跳到主要內容

臺灣博碩士論文加值系統

(44.201.94.236) 您好!臺灣時間:2023/03/24 12:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:徐淑芬
研究生(外文):Hsu, Shu-Fen
論文名稱:眼視光服務人員持續使用線上服務意圖之研究
論文名稱(外文):The Study of Continuance Usage Intention with Optometric Employees in Online Service
指導教授:殷立德
指導教授(外文):Yin, Li-Te
口試委員:卓達雄姜泰安
口試委員(外文):Cho, Ta-HsiungChiang, Tai-An
口試日期:2014-06-17
學位類別:碩士
校院名稱:中華醫事科技大學
系所名稱:視光產業碩士專班
學門:醫藥衛生學門
學類:醫學技術及檢驗學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:85
中文關鍵詞:期望確認認知有用性認知易用性持續使用意圖熟悉性滿意度
外文關鍵詞:expectation confirmationPerceived ease of usePerceived usefulnessContinuance intentionFamiliaritySatisfaction
相關次數:
  • 被引用被引用:0
  • 點閱點閱:190
  • 評分評分:
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
眼視光服務人員長久以來鮮少學者探究其相關採用線上服務意圖與認知。本研究為深入瞭解與觀察眼視光服務人員於採用線上服務系統來進行其平常之管理活動的情形,而提出一個創新性的結合科技接受模式與期望確認理論並加入資訊服務系統中熱門的且最新的熟悉性主題,而推導出本研究之研究理論模式與研究架構以用來分析眼視光服務人員的內在持續使用線上服務系統的意圖與認知。本研究為求有效驗證所提出之理論模式是否適用於眼視光產業服務人員,而採用問卷調查方式來蒐集受訪者的使用意圖與傾向。過程中,總共回收了265份問卷,其中有效問卷為251份。本研究接著運用結構方程模式軟體對所回收之問卷進行後續之分析。
統計分析結果顯示,除了認知易用性與認知有用性等二因素,對眼視光線上服務系統之持續使用意圖呈現不顯著之影響之外,其餘因素包括熟悉性與滿意度均對持續使用意圖呈現正向且顯著的影響。而認知易用性、認知有用性與期望確認則對滿意度有著正向且顯著之影響,期望確認也對熟悉性呈現正向且顯著的影響。這代表眼視光服務人員於持續使用線上服務系統時,將關心系統是否具有熟悉性和是否令人滿意的特性而影響未來是否持續使用的認知。同時,也呼應本研究所提出的研究假設,本研究之實證結果將可提供眼視光服務產業的管理者來改善與設計更能鼓勵眼視光服務人員繼續使用線上服務系統的意願,以達成提高工作效率與減少工作時間和降低營業成本的目標。另一方面,也提供未來研究資訊系統使用意圖領域的學者,於推論研究模式時的參考,以延伸本研究的學術研究成果,而讓不同的產業都能廣泛應用,以提升產業的營運績效。

In recent years, hardly study focus on cognitive and intention of optometric employees conducts related online services. This study aims to depth investigate optometric employees intending to continuance applied online services system for completed everyday work which integrated technology acceptance model, expectation confirmation theory and familiarly (most newly factor of information system domain) to proposal novel theoretical model for examine optometric employees’ cognitive and intention.
In order to archived effectively valid proposed model that used questionnaires survey to verify and clarify research purposes. Totally, acquire 251 valid responses aside from distributed to 265 participants in Taiwanese optometric industry. Furthermore, structure equation modeling analysis was used to assess the statistical analysis in questionnaire survey data. The analytical results revealed that familiarity and satisfaction have a positive relationship to continuance intention conduct in online service system. Moreover, perceived of easefulness, perceived of usefulness and confirmation have a positive relation to satisfaction. Also, confirmation have a positive relation to familiarity. From these points, on behalf of optometric employees concern about familiarity and satisfaction should be play an important role in intent to continuance to conduct online service system.
The empirical results supported to theoretical model proposed and could be applied to academic and industrial supervisors. Further study may extensively this study finding to broadly design and planning related studying factors for understanding different industry personnel cognitive and intention in online service system aspect.
