跳到主要內容

臺灣博碩士論文加值系統

(44.200.27.215) 您好!臺灣時間:2024/04/20 08:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐筱筑
研究生(外文):Shiau-Ju Shiu
論文名稱:Amberlite IR-120型樹脂對廢水中銦、鎵 之去除效果
論文名稱(外文):Removal Effects of Indium and Gallium in Aqueous Solution by Amberlite IR-120 Resin
指導教授:王建明
學位類別:碩士
校院名稱:弘光科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:Amberlite IR-120型樹脂樹脂再生
外文關鍵詞:Amberlite IR-120 resinIndium(In)Gallium(Ga)
相關次數:
  • 被引用被引用:2
  • 點閱點閱:194
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
為避免高科技產業排放水對飲用水產生不良影響,進而危害人類健康,環保署自2012年1月1日起,在放流水水質標準中,增訂「銦、鎵」兩項水質管制項目標準。新增訂的排放標準分別為:銦 0.1(mg/L)、鎵 0.1(mg/L);另外,為節省成本,高科技產業中的電子業者及回收業者紛紛投入尋找貴重金屬回收的方法。因此,若能妥善處理水質,既可回收再用處理後的水,又可以回收重金屬。現在,已有多種可分離廢水中重金屬的方法。離子交換法因具有操作方便、回收率高、無污染等特點,故被選作本研究的測試技術。
離子交換程序(ion exchange process)是液相和固相中,不同離子間所進行的一種可逆性化學反應。當液相中的某些離子較為樹脂中的離子所喜好時,兩者便會進行交換反應。就其機制而言,則是水溶液中的離子為維持電中性,離子交換固體必須釋出等價離子回到溶液中。本研究之主要目的:(1)測試某高科廠所用之Amberlite IR-120型樹脂對In、Ga的去除效果,並探討pH值對去除效果的影響;(2)探討不同再生液在不同流速下的再生效果。
由離子交換實驗結果顯示,Amberlite IR-120型樹脂在酸性(pH=1)的操作條件下,對In的去除率高達99.5%,略高於中性(pH=7)的99.4%;但兩者的去除率皆遠高於鹼性(pH=12)時的3%。換言之,Amberlite IR-120型樹脂非常適合在酸性或中性的條件下,去除水中的銦離子。對鎵的去除而言,Amberlite IR-120型樹脂在酸性(pH=1)、中性(pH=7)和鹼性(pH=12)的操作條件下,對Ga的去除率分別為99.1%、41.8%和28.0%。因此,此型樹脂在酸性條件下,對水中的鎵離子具有較好的去除效果。
在再生劑為1N的H2SO4之樹脂再生實驗中,流速分別控制在每分鐘為10、20、30ml下,進行逆向再生測試。結果顯示,每分鐘為10或20ml的流速控制下,再生的效果優於30 ml/min。其中,在流速20 ml/min的操作條件下,樹脂中銦離子和鎵離子的回收率分別可達99.5%和99.1%。另外,在此流速下,以1N的HNO3進行樹脂再生測試。結果顯示,樹脂中銦離子和鎵離子的回收率較低。未來,可將脫附出來的In、Ga作更進一步的回收。

In order to avoid the discharged high-tech industry wastewaters have bad influence on human health, the Environmental Protection Agency have included the “Indium (In) and Gallium (Ga)” items in the regulation of wastewater discharge on January 1, 2012. In the “Effluent Standards”, the control limits of In and Mo, are 0.1 and 0.1 mg/L, respectively. In addition, for cutting down the costs, many high-tech companies start to look for methods for recycling the noble metals. Therefore, if the water quality can be handled properly, not only the water can be reused but also the noble metals can be recycled. There are a lot of techniques can be used to separate metals from wastewaters. Ion exchange process is chosen in this study because it has the following properties: easy operation, high recovery, and no pollution.
Indium (In) and Gallium (Ga) are two common ions widely used in the high-tech industry. Ion exchange process is a reversible chemical reaction between ions in the liquid phase and solid phase. When certain ions in the liquid phase are more favorable by the substrate of the resin, ion exchange reaction occurs. To satisfy the law of electroneutrality, when the cation in the liquid phase is adsorbed by the resin, an equivalent ion has to been released from the resin to the liquid.
The main purposes of this study are: (1) to test the removal effect of In and Ga by Amberlite IR-120 resin and to investigate the influence of pH on the removal effect; (2) to explore the regeneration effects of different regenerating reagents under different flow rates. Amberlite IR-120 resin is used in a Hi-Tech Plant for cation exchange process.
