(3.237.178.91) 您好!臺灣時間:2021/03/02 23:04
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳冠豪
研究生(外文):Guan-Hao Chen
論文名稱:3-胺基丙基三乙氧基矽烷用於水性聚胺酯塗層的性質研究
論文名稱(外文):Anti-Corrosion Properties of Waterborne Polyurethane Modified with Aminopropyl Trimethoxysilane
指導教授:戴宏哲
指導教授(外文):Horng-Jer Tai
學位類別:碩士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:84
中文關鍵詞:水性聚胺酯矽烷電化學實驗
外文關鍵詞:water-borne polyurethanesilaneelectrochemical test
相關次數:
  • 被引用被引用:0
  • 點閱點閱:252
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討主要是針對水性聚胺酯在添加交連劑及 Silane 的使用下利用電化學作探討。我們將針對交連劑 HMMM 與水性聚胺酯的混合,將乳液製作薄膜以及塗覆在鍍鋁鋅鋼材上,並進行實驗討論。
從後續實驗分析顯示出,我們可以從 WPU / Silane 與 WPU / Silane / HMMM 系統中,從含膠量測試可以看出含膠量隨 HMMM 的用量上升而上升;交連的效果在吸水率上顯示出交連程度越高也越不容易吸水;機械性質也隨交連度上升有所提升;水滴接觸角也隨著 HMMM 用量上升增加而上升;百格測試及硫酸銅測試也有相同的趨勢;在電化學上隨著 HMMM 用量上升交連度上升,具有更低腐蝕電流及更高腐蝕電位使材料更具耐腐蝕能力。最後在鹽霧試驗上,交連度的提升在鋼材表面已明顯出現差異,因此提升交連度對於水的阻隔性的確有明顯的幫助。


This research focused on anti-corrosion behaviors of water-borne polyurethane (WPU)-based emulsions. Electrochemical tests were employed to evaluate the effect of additives such as a crosslinking agent, hexamethoxymethyl melamine (HMMM), and a silane coupling agent, aminopropyl trimethoxysilane (APTMS).
The emulsions were used to fabricate membranes or were coated on galvinzed steel sheets, and a series of experiments were conducted. The experimental results for the systems of WPU/APTMS and WPU/APTMS/HMMM showed that gel content increased with increasing HMMM dosage. The increase in crosslink density also led to a decrease in water uptake. Contact angle values also increased with increasing HMMM dosage, too.
Tape tests were employed to assess the adhesion of the coated films to the metallic substrate and they showed the adhesion improved with the use of APTMS and HMMM. The aqueous copper sulfate solution drop test result also showed that an increase in crosslink density led to a better water barrier property. The electrochemical tests showed that the addtion of APTMS and HMMM had a positive effect on the anti-corrosion performance of the steel sheets.


摘要 I
Abstract II
致謝 III
目錄 IV
圖目錄 VII
表目錄 IX
一、緒論 01
1.1 前言 01
1.2 研究動機 02
二、文獻探討 04
2.1 聚胺酯的簡介及發展 04
2.1.1 傳統型聚胺基甲酸酯(Polyurethane , PU) 04
2.1.2 水性聚胺酯(waterborne polyurethane , WPU) 05
2.2 聚胺酯簡介 06
2.3 水性聚胺酯 08
2.4 水性聚胺酯的製程 09
2.5 交連劑(Cross-Linking Agent) 11
2.6 矽烷偶合劑(Silane Coupling Agents) 13
2.7 腐蝕原理 15
2.8 腐蝕型態 16
三、實驗方法 18
3.1 實驗藥品 18
3.2 設備與器材 20
3.3 實驗方法 22
3.3.1 薄膜製備方法 22
3.3.2 含膠量(Gel Content)與膨潤率(Swell Ratio) 23
3.3.3 吸水率測試(Water Uptake) 25
3.3.4 鉛筆硬度測試(Pencil Hardness) 25
3.3.5 接觸角測試(Contact Angle) 26
3.3.6 附著力測試(Adhesive Force) 27
3.3.7 硫酸銅測試 28
3.3.8 鹽霧測試(Salt Spray Test) 28
3.3.9 塔佛極化曲線(Tafel Polarization Curve) 30
四、結果與討論 33
4.1 含膠量(Gel Content)與膨潤率(Swell Ratio) 33
4.2 吸水率測試(Water Uptake) 35
4.3 鉛筆硬度測試(Pencil Hardness) 37
4.4 接觸角測試(Contact Angle) 39
4.5 附著力測試(Adhesive Force) 41
4.6 硫酸銅測試 43
4.7 鹽霧測試(Salt Spray Test) 49
4.8 塔佛極化曲線(Tafel Polarization Curve) 58
五、結論 62
參考文獻 63


1.Howarth, GA, ‘‘Polyurethanes, Polyurethane Dispersions and Polyureas: Past, Present and Future.’’ Surf. Coat. Int., (2003)86 111.