摘 要....I
Abstract.........II
誌 謝....III
目 錄....IV
表 目 錄..........VII
圖 目 錄..........IX
第一章 緒論.......1
第一節 研究背景...1
第二節 研究動機與研究目的...3
第三節 研究範圍與對象.......4
第四節 研究流程....5
第二章 文獻探討....7
第一節 線上服務系統之運用...7
第二節 期望確認理論.........9
第三節 科技接受模式........11
第四節 熟悉性..............15
第三章 研究方法............17
第一節 研究架構............17
第二節 研究假設............18
一、滿意度、認知易用性、認知有用性、熟悉性與持續使用意圖之關聯........18
二、認知易用性、認知有用性、確認程度與滿意度之關聯..........20
三、確認程度與熟悉性之關聯......21
第三節 研究變數之操作性定義與衡量....23
一、持續使用意圖......23
二、認知易用性........24
三、認知有用性........25
四、滿意度...26
五、熟悉性...26
六、期望確認..27
第四節 研究設計....28
第五節 研究對象與問卷蒐集...29
第六節 資料分析方法....30
一、描述性統計 (descriptive statistics analysis)........30
二、因素分析 (factor analysis)........ 30
三、變異數分析 (analysis of variance; ANOVA)....31
四、信度分析 ( reliability analysis)...32
五、結構方程模式 (structural equation modeling; SEM)....32
第四章 資料分析結果與討論... 35
第一節 研究樣本與變項之描述性分析....35
第二節 探索性因素分析與信度分析......36
一、持續使用意圖......38
二、認知易用性........39
三、認知有用性........40
四、滿意度...........41
五、熟悉性...........41
六、期望確認..........42
第三節 驗證性因素分析 (confirmatory factor analysis; CFA).....43
第四節 各量表之信度與效度分析........49
第五節 變異數分析...........51
第六節 LISREL結構方程模式分析.......55
第五章 結論與建議.......... 60
第一節 實證結果與討論.......60
第二節 理論意涵與實務意涵...62
一、理論意涵...62
二、實務意涵...62
第三節 研究限制.....64
第四節 後續研究建議.........65
參考文獻..........66
一、中文文獻..........66
二、英文文獻.........66
附錄 研究問卷..... 1
一、中文文獻
吳明隆 (2005),SPSS應用學習實務:問卷分析與應用統計。台北:知城出版。
吳萬益 & 林清河,(2005),企業研究方法。台北市:華泰。
林豐澤,(2011),Cloud computing as a new computing paradigm of information technology. 雲端運算成爲資訊科技的一種新計算模式。智慧科技與應用統計學報,9(1),1-12。
陳順宇 (2005),多變量分析。台北:華泰。
黃芳銘 (2006),結構方程式理論與應用。台北市:五南圖書出版股份有限公司。
鐘嘉德、高天助 & 楊嘉栩 (2010),雲端運算與產業發展。研考雙月刊,34(4),20-31。

二、英文文獻
Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179-211.
Ajzen, I., & Fishbein, M. (1975). Bayesian analysis of attribution processes. Psychological Bulletin, 82(2), 261-277.
Atchariyachanvanich, K., & Okada, H. (2006). A study on factors affecting the purchasing process of online shopping: a survey in China & Japan.
Baehr, C. (2012). Incorporating user appropriation, media richness, and collaborative knowledge sharing into blended e-learning training. IEEE Transactions on Professional Communication, 55(2), 175-184.
Bagozzi, R. P., & Schnedlitz, P. (1985). Social contingencies in the attitude model: a test of certain interaction hypotheses. Social Psychology Quarterly, 48, 366-373.
Bentler, P. M., & Bonett, D. G. (1980). Significance tests and goodness of fit in the analysis of covariance-structures. Psychological Bulletin, 88(3), 588-606.
Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351-370.
Bigne-Alcaniz, E., Ruiz-Mafe, C., Aldas-Manzano, J., & Sanz-Blas, S. (2008). Influence of online shopping information dependency and innovativeness on internet shopping adoption. Online Information Review, 32(5), 648-667.
Bolton, D. J., Oser, A. H., Cocoma, G. J., Palumbo, S. A., & Miller, A. J. (1999). Integrating HACCP & TQM reduces port carcass contamination. Food Technology, 53(4), 40-43.
Colombo, R. A., & Morrison, D. G. (1989). Note-A Brand Switching Model with Implications for Marketing Strategies. Marketing Science, 8(1), 89-99.
Davis, F. D., Bagozze, R. P., & Warshaw, P. R. (1989). User acceptance of of computer technology: a comparison of two theoretical models. Management Science, 35(8), 982-1003.
Davis, F. D., Lucier, J. S., & Logerfo, F. W. (1986). Organization of an organ donation network. Surgical Clinics of North America, 66(3), 641-652.
Ecker, U. K. H., Zimmer, H. D., Groh-Bordin, C., & Mecklinger, A. (2007). Context effects on familiarity are familiarity effects of context-An electrophysiological study. International Journal of Psychophysiology, 64(2), 146-156.
Everitt, B., & Dunn, G. (2001). Applied Multivariate Analysis. 2001: Arnold.
Festinger, L. (1962). A theory of cognitive dissonance (Vol. 2): Stanford university press.
Gefen, D. (2000). E-commerce: the role of familiarity and trust. Omega-International Journal of Management Science, 28(6), 725-737.
Gefen, D., Karahanna, E., & Straub, D. W. (2003). Inexperience and experience with online stores: The importance of TAM and trust. Ieee Transactions on Engineering Management, 50(3), 307-321.
Gong, M., Xu, Y., & Yu, Y. (2004). An Enhanced Technology Acceptance Model for Web-Based Learning. Journal of Information Systems Education, 15(4).
Grönroos, C. (2000). Service management and marketing: a customer relationship management approach: John Wiley & Sons Incorporated.
Hair, J. F., Black, W. C., Anderson, R. E., & Babin, B. J. (2009). Multivariate data analysis (7th edition): Upper Saddle River: Prentice-Hall.
