後,再利用紅外線對準充電孔進行充電。這些方法必須搭配特製的充電座與固定的擺放方式來完成充電座對準的動作。為了改善此一缺點,本篇論文提出一新的利用影像辨識方法來達到充電座尋找與對準的動作,以順利完成自動充電的工作。本篇論文的方法是先利用長方形的幾何影像辨識來找尋到充電座所在的位置,透過實驗方式,本篇論文再利用統計出的掃地機器人與長方形距離關係曲線圖,找尋到掃地機器人與充電座所在的距離。找到充電座後,再利用顏色的角度影像辨識方式來對準插孔以進行充電。經由一些不同場景的實驗,驗證本篇論文所提出的方法是可以讓掃地機器人正確的找到充電座位置與對準插孔進行充電。

關鍵字:掃地機器人、自動充電、影像辨識、室內定位、無線導引、角度影像辨識、幾何辨識。
3C products have many applications in the home life, such as cleaning robot. It can do the work of sweeping the floor for us. Automatical charging is an important function for a cleaning robot. Currently, cleaning robots on the market use the approaches of maze algorithms or wireless communication technology to achieve indoor positioning and looking position of power adaptor. In the first step, they use the way of RFID, Wi-Fi, ZigBee, or other forms of wireless to guide their cleaning robots finding the position of power adaptor, and then use an infrared technology to align their cleaning robots with charging holes for charging. These methods must be used with special power adaptors and put fixed ways of power adaptor to complete the charging alignment action. In order to improve this shortcoming, a new method using image recognition to achieve automatical looking position of power adaptor and aligned movement is proposed in this thesis. In the first step, the proposed method of the thesis is to use rectangular geometric image recognition to find the location of power adaptor. By using experimental methods and statistical analysis, a curve of cleaning robot distance relationship with a rectangular is derived in this thesis. It can be used to find the distance between cleaning robot and power adaptor. After finding the power adaptor, cleaning robot is aligned with the power adaptor by using imaging angle recognition. By using experiments for a number of different scenarios, it is shown that the proposed method can be used in cleaning robot to find the correct position of power adaptor and aligned power adaptor for charging.

Keywords: Cleaning Robot, Automatical Charging, Image Recognition, Indoor Positioning, Wireless Communication, Imaging Angle Recognition, Distance Curve Diagram, Geometric Image Recognition.

摘要 I
ABSTRACT II
目 錄 III
圖 錄 IV
第一章 緒論 1
1.1 研究動機 1
1.2 研究背景 1
1.3 論文貢獻 2
1.4 論文架構 3
第二章 影像分區 5
2.1 影像縮小 7
2.2 影像分區 8
2.3 邊緣偵測 13
2.3.1 膨脹 20
2.3.2 細線化演算法 21
第三章 充電座偵測 23
3.1 Hough直線偵測 26
3.2 長方形偵測 29
3.3 機器人與充電座的角度影像辨識 32
3.4 機器人與充電座的距離影像辨識 40
3.5 充電孔中心點影像辨識 46
第四章 實驗結果 48
第五章 結論 60
參考文獻 61

[1] J. C. Lin and J. C. Juang, Analysis of the Quality of Service in Indoor Positioning Systems, Master Thesis of Nation Cheng Kung University, Taiwan, May 2006.
[2] H. C. Tai, Design and Realization of Indoor Positioning System Based on Gaussian Mixtured Model, Master Thesis of Tatung University, Taiwan, July 2009.
[3] iRobot, http://www.roombavac.com.tw/index.html
[4] K. Jensen and D. Anstassiou, “Subpixel edge localization and the interpolation of still images,” IEEE Transaction on Image processing, Vol. 4, pp. 285-295, March 1995.
[5] M. Sonka, V. Hlavac, and R. Boyle, Image Porcessing, Analysis, and Machine Vision, PWS Pubishing, pp. 67-68, 1999.
[6] K. Wu, E. Otoo and K. Suzuki, “Optimizing two-pass connected- component labeling algorithms,” Pattern Analysis and Applications, Vol. 12, pp. 117-135, 2009.
[7] L. He, Y. Chao and K. Suzuki, “A new Two-Scan Algorithm for Labeling Connected Components in Binary Image,” in Proceedings of World Congress on Engineering, Vol.Ⅱ, July 2012.
[8] K. T. Liou, Reseatch of face Detection with Using Geometric Characteristic and Template Matching, Master Thesis of Huafan University, Taiwan, June 2012.
[9] R. C. Gonzalez and R. E. Woods, Digital Image Processing. Pearson Prentice Hall, 2007.

[10] R. C. Gonzalez, R. E. Woods and S. L. Eddins, Digital Image Processing using Matlab, Prentice Hall, 2009.
[11] H. Kauppinen, T. Seppanen and M. Pietilainen, “An experimental comparison of autoregressive and Fourier-based descriptors in 2D shape classification,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, issue 2, pp. 201-207, February 1998.
[12] E. Persoon and Fu. King-Sun, “Shape Discrimination Using Fourier Descriptors,” IEEE Transaction on Systems Man and Cybernetocs, Vol. 7, pp. 170-179, March 1977.
[13] Zahn. C. T and Roskies. R. Z, “Fourier descriptors for plane closed curves,” IEEE Transaction on Computers, Vol.21, pp. 269-281, 1972.
[14] P. Zingaretti, M. Gasparroni and L. Vecci, “Fast chain coding of region boundaries,” IEEE Transaction on Pattern Analysis and Machine Intelligence, Vol. 20, pp. 407-145, April 1998.
[15] D. H. Ballard, “Generalizing The Hough Transform To Detect Arbitrary Shape,” Pattern Recognition Vol. 13, No. 2, pp. 111-122, 1981.
[16] R. O. Duda and P. E. Hart, “Use of the Hough Transformation to Detect Lines and Curves in Pictures, ”Communication of the ACM, Vol. 15, No. 2, pp. 11-15, January 1972.
[17] D. J. Williams and M. Shah, “A fast algorithm for active contours and curvature estimation,” CVGIP Image understanding ,Vol. 55 Issue 1, pp. 14-26, January 1992.
[18] Z. M. Firdaus, H. S. Choon and S. S. Azmin, “Object Shape Recognition in Image for Machine Vision Application,” International Journal of Computer Theory and Engineering, Vol. 4 Issue 1, February 2012.

[19] G. Bradski and A. Kaehler, Learing Opencv: Computer vision with the OpenCv Libarary, O'Reilly Media, October 2008.
[20] P. S. Hiremath and A. Danti, “Detection of Multiple Faces in an Image Using Skin Color Information and Lines-of-Separability Face Model,” International Journal of Pattern Recognition and Artificial Intelligence, Vol. 20, Issue 1, pp. 39-61, 2006.
[21] T. Gevers and A. W. Smeulders, “Color based object Recognition,” Pattern Recognition, Vol. 32, issue 3, pp. 453-464, March 1999.
[22] S. Gupta, P. Arbelaez and J. Malik, “Perceptual orgamization and recognition of indoor scenes from RGB-D Images,” Computer Vision and Pattern Recognition, pp. 564-571, June 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top