2.Sørensen, P.A., et al., Anticorrosive coatings: a review. Journal of Coatings Technology and Research, 2009. 6(2): p. 135-176.
3.Yanfang Zhu, JinpingXiong, Yuming Tang, Yu Zuo, EIS study on failure process of two polyurethane composite coatings, Progress in Organic Coatings,2010.69(1): p.7-11.
4.Y. González-García, S. González, R.M. Souto, Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection, Corrosion Science, 2007.49(9): p. 3514–3526.
5.Chih-Wei Peng, Chien-hua Hsu, Kun-HsienLin,Pei-Ling Li,Ming-FaHsieh,Yen Wei, Jui-Ming Yeh, Yuan-Hsiang Yu, Electrochemical corrosion protection studies of aniline-capped aniline trimer-based electroactive polyurethane coatings, ElectrochimicaActa, 2011.58(30): p.614-620.
6.Nematollahi, M., et al., Comparison between the effect of nanoglass flake and montmorilloniteorganoclay on corrosion performance of epoxy coating. Corrosion Science, 2010. 52(5): p. 1809-1817.
7.Behzadnasab, M., et al., Corrosion performance of epoxy coatings containing silane treated ZrO2 nanoparticles on mild steel in 3.5% NaCl solution. Corrosion Science, 2011. 53(1): p. 89-98.
8.DeBerry, D.W., Modification of the Electrochemical and Corrosion Behavior of Stainless Steels with an Electroactive Coating. J. Electrochem. Soc., 1985. 132:p. 115 1022.
9.Gas parac, R. and C.R. Martin, The Effect of Protic Doping Level on the Anticorrosion Characteristics of Polyaniline in Sulfuric Acid Solutions. Journal of The Electrochemical Society, 2002. 149(9): p. B409.
10.陳竹軒,以水性聚胺酯為基底引入壓克力多元醇及二氧化矽合成可熱交連之抗腐蝕塗料,2013
11.Gas parac, R. and C.R. Martin, Investigations of the Mechanism of Corrosion Inhibition by Polyaniline. Polyaniline-Coated Stainless Steel in Sulfuric Acid Solution.Journal of The Electrochemical Society, 2001. 148(4): p. B138.
12.Dashtizadeh, A., et al., Acrylic coatings exhibiting improved hardness, solvent resistance and glossiness by using silica nano-composites. Applied Surface Science, 2011. 257(6): p. 2118-2125.
13.Sabzi, M., et al., Surface modification of TiO2 nano-particles with silane coupling agent and investigation of its effect on the properties of polyurethane composite coating. Progress in Organic Coatings, 2009. 65(2): p. 222-228.
14.Radhakrishnan, S., et al., Conducting polyaniline–nano-TiO2 composites for smart corrosion resistant coatings. ElectrochimicaActa, 2009. 54(4): p. 1249-1254.
15.Lape, N.K., E.E. Nuxoll, and E.L. Cussler, Polydisperse flakes in barrier films. Journal of Membrane Science, 2004. 236(1-2): p. 29-37.
16.M. Alexandre, P. Dubois Polymer-layered silicate nanocomposites: preparation, properties, and uses of a new class of materials Mater. Sci. Eng., 28 (2000), pp. 1–63.
17.D.J. Chako, A.A. Leyva, Thermal transitions and barrier properties of olefinicnanocomposites Chem. Mater., 17 (2005), pp. 13–19.
18.C.A. Hawkins, A.C.S., T.G. Wood, Recent advances in aqueous two-component systems for heavy-duty metal protection.Progress in Organic Coatings, 1997. 32: p. 253–261.
19.El-Shahawi, M. S.; Hamza, A.; Al-Sibaai, A. A.; Al-Saidi, H. M., Fast and selective removal of trace concentrations of bismuth (III) from water onto procaine hydrochloride loaded polyurethane foams sorbent: Kinetics and thermodynamics of bismuth (III) study. Chemical Engineering Journal 2011, 173 (1), 29-35.
20. T. Sata, Ion Exchange Membranes: Preparation, Characterization,Modification and Application Royal Society of Chemistry, Cambridge (2004)
21.W. FunkeProg. Org. Coat., 31 (1997), pp. 5–9 .
22.H.G.L. Coster, T.C. Chilcott, A.C.F. CosterBiochem. Bioenerg., 40 (1996), pp. 79–98.
23. A. Yaroshchuk, L. Karpenko, V. Ribitsch J. Phys. Chem. B, 109 (2005), pp. 7834–7842.
24.S. Bason, Y. Oren, V. Freger, in: Proc. Euromembrane 2004, Hamburg, Germany, 28 September–1 October, 2004.