Henard, D. H., & Szymanski, D. M. (2001). Why some new products are more successful than others. Journal of marketing research, 38(3), 362-375.
Ida Gobbini, M., Leibenluft, E., Santiago, N., & Haxby, J. V. (2004). Social and emotional attachment in the neural representation of faces. Neuroimage, 22(4), 1628-1635.
Kaiser, H. F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 31-36.
Kelley, C. M., & Jacoby, L. L. (1998). Subjective reports and process dissociation: Fluency, knowing, and feeling. Acta Psychologica, 98(2), 127-140.
Limayem, M., & Cheung, C. M. (2008). Understanding information systems continuance: The case of Internet-based learning technologies. Information & Management, 45(4), 227-232.
Lin, F.-r., Lin, S.-c., & Huang, T.-p. (2010). Knowledge sharing and creation in a teachers' professional virtual community (vol 50, pg 742, 2008). Computers & Education, 54(1), 309-309.
Mathieson, K. (1991). Predicting user intentions: comparing the technology acceptance model with the theory of planned behavior. Information systems research, 2(3), 173-191.
Mathieson, K., Peacock, E., & Chin, W. W. (2001). Extending the technology acceptance model: the influence of perceived user resources. ACM SigMIS Database, 32(3), 86-112.
Nunnally, J. C. (1978). Psychometric Theory (2nd ed.). NY: Mc Graw-Hill.
Oatley, K., & Jenkins, J. (1996). Understanding emotions: In psychology, psychiatry, and social sciences: Cambridge, MA: Blackwell.
Oliver, R., & Westbrook, R. (1993). Profiles of consumer emotions and satisfaction in ownership and usage. emotion, 6, 12-27.
Oliver, R. L. (1980). A cognitive model of the antecedents and consequences of satisfaction decisions. Journal of marketing research, 460-469.
Rai, A., Lang, S. S., & Welker, R. B. (2002). Assessing the validity of IS success models: An empirical test and theoretical analysis. Information systems research, 13(1), 50-69.
Ratcliffe, M. (2002). Heidegger's attunement and the neuropsychology of emotion. Phenomenology and the Cognitive Sciences, 1(3), 287-312.
Rindfleisch, A., & Inman, J. (1998). Explaining the familiarity-liking relationship: mere exposure, information availability, or social desirability? Marketing Letters, 9(1), 5-19.
Rust, R. T., Lemon, K. N., & Zeithaml, V. A. (2004). Return on marketing: using customer equity to focus marketing strategy. Journal of marketing, 68(1), 109-127.
Söderlund, M. (2002). Customer familiarity and its effects on satisfaction and behavioral intentions. Psychology & Marketing, 19(10), 861-879.
Sørebø, Ø., & Eikebrokk, T. R. (2008). Explaining IS continuance in environments where usage is mandatory. Computers in Human Behavior, 24(5), 2357-2371.
Santos Vijande, M. L., & Alvarez Gonzalez, L. I. (2008). Total Quality Management Practices and Firm's Adoption of Technological and Administrative innovations. Cuadernos De Economia Y Direccion De La Empresa(37), 33-65.
Spreng, R. A., & Mackoy, R. D. (1996). An empirical examination of a model of perceived service quality and satisfaction. Journal of retailing, 72(2), 201-214.
Thong, J. Y. L., Hong, S.-J., & Tam, K. Y. (2006). The effects of post-adoption beliefs on the expectation-confirmation model for information technology continuance. International Journal of Human-Computer Studies, 64(9), 799-810.
Tsai, H.-T., & Huang, H.-C. (2007). Determinants of e-repurchase intentions: An integrative model of quadruple retention drivers. Information & Management, 44(3), 231-239.
Van Riel, A. C. R., Liljander, V., & Jurriens, P. (2001). Exploring consumer evaluations of e-services: a portal site. International Journal of Service Industry Management, 12(4), 359-377.
Venkatesh, V., & Davis, F. D. (2000). A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management Science(46), 186-204.
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS quarterly, 27(3).
Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425-478.
Vijayasarathy, L. R. (2004). Predicting consumer intentions to use on-line shopping: the case for an augmented technology acceptance model. Information & Management, 41(6), 747-762.
Wang, Y. S. (2003). The adoption of electronic tax filing systems: an empirical study. Government Information Quarterly, 20(4), 333-352.
Xu, B., Li, D., & Shao, B. (2012). Knowledge Sharing in Virtual Communities: A Study of Citizenship Behavior and Its Social-Relational Antecedents. International Journal of Human-Computer Interaction, 28(5), 347-359.
Yusuf, S., Teo, K., Anderson, C., Pogue, J., Dyal, L., Copland, I., Ramos, B. (2008). Effects of the angiotensin-receptor blocker telmisartan on cardiovascular events in high-risk patients intolerant to angiotensin-converting enzyme inhibitors: a randomised controlled trial. Lancet, 372(9644), 1174-1183.
Zhao, Y. (2002). Measuring the social capital of laid-off Chinese workers. Current Sociology, 50(4), 555-571.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top