From the results of ion exchange experiments, Amberlite IR-120 resin can remove 99.5% and 99.4% of In ion from aqueous solution in acidic (pH=1) and neutral (pH=7) conditions, individually. However, merely 3% of In ion was removed in basic (pH=12) solution. Therefore, Amberlite IR-120 resin was very suitable for the removal of In ion in acidic or neutral conditions. The removal rates of Ga by Amberlite IR-120 resin in the acidic, neutral, and basic conditions were 99.1%, 41.8%, and 28.0%, respectively. It is very clearly that Amberlite IR-120 resin was preferable to adsorption Ga in acidic aqueous solution.
In the study of regeneration of resin, sulfuric acid and nitric acid were serviced as regenerating reagents. The effects of flow rate for sulfuric acid as regenerating reagent were examined at 10, 20, and 30 ml per minute. The results showed that when the flow rate controlled at 10 or 20 min per minute, the regeneration effect was better than it controlled at 30 ml/min. For the run of sulfuric acid at 20 ml/min, the recovery rates of In and Ga ions can reach to 99.5% and 99.1%, individually. Likewise, the nitric acid was test as regenerating reagent. However, the recovery rates of In and Ga were not as good as sulfuric acid did.
In future, the recovered valuable metal ions, In and Ga, from the resins hold the promise to be recycled furthermore.

目錄
摘 要 I
Abstract III
目錄 VI
圖目錄 IX
表目錄 XI
第一章 前言 1
第二章 文獻回顧 3
2-1銦的基本特性 3
2-2鎵的基本特性 5
2-3 溶液中金屬離子的分離方法 7
2-4離子交換原理與吸附平衡理論 11
2-5離子交換樹脂之操作 16
2-6連續式離子交換管柱實驗 18
2-7離子交換樹脂種類 20
2-8 離子交換樹脂之應用與相關研究 23
第三章 實驗方法與設備 26
3-1 實驗材料與設備 26
3-1-1 實驗藥品 26
3-1-2 實驗材料 27
3-1-3 實驗設備 28
3-1-4 分析儀器 29
3-2 實驗流程與方法 31
3-2-1實驗架構 31
3-2-2 實驗流程 32
3-2-3 實驗步驟 33
第四章 結果與討論 37
4-1 廢水pH值對離子交換樹脂交換效果的影響 37
4-1-1 pH對銦離子去除效率之影響 37
4-1-2 pH對鎵離子去除效率之影響 41
4-2 樹脂再生實驗 45
4-2-1 硫酸對銦離子的回收效果 45
4-2-2 硫酸對鎵離子的回收效果 49
4-3再生液流速對樹脂再生的效果 53
4-3-1 硫酸對銦離子 53
4-3-2鎵離子 54
4-4 改變再生液 55
4-4-1 銦離子 55
4-4-2 鎵離子 56
4-5一次再生樹脂後之二次離子交換及再生實驗 57
4-5-1 銦離子 57
4-5-2 鎵離子 59
第五章 結論與建議 61
5-1 結論 61
5-2 建議 62
參 考 文 獻 63
圖目錄
圖2-1典型Langmuir等溫吸附圖(邱,2004) 14
(二) Freundlich Equation 14
圖2-2 典型Freundlich等溫吸附圖(邱,2004) 15
圖2-3 管柱操作之貫穿曲線圖(羅,2004) 19
圖 3-1 研究流程圖 31
圖3-2交換實驗示意圖 34
圖3-3 脫附實驗示意圖 36
圖4-1 樹脂IR-120對於pH1含In廢水去除結果 38
圖4-2樹脂IR-120對於pH7含In廢水去除結果 39
圖4-3樹脂IR-120對於pH12含In廢水去除結果 40
圖4-4樹脂IR-120對於pH1含Ga廢水去除結果 42
圖4-5樹脂IR-120對於pH7含Ga廢水去除結果 43
圖4-6樹脂IR-120對於pH12含Ga廢水去除結果 44
圖4-7硫酸對於pH1含In廢水的再生效果(流速=20 mL/min) 46
圖4-8硫酸對於pH7含In廢水的再生效果(流速=20 mL/min) 47
圖4-9硫酸對於pH12含In廢水的再生效果(流速=20 mL/min) 48
圖4-10硫酸對於pH1含Ga廢水的再生效果(流速=20 mL/min) 50
圖4-11硫酸對於pH7含Ga廢水的再生效果(流速=20 mL/min) 51
圖4-12硫酸對於pH12含Ga廢水的再生效果(流速=20 mL/min) 52
圖4-13 改變再生液的流速對於In的再生效果(再生液:硫酸) 53
圖4-14改變再生液的流速對於Ga的再生效果(再生液:硫酸) 54
圖4-15硝酸與硫酸對於In的再生效果(pH=1、流速20mL/min) 55
圖4-16硝酸與硫酸對於Ga的再生效果(pH=1、流速20mL/min) 56
圖4-17一次再生樹脂後之二次銦離子交換效果 57
圖4-18二次銦離子交換後之二次樹脂再生效果 58
圖4-19一次再生樹脂後之二次鎵離子之交換效果 59
圖4-20二次鎵離子交換後之二次樹脂再生效果 60
表目錄
表2.1銦的物理性質 3
表2-2鎵的物理性質 5
表2-3 強酸型及強鹼型離子交換樹脂對離子選擇性的優勢順序 12
表 3-1 Amberlite IR-120 樹脂特性 27
表3-2 ICP/OES 操作參數 30

Achaerandio, I., Güell, C. and López, F. 2002,“Continuous vinegar decolorization with exchange resins. ”Journal of Food Engineering, 51(4), 311-317.