25.Oertel,G., Polyurethane Handbook 2nd edition, Hanser Publishers, Munich Vienna New York(1972).
26.張志純,“PU製品之發展及應用”,財團法人徐式基金會,(1992).
27.朱呂民,“聚胺酯合成材料”,中國:化學工業出版社,(2002),pp. 51–122.
28. Malcolm P. Stevens, Polymer Chemical, New York: Oxford University Press, (1999), pp. 11–17.
29.葉明國,“聚合物化學”,新學識文教出版中心,(1987) .
30.Kun-San Chen, T. Leon Yu, Yung-Sin Chen, Tsang-Lang Lin and. Wen-Jiun Liu, 117 Soft-and hard-segment phase segregation of polyester-based polyurethane, Journal of polymer search 2001, 8, 99-109.
31.Brown, R. A.; Coogan, R. G.; Fortier, D. G.; Reeve, M. S.; Rega, J. D., Comparing and contrasting the properties of urethane/acrylic hybrids with those of corresponding blends of urethane dispersions and acrylic emulsions. Progress in Organic Coatings 2005, 52 (1), 73-84.
32.Bin Yao, Gengchao Wang , Jiankun Ye, and XingweiLi,Materials Letters,2008(62):p.1775–1778.
33.M.G. Hosseini, M. Sabouri ,and T. Shahrabi , Progress in Organic Coatings,2007(60):p.178-185.
34.Schweitzer, Philip A.,"paint and coatings applications and Corrosion Resistance",1thedition, Taylor &; Francis Group (2006).
35.Yang, C.-H., et al., Hybrids of colloidal silica and waterborne polyurethane. Journal of Colloid and Interface Science, 2006. 302(1): p. 123-132.
36.A.A. Prabu, M. Alagar,J. Macromol. Sci. Pure Appl. Chem., 42A (February (2)) (2005):p. 175–188.
37. Jeon, H.T., et al., Synthesis and characterizations of waterborne polyurethane–silica hybrids using sol–gel process. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2007. 302(1-3): p. 559-567.
38.Pathak, S.S., A. Sharma, and A.S. Khanna, Value addition to waterborne polyurethane resin by silicone modification for developing high performance coating on aluminum alloy. Progress in Organic Coatings, 2009. 65(2): p. 206-216.
39.Mills, D.J., S.S. Jamali, and K. Paprocka, Investigation into the effect of nano-silica on the protective properties of polyurethane coatings. Surface and Coatings Technology, 2012. 209: p. 137-142.
40. Zhang, J.T., et al., Studies of impedance models and water transport behaviors of polypropylene coated metals in NaCl solution. Progress in Organic Coatings, 2004. 49(4): p. 293-301.
41.Zheng, Z. T.; Zhang, H.; Wang, Y. H.; Zhang, Z. ActaAeronautAstronaut Sin 2007, 28, 714.
42.González-García, Y., S. González, and R.M. Souto, Electrochemical and structural properties of a polyurethane coating on steel substrates for corrosion protection. Corrosion Science, 2007. 49(9): p. 3514-3526.
43.Armstrong, R. D.; Jenkins, A. T. A.; Johnson, B. W. Corros Sci1995, 37, 1615.
44.Bonora, P. L; Deflorian, F.; Fedrizzi, L. ElectrochimActa 1996,41, 1073.
45.Fedrizzi, L.; Rodriguez, F. J.; Rossi, S.; Deflorian, F.; Di Maggio,R. ElectrochimActa 2001, 46, 3715.
46.Zhang, S.; RenLiu; Jiang, J.; Yang, C.; Chen, M.; Liu, X., Facile synthesis of waterborne UV-curable polyurethane/silica nanocomposites and morphology, physical properties of its nanostructured films. Progress in Organic Coatings 2011,70(1), 1-8.
47.James W. Rosthauser and Klaus Nachtkamp, “Waterbronepolyurethanes”,Coated Fabrics, vol. 16, 1986, pp. 39-57.
48.Noble, K.-L., Waterborne polyurethanes. Progress in Organic Coatings 32 1997 ,131–136. 11948.R.E.Tirpak and P. H. Markusch, “Aqueous dispersions of crosslinked polyurethanes”, Water Brone Coatings,1986, pp. 13-17.
49.B. Vogt-Birnbrich, “Novel synthesis of low VOC polymeric dispersions and their application in waterborne coatings”, Prog.Org. Coatings, vol. 29, 1996, pp.31-38.
