(3.239.33.139) 您好!臺灣時間:2021/02/27 01:06
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林彥亨
研究生(外文):Yen-Heng Lin
論文名稱:大氣中顆粒及汞物種汙染物於中台灣之研究
論文名稱(外文):Ambient air particles and mercury pollutants species study in central Taiwan
指導教授:方國權方國權引用關係
指導教授(外文):Guor-Cheng Fang
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
畢業學年度:102
語文別:英文
論文頁數:71
中文關鍵詞:總懸浮微粒乾沉降模組環境顆粒物
外文關鍵詞:TSPdry depositionmodelparticulates bound mercury Hg(p)particles
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究主要目的於台灣中部交通區之大氣中顆粒物、氣態汞與顆粒汞的探討乾沉降通量與濃度在日夜間的變化,並且利用兩種大氣乾沉降模組(Wood’s、Petroff &; Zhang’s)來評估計算測量環境空氣乾沉降污染物之監測與模擬差異結果,
結果顯示,台灣中部交通區之大氣中顆粒物、氣態汞與顆粒汞於白間之濃度分別為69.72 µg/m3, 3.17 ng/m3, 及 0.024 ng/m3,且大氣中顆粒物與顆粒汞白間之乾沉降通量分別為145.20 μg/m2*min, 及0.022 ng/m2*min。而台灣中部交通區之大氣中顆粒物、氣態汞與顆粒汞於夜間之濃度分別為60.56 µg/m3, 2.74 ng/m3, 及 0.018 ng/m3,且大氣中顆粒物與顆粒汞夜間之乾沉降通量分別為132.58 μg/m2*min, 及0.016 ng/m2*min。
同時,在交通區大氣中顆粒物之粒徑10 μm、20 μm及23 μm於日夜間比較中,Petroff &; Zhang’s模組比Wood’s模組更具有較好的計算測量。而大氣中顆粒汞之粒徑10 μm於日夜間比較中,Petroff &; Zhang’s模組比Wood’s模組更具有較好的計算測量。大氣中顆粒汞之粒徑20 μm與23 μm,則是Wood’s模組比Petroff &; Zhang’s模組更具有較好的計算測量。

In this investigation, the concentrations of particles in ambient air, gaseous elemental mercury (GEM), and particulate-bound mercury (Hg(p)) in total suspended particulates (TSP) as well as dry deposition at a (Traffic) sampling site at Hung-Kuang were studied during the day and night in 2012. The results reveal that the mean concentrations of total suspended particulates (TSP) in ambient air, gaseous elemental mercury (GEM), and particle-bound mercury (Hg(p)) were 69.72 µg/m3, 3.17 ng/m3, and 0.024 ng/m3, respectively, at the Hung-Kuang (Traffic) sampling site during daytime sampling periods. The results also reveal that the mean rate of dry deposition of particles from ambient air and particle-bound mercury (Hg(p)) were 145.20 μg/m2*min, and 0.022 ng/m2*min, respectively at the Hung-Kuang (Traffic) sampling site during the daytime sampling period. The mean concentrations of total suspended particulates (TSP) in ambient air, gaseous elemental mercury (GEM), and particle-bound mercury (Hg(p)) were 60.56 µg/m3, 2.74 ng/m3, and 0.018 ng/m3, respectively, at the Hung-Kuang (Traffic) sampling site during the nighttime sampling period. The mean rates of dry deposition of particles and particle-bound mercury (Hg(p)) from ambient air were 132.58 μg/m2*min and 0.016 ng/m2*min, respectively, at the Hung-Kuang (Traffic) sampling site during the nighttime sampling period. In addition, the calculated/measured dry deposition flux ratios of ambient air particles and particulates bound mercury Hg(p) with Wood’s and Petroff &; Zhang’s models were also studied. The result indicated that: Within the particle size of 10, 20 and 23 μm, Petroff &; Zhang’s model exhibited better dry deposition prediction results for ambient air particulates at Hung-Kuang (Traffic) sampling site during the day and night sampling period. However, Petroff &; Zhang’s model per performed better results in the prediction of ambient air particulates bound mercury Hg(p) dry deposition for the particles size of 10 μm at the Hung-Kuang (Traffic) sampling site during the day and night sampling periods. Wood’s model performed better results in the prediction of ambient air particulates bound mercury Hg(p) dry deposition for the particles size of 20 and 23 μm at the Hung-Kuang (Traffic) sampling site during the day and night sampling periods.