Adamson, A.W. 1990, Physical Chemistry of Surfaces, John Wiely and Sons, New York .
Aksu, Z. and Đşoğlu, İ.A., 2005, “Removal of copper (II) ions from aqueous soluteion by biosorption onto agricultural waste sugar beet pulp,” Process Biochem., 40, 3031-3044.
Alfantatazi, A.M. and Moskalyk, R.R., 2003, “ Processing of indium: a review,” Miner. Eng., 16, 687-694.
Atia, A. A., Donia, A. M. and Shahin, A. E. 2005, “ Studies on the uptake behavior of a magnetic Co3O4-containing resin for Ni(II), Cu(II) and Hg(II) from their aqueous solutions.” Separation and Purification Technology, 46(3), 208-213.
Chang, K.L., Liao, W.T., Yu, C.L., Lan, C.C., Chang, W. and Yu, H.S., 2003, “ Effects of gallium on immune stimulation and apoptosis induction in human peripheral blood mononuclear cells,” Toxicol. Appl. Pharmacol.,193, 209-217.
Chou, W.L., Wang, C.T., Yang, K.C. and Huang, Y.H., 2008, “ Removal of gallium (III) ions from acidic aqueous solution by supercritical carbon dioxide extraction in the green separation process,” J. Hazard. Mater., 160, 6-12.
Feng, J., Hu, X. and Yue, P. L. 2004, “ Degradation of salicylic acid by photo-assisted fenton reaction using Fe ions on strongly acidic ion exchange resin as catalyst. ”Chemical Engineering Journal, 100(1-3), 159-165.
Hong, T., Qin, D.X., Tian, Y.L. and Lin, F.C., 2004, “ Indium market and the characteristics of indium resources in china,” Yunnan Geographic Environment Research, 16, 27-31.
Juang, R, Kao, H..and Liu, F.. 2006,“ Ion exchange recovery of Ni(II) from simulated electroplating waste solutions containing anionic ligands.” Journal of Hazardous Materials, 128(1), 53-59.
Kawaguchi, H., 2000, “ Determination of ultratrace metals of group-13 elements in natural water by graphite-furnace AAS after preconcentration with solvent extraction and back extraction,” Bunseki Kagaku, 49, 801-802.
Kovar, J., Seligman, P. and Gelfand, E.W., 1990, “ Differential growth-inhibitory effects of gallium on B-lymphocyte lines in high versus low iron concentrations,” Cancer Res., 50, 5727-5730.
Lin, C. J., Lo, S. and Liou, Y. H. 2005,“ Degradation of aqueous carbon tetrachloride by nanoscale zerovalent copper on a cation resin. ” Chemosphere, 59(9), 1299-1307.
Liou, R., Chen, S., Hung, M. and Hsu, C. 2004,“ Catalytic oxidation of pentachlorophenol in contaminated soil suspensions by Fe3+-resin/H2O2.” Chemosphere, 55(9), 1271-1280.
Lv, X., Xu, Y., Lv, K. and Zhang, G. 2005, “ Photo-assisted degradation of anionic and cationic dyes over iron(III)-loaded resin in the presence of hydrogen peroxide. ” Journal of Photochemistry and Photobiology A: Chemistry, 173(2), 121-127.
Minamisawa, H., Murashima, K., Minamisawa, M., Arai, N. and Okutani T. 2003, “Determination of indium by graphite furnace atomic absorption spectrometry after coprecipitation with chitosan,” Anal. Sci., 19, 401-404.
Muraviev, D., Warshawsky, A. and Gorshkov, V.I., 2000, “Ion exchange,” Marcel Dekker, New York.
Myasoedova, G.V., Skaya, I.I. and Savvin, S.B., 1985, “ New chelating sorbents for noble metals,” Talanta, 32, 1105-1112.
Pehlivan, E. and Altun, T. 2006, “ The study of various parameters affecting the ion exchange of Cu2+, Zn2+, Ni2+, Cd2+, and Pb2+ from aqueous solution on dowex 50W synthetic resin. ” Journal of Hazardous Materials, 134(1-3), 149-156.
Robinson, A.L., 1983, “ GaAs readied for high-seed microcircuits,” Science, 219, 275-277.
Ruthven, D.M. 1984, ''Principles of Adsorption and Adsorption Processes'', John Wiely andSons, New York.
Tuzen, M. and Soylak, M., 2006, “ A solid phase extraction procedure for indium prior to its graphite furnace atomic absorption spectrometric determination,” J. Hazard. Mater., 129, 179-185.
Yin, S.G., Chen, H.X. and Luo, X.P., 2006, “ Gallium resources application and the studying situation on separation and abstraction technology,” Sichuan Nonferrous Metals, 2, 24-28.
李浩明,1980,「抗生素SC4 之純化與化學結構分析」,碩士論文,文化大學。臺北。
林爽秋,2005,「超臨界二氧化碳萃取中草藥及其萃出物對抑制黑色素生成之研究」,碩士論文,國立成功大學化學研究所。臺南。
胡焯淳,1988,「配位基交換層析新固定相之合成及其應用之研究」,碩士論文,國立台灣大學。臺北。
張家銘, 2002,「利用固相微萃取結合高效能液相層析技術測定β-胡蘿蔔素」,碩士論文,朝陽科技大學應用化學系。臺中。
張桐生,1983,”元素誌”,台灣中華,第52-57頁。
張雅婷,蕭庭哲,吳俊毅, 2008,「銦金屬資源與目前資源化處理技術之探討) 。
郭桓志,2007,「異丁烷/烯烴烷化製程廢硫酸中有機物去除之研究」,碩士論文,國立雲林科技大學化學工程學系。雲林。
陳柏恩,2010,「以離子交換樹脂承載奈米雙金屬薄膜對水中氯酚脫氯之研究」,碩士論文,弘光科技大學環境工程研究所。臺中。
陳健民,1993,「以Amberlite IRA-93 樹脂吸附水溶液中對-氯酚之動力學研究」,碩士論文,國立成功大學。臺南。
黄俊智,2003,「化學沉澱與樹脂吸附法處理分衍生物廢水之研究」,碩士論文,私立元智大學化工研究所。桃園。
黃煌洲,2004,「以離子交換樹脂法回收導線架氰系水洗廢水之研究」,碩士論文,朝陽科技大學。臺中。
黃銀雄,2005,「電子業廢棄鎵金屬回收之研究」,碩士論文,國立雲林科技大學環境與安全衛生工程系。雲林。
楊岳軍,1989,「離子交換樹脂在重金屬廢水處理之應用」,重金屬廢水處理技術研討會,工研院化工所。
楊凱強,2008,「不同螯合劑對於超臨界二氧化碳去除高科技產業酸性廢液中銦、鎵之研究」,碩士論文,弘光科技大學職業安全與防災研究所。臺中。
楊萬發,2002,「水及廢水處理化學」,茂昌圖書有限公司,臺北。
楊叢印,2003,「結合電過濾/電透析技術處理CMP廢水並同步產製電解水之研究」,博士論文,國立中山大學環境工程研究所。高雄。
廖育嬋,2009,「以側鏈含乙醇胺之螯合樹脂吸附重金屬離子之研究」,碩士論文,南台科技大學化學工程與材枓工程系。臺南。
蔡明谷,2006,「研究電透析技術處理重金屬廢水之效率及其物化機制—以含銅廢水為例」,碩士論文,朝陽科技大學環境工程與管理系。臺中。
鄭慶堂,2005,「以椰子纖維製備活性碳之研究」,碩士論文,國立屏東科技大學環境工程與科學系。屏東。
賴怡伶,2008,「含纖維素之生物吸附劑對重金屬吸附之研究」,碩士論文,國立中央大學環境工程研究所。桃園。
羅科顯,2004,「電解和離子交換法回收含銅廢液及污泥中的銅金屬」,碩士論文,元智大學化學工程學系。桃園。

連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