CONTENTS
誌謝 I
Abstract II
摘要 IV
Abbreviation V
CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES X
Chapter 1 Introduction 1
Chapter 2 Literature Review 3
2.1 Mercury species source 3
2.2 Mercury origin 4
2.3 Health effect of mercury 5
2.4 Objectives of this study 7
2.5 Use model objectives of this study 8
2.6 Dry deposition model 9
2.6.1 Empirical equations, deposition model by Woods 9
2.6.2 Petroff and Zhang’s model 11
Chapter 3 Methodology 13
3.1 Sampling site 13
3.2 Sampling device 15
3.2.1 Total suspended particulate (TSP) sampler 15
3.2.2 Dry deposition plate (DDP) 16
3.2.3 Measurements of Hg concentration in ambient air 17
3.2.4 Portable weather station 18
3.2.5 Mass measurements 19
3.3 Chemical analysis 21
3.4 Quality control 23
3.4.1 Blank test 23
3.4.2 Recovery efficiency test 23
3.4.3 Reproducibility test 23
Chapter 4 Results and Discussion 24
4.1 Meteorological conditions 24
4.2 TSP and DDP at the at the Hung-Kuang (Traffic) sampling site 27
4.2.1 Ambient air particulate and Hg(p) during the daytime 27
4.2.2 Ambient air particulate and Hg(p) during the nighttime 29
4.3 GEM at the at the Hung-Kuang (Traffic) sampling site 31
4.3.1 GEM during the daytime 31
4.3.2 GEM during the nighttime 33
4.4 Calculated/measured ratios for various dry deposition models 35
4.4.1 Ambient air particulate during the daytime 35
4.4.2 Ambient air particulate during the nighttime 39
4.4.3 Ambient air particle bound mercury Hg(p) during the daytime 43
4.4.4 Ambient air particle bound mercury Hg(p) during the nighttime 47
Chapter 5 Conclusions 51
References 53

References

Artina, S., Bolognesi, A., Liserra, T., Maglionico, M., 2007. Simulation of a storm sewer network in industrial area: comparison between models calibrated through experimental data. Environ. Modell. Softw. 22(8), 1221–1228.
Baeyens, W., Leermakers, M., Papina, T., Saprykin, A., Brion, N., Noyen, J., De Gieter, M., Elskens, M., Goeyens, L., 2003. Bioconcentration and biomagnification of mercury and methylmercury in North Sea and Scheldt estuary fish. Arch. Environ. Contam. Toxicol. 45, 498–508.
Bhaskar, B.V., Mehta V.M., 2010. Atmospheric Particulate Pollutants and their Relationship with Meteorology in Ahmedabad. Aerosol and Air Quality Research. 10, 301–315.
Bullock, O.R., Brehme, K.A., 2002. Atmospheric mercury simulation using the CMAQ model: formulation description and analysis of wet deposition results. Atmospheric Environment. 36, 2135–2146.
Chan, C.K., Yao, X., 2008. Air pollution in mega cities in China. Atmospheric Environment. 42, 1–42.
Chang, K.F., Fang, G.C., Lu, C., Bai, H., 2003. Estimating PAH Dry Deposition by Measuring Gas and Particle Phase Concentrations in Ambient. Air. Aerosol and Air Quality Research. 1, 41–51.
Chen, S.J., Lo, C.T., Fang, G.C., Huang, C.S., 2012. Particulate-bound mercury Hg(p) size distributions in central Taiwan. Environmental Forensics. 13, 98–104.
Cheng, Y.H., Li, Y.S., 2010. Influences of Traffic Emissions and Meteorological Conditions on Ambient PM10 and PM2.5 Levels at a Highway Toll Station. Aerosol and Air Quality Research. 10, 456–462.
Choi, H.D., Holsen, T.M., Hopke, P.K., 2008. Atmospheric mercury (Hg) in the Adirondacks: concentrations and sources. Environ. Sci. Technol. 42, 5644–5653.
Ci, Z., Zhang, X., Wang, Z., 2010. Elemental mercury in coastal seawater of Yellow Sea, China: temporal variation and air-sea exchange. Atmos. Environ. 45, 183–190.
Fang, G. C., Huang, W.J., Chen, J.C., Huang, J.H., Huang, Y.L., 2011b. Study of ambient air particle-bound As(p) and Hg(p) in dry deposition, total suspended particulates (TSP) and seasonal variations in Central Taiwan. Environmental Forensics. 12, 7–13.
Fang, G.C., Chang, C.Y., Tsai, J.H., Lin, C.C., 2013. The size distributions of ambient air metallic pollutants by using a multi-stage MOUDI sampler. Aerosol and Air Quality Research. 14(3), 970–980.
Fang, G.C., Chen, J.C., Wu, Y.S., Huang, W.J., Liu, C.K., 2011a. Application of dry deposition models to estimate ambient air particulate and particulate bound mercury Hg(p) dry deposition in a suburban/coastal area. Environmental Engineering Science. 28, 63–70.
Fang, G.C., Huang, C.S., 2012. Apply Woods model in the predictions of ambient air particles and metallic elements (Mn, Fe, Zn, Cr and Cu) at industrial, suburban/coastal and residential sampling sites. The Scientific World Journal. 7, doi:10.1100/2012/207620.
Fang, G.C., Tsai, J.H., Lin, Y.H., Chang, C., 2012b. Dry Deposition of Atmospheric Particle-Bound Mercury in the Middle Taiwan. Aerosol and Air Quality Research. 12, 1298–1308.
Fang, G.C., Yang, I.L., Liu, C.K., 2011c. Coarse and fine particulates, Hg(p) bound particulate concentrations and compositions study at Sha-Lu, central Taiwan. Environmental Geology. 63, 263–271.
Fang, G.C., Zhang, L., Huang, C.S., 2012a. Measurements of size-fractionated concentration and bulk dry deposition of atmospheric particulate bound mercury. Atmospheric Environment. 61, 371–377.
Fernandes Azevedo, B., Barros Furieri, L., Pecanha, F.M., Wiggers, G.A., Frizera Vassallo, P., Ronacher Simoes, M., Fiorim, J., Rossi de Batista, P., Fioresi, M., Rossoni, L., Stefanon, I., Alonso, M.J., Salaices, M., Valentim Vassallo, D., 2012. Toxic effects of mercury on the cardiovascular and central nervous systems. J. Biomed. Biotechnol. 2012, p. 949048.
Fitzgerald, W.F., Gill, G.A., 1979. Subnanogram determination of mercury by twostage gold amalgamation and gas phase detection applied to atmospheric analysis. Anal. Chem. 51, 1714–1720.
Fu, X., Feng, X., Qiu, G., Shang, L., Zhang, H., 2011. Speciated atmospheric mercury and its potential source in Guiyang, China. Atmospheric Environment. 45, 4205–4212.
Gbor, P.K., Wen, D., Meng, F., Yang, F., Sloan, J.J., 2007. Modeling of mercury emission, transport and deposition in North America. Atmospheric Environment. 41, 1135–1149.
Ghose, M., Majee, S., 2007. Characteristics of Hazardous Airborne Dust Around an Indian Surface Coal Mining Area. Environ Monit Assess 130, 17–25.
Gong, P., Wang, X.P., Xue, Y.G., Xu, B.Q., Yao, T.D., 2014. Mercury distribution in the foliage and soil profiles of the Tibetan forest: Processes and implications for regional cycling. Environmental Pollution. 188, 94-101.
Gustin, M.S., Engle, M., Ericksen, J., Lyman, S., Stamenkovic, J., Xin, M., 2006. Mercury exchange between the atmosphere and low mercury containing substrates. Applied Geochemistry. 21, 1913–1923.
Gustin, M.S., Lindberg, S.E., Weisberg, P.J., 2008. An update on the natural sources and sinks of atmospheric mercury. Applied Geochemistry. 23, 482–493.
Hoffmann, C., Funk, R., Sommer, M., Li, Y., 2008. Temporal variations in PM10 and particle size distribution during Asian dust storms in Inner Mongolia. Atmospheric Environment. 42, 8422–8431.
Jonsson, L., Karlsson, E., Jonsson, P., 2008. Aspects of particulate ¨ dry deposition in the urban environment. Hazardous Materials. 153, 229–243.
Karagas, M.R., Choi, A.L., Oken, E., Horvat, M., Schoeny, R., Kamai, E., Cowell, W., Grandjean, P., Korrick, S., 2012. Evidence on the human health effects of low-level methylmercury exposure. Environ. Health Perspect. 120, 799–806.
Karimi, R., Silbernagel, S., Fisher, N.S., Meliker, J.R., 2014. Elevated blood Hg at recommended seafood consumption rates in adult seafood consumers. International Journal of Hygiene and Environmental Health. http://dx.doi.org/10.1016/j.ijheh.2014.03.007.
Kim, S.H., Han, Y.J., Holsen, T.M., Yi, S.M., 2009. Characteristics of atmospheric speciated mercury concentrations (TGM, Hg(II) and Hg(p)) in Seoul, Korea. Atmospheric Environment. 43, 3267–3274.
Kocman, D., Horvat, M., 2011. Non-point source mercury emission from the Idrija Hg-mine region: GIS mercury emission model. Journal of Environmental Management. 92, 2038–2046.
Kvasnak W., Ahmadi, G., 1996. Deposition of ellipsoidal particles in turbulent duct flows. Chemical Engineering. 51, 5137–5148.
Lai, S.O., Holsen, T.M., Han, Y.J., Hopke, P.P., Yi, S.M., Blanchard, P., Pagano, J.J., Milligan, M., 2007. Estimation of mercury loadings to Lake Ontario: Results from the Lake Ontario atmospheric deposition study (LOADS). J. Atmos. Chem. 41, 8205–8218.
Langford, N., Ferner, R., 1999. Toxicity of mercury. J. Hum. Hypertens. 13, 651–656.
Leermakers, M., Elskens, M., Panutrakul, S., Monteny, F., Baeyens., W., 1993. Geochemistry of mercury in an intertidal flat of the Scheldt estuary. Aquat. Ecol. 27, 267–277.
Li, P., Feng, X., Qiu, G., 2010. Methylmercury exposure and health effects from rice and fish consumption: a review. Int. J. Environ. Res. Public Health. 7, 2666–2691.
Lin, X., Tao, Y., 2003. A numerical modelling study on regional mercury budget for eastern North America. Atmospheric Chemistry and Physics. 3, 535–548.
Lindqvist, O., Rodhe, H., 1985. Atmospheric mercury—a review. Tellus 37B, 136–159.
Magos, L., Clarkson, T.W., 2006. Overview of the clinical toxicity of mercury. Ann. Clin. Biochem. 43, 257–268.
Marsik, F.J., Keeler, G.J., Landis, M.S., 2007. The dry-deposition of speciated mercury to the Florida Everglades: measurements and modeling. Atmos Environ. 41, 136–149.
Mason, R., Reinfelder, J., Morel, F., 1995. Bioaccumulation of mercury and methylmercury. Water Air Soil Pollut. 80, 915–921.
Mason, R.P., Abbott, M.L., Bodaly, R.A., Bullock Jr., O.R., Driscoll, C.T., Evers, D., Lindberg, S.E., Murray, M., Swain, E.B., 2005. Monitoring the response to changing mercury deposition. Environmental Science and Technology. 39, 14A–22A.
McNeary, D., Baskaran, M., 2003. Depositional characteristics of 7Be and 210Pb in southeastern Michigan. Journal of Geophysical Research. 108(D7), 4210.
Montuori, P., Jover, E., Díez, S., Ribas-Fitó, N., Sunyer, J., Triassi, M., Bayona, J.M., 2006. Mercury speciation in the hair of pre-school children living near a chlor-alkali plant. Sci. Total Environ. 369, 51–58.
Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S., 2006. Global anthropogenic mercury emission inventory for 2000. Atmos. Environ. 40, 4048–4063.
Pacyna, E.G., Pacyna, J.M., Sundseth, K., Munthe, J., Kindbom, K., Wilson, S., Steenhuisen, F., Maxson, P., 2010. Global emission of mercury to the atmosphere from anthropogenic sources in 2005 and projections to 2020. Atmospheric Environment. 44, 2487–2499.
Palheta, D., Taylor, A., 1995. Mercury in environmental and biological samples from a gold mining area in the Amazon region of Brazil. Sci. Total Environ. 168, pp. 63–69.
Papastefanou, C., Ioannidou, A., 1991. Depositional fluxes and other physical characteristics of atmospheric Berylium-7 in the temperate zones 40°N with a dry (precipitation-free) climate. Atmospheric Environment. 25, 2335–2343.
Petroff, A., Zhang, L., 2010. Development and validation of a size-resolved particle dry deposition scheme for application in aerosol transport models. Geoscientific Model Development. 3, 753–769.
Pirrone, N., Cinnirella, S., Feng, X., Finkelman, R.B., Friedli, H.R., Leaner, J., Mason, R., Mukherjee, A.B., Stracher, G.B., Streets, D.G., Telmer, K., 2010. Global mercury emissions to the atmosphere from anthropogenic and natural sources. Atmospheric Chemistry and Physics. 10, 5951–5964.
Pirrone, N., Costa, P., Pacyna, J.M., Ferrara, R., 2001. Mercury emissions to the atmosphere from natural and anthropogenic sources in the Mediterranean region. Atmos. Environ. 35, 2997–3006.
Poissant, L., Pilote, M., Beauvais, C., Constant, P., Zhang, H.H., 2005. A year of continuous measurements of three atmospheric mercury species (GEM, RGM and Hg(p)) in southern Québec, Canada. Atmospheric Environment. 39, 1275–1287.
Sakata, M., Asakura, K., 2007. Estimating contribution of precipitation scavenging of atmospheric particulate mercury to mercury wet deposition in Japan. Atmos. Environ. 41, 1669–1680.
Schroeder, W.H., Munthe, J., 1998. Atmospheric mercury an over view. Atmospheric Environment. 32, 809–822.
Schroeder, W.H., Munthe, J., Lindqvist, O., 1989. Cycling of mercury between water, air, and soil compartments of the environment. Water, Air, and Soil Pollution. 48, 337–347.
Selin, N.E., Jacob, D.J., Park, R.J., Yantosca, R.M., Strode, S., Jaegle, L., Jaffe, D., 2007. Chemical cycling and deposition of atmospheric mercury: global constraints from observations. Journal of Geophysical Research. 112, (D02308). http:// dx.doi.org/10.1029/2006JD007450.
Senaratne, I., Kelliher, F.M., Triggs, C., 2005. Source Apportionment of Airborne Particles During Winter in Contrasting, Coastal Cities. Aerosol and Air Quality Research. 1, 48–64.
Shannon, J.D., Voldner, E.C., 1995. Modeling atmospheric concentrations of mercury and deposition to the Great Lakes. Atmos Environ. 29, 1649–1661.
Sillman, S., Marsik, F.J., Al-Wali, K.I., Keeler, G.J., Landis, M.S., 2007. Reactive mercury in the troposphere: model formation and results for Florida, the northeastern US and the Atlantic Ocean. Journal of Geophysical Research-Atmospheres in press. doi:10.1029/2006JD008227.
Sippola, M.R., Nazaroff, W.W., 2002. Particle deposition from turbulent flow: review of published research and its applicability to ventilation ducts in commercial buildings, Report LBNL 51432, Lawrence Berkeley National Laboratory.
Slemr, F., Schuster, G., Seiler, W.. 1985. Distribution speciation, and budget of atmospheric mercury. J. Atmos. Chem. 3, 407–434.
Streets, D.G., Hao, J., Wu, Y., Jiang, J.K., Chan, M., Tian, H., Feng, X., 2005. Anthropogenic mercury emissions in China. Atmos Environ. 39, 7789–7806.
Tian, H.Z., Wang, Y., Cheng, K., Qu, Y.P., Chai, F.H., Hao, J.M., 2011. Atmospheric emissions estimation of Hg, As, and Se from coal-fired power plants in China, 2007. Science of the Total Environment. 409, 3078–3081.
Todd, J.F., Wong, G.T.F., Olsen, C.R., Larsen, I.L., 1989. Atmospheric depositional characteristics of Beryllium-7 and Lead-210 along the south-eastern Virginia coast. Journal of Geophysical Research. 94, 11106–11116.
Turekian, K.K., Benninger, L.K., Dion, E.P., 1983. 7Be and 210 Pb total deposition fluxes at New Haven Conneticut and at Bermuda. Journal of Geophysical Research. 88, 5411–5415.
Vijay Bhaskar, B., Mehta, V.M., 2010. Atmospheric Particulate Pollutants and their Relationship with Meteorology in Ahmedabad. Aerosol and Air Quality Research. 10, 301–315.
Wang, M.S., Yang, N.N., Zhu, J.M., Zheng, B.S., 2008. Estimation of arsenic emission from coal combustion in China. Coal Conv. 31, 1–3.
Wang, Z.J., Gao, Y.X., 2001. Biegeochemical cycling of selenium in Chinese environments. Appl Geochem. 16, 1345–1351.
Watras, C., Back, R., Halvorsen, S., Hudson, R., Morrison, K., Wente, S., 1998. Bioaccumulation of mercury in pelagic freshwater food webs. Sci. Total Environ. 219, 183–208.
Wood, N.B., 1981a. A simple method for the calculation of turbulent deposition to smooth and rough surfaces. Aerosol Science. 12, 275–290.
Wood, N.B., 1981b. Mass transfer of particles and acid vapour to cooled surfaces. Institute of Energy. 54, 76–93.
World Health Organization., 1990. IPCS Environmental Health Criteria 101: Methylmercury. International Programme of Chemical Safety. World Health Organization, Geneva, Switzerland, p. 144.
Wu, Y., Wang, S.X., Streets, D.G., 2006. Trends in anthropogenic mercury emissions in China from 1995 to 2003. Environ Sci. Technol. 40, 5312–5318.
Xu, X., Barsha, N.A.F., Li, J., 2008. Analyzing Regional Inluence of Particulate Matter on the City of Beijing, China. Aerosol and Air Quality Research. 8(1), 78-93.

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