50. Rahman, M. M.; Kim, E.-Y.; Yun Kwon, J.; Yoo, H.-J.; Kim, H.-D., Cross-linking reaction of waterborne polyurethane adhesives containing different amount of ionic groups with hexamethoxymethyl melamine. International Journal of Adhesion and Adhesives 2008, 28 (1-2), 47-54.
51.Werner J. Blank, V. J. T.; King Industries Inc., N., CT, USA, Properties of crosslinked polyurethane dispersions. Progress in Organic Coatings .27 (1996) 1-15.
52.W.J. Blank, W. Hensley J. Paint Technol., 46 (593) (1974), pp. 46–50.
53.A. Ribbe, O. Prucker, J.Ruhe, Polymer. Sci, 37(1996) 1087-1093
54.ShuxueZhoua, L. W., Jian Sun, Weidian Shen, The change of the properties of acrylic-based polyurethane. Progress in Organic Coatings 2002, 45, 33–42.
55.M.B. Leverkusen, T.E. Koln, S.G. Leverkusen, et al., United States Patent 6 020 419 (2000).
56.J. Vega-Baudrit, V. Navarro-Banon, P. Vasquez, J.M. Martin-Martinez Addition of nanosilicas with different silanol content to thermoplastic polyurethane adhesives Int J AdhesAdhes, 26 (5) (2006), pp. 378–387.
57.J. Vega-Baudrit, M. Sibaja-Ballestero, P. Vazquez, R. Torregrsa-Macia, J.M. Martin-Martinez, Properties of thermoplastic polyurethane adhesives containing nanosilicas with different specific surface area and silanol content Int J AdhesAdhes, 27 (6) (2007), pp. 469–479.
58.Z.S. Petrović, I. Javni, A. Waddon, G. Banhegyi ,Structure and properties of polyurethane–silica nanocomposites,J ApplPolymSci, 76 (2) (2000), pp.133–151.
59.R.C.R. Nunes, J.L.C. Fonseca, M.R. Pereira Polymer–filler interactions and mechanical properties of a polyurethane elastomer Polym Test, 9 (1) (2000), pp. 93–103.
60.Chun Lei Wu, M. Q. Z., Min ZhiRong, Klaus Friedrich, Tensile performance improvement of low nanoparticles filled-polypropylene composites. Composites Science and Technology ,62(2002), pp. 1327–1340.
61.Z.M. Dang, H.Y. Wang, H.P. Xu Appl. Phys. Lett., 89 (2006), pp. 112902
62.P.G. Pape, E.P. Plueddemann ,History of silane coupling agents in polymer composites ,R.B. Seymour, R.D. Deanin (Eds.), History of Polymeric Composites, VSP, Utrecht, The Netherlands (1987), pp. 105–139.
63. Zand, B.N. and M. Mahdavian, Corrosion and adhesion study of polyurethane coating on silane pretreated aluminum. Surface and Coatings Technology, 2009. 203(12), pp. 1677-1681.
64. J.L. Acosta, E. Morales, M.C. Ojeda and A. Linares, J. Mater. Sci. 21 (1986), pp. 725.
65.Yan, X. and G. Xu, Influence of silane coupling agent on corrosion-resistant property in low infrared emissivity Cu/polyurethane coating. Progress in Organic Coatings, 2012. 73(2-3): p. 232-238.
66.鮮祺振,腐蝕理論與實驗,徐氏基金會出版社,1990.
67.柯賢文,腐蝕及其防制,全華科技圖書公司, 1998.
68.鮮祺振,腐蝕控制,財團法人徐氏基金會, 1998.
69.曹楚南,腐蝕電化學原理,化學工業出版社, 1985
70.曹楚南,張鑒清,電化學阻抗譜導論,科學出版社,2002.
71.郭鶴桐,姚素薇,基礎電化學及其測量, 化學工業出版社,2009 .
72.F. Mansfeld, Corrosion 36 (1981), pp. 301.
73.D.D. Macdonald, Techniques for Characterization of Electrodes and Electrochemical Processes, John Wiley &; Sons, Inc., New York, 1991, Ch.11.
74.Liu, X., et al., Study on corrosion electrochemical behavior of several different coating systems by EIS. Progress in Organic Coatings, 2009. 64(4), pp .497-503.
75.Jianguo, L., G. Gaoping, and Y. Chuanwei, EIS study of corrosion behaviour of organic coating/Dacromet composite systems. ElectrochimicaActa, 2005. 50(16-17) ,pp. 3320-3332.
76.Metroke, T.L., J.S. Gandhi, and A. Apblett, Corrosion resistance properties of Ormosil coatings on 2024-T3 aluminum alloy. Progress in Organic Coatings, 2004. 50(4): p. 231-246.
77.A. Amirudin, D.T., Application of electrochemical impedance spectroscopy to study the degradation of polymer-coated metals. Progress in Organic Coatings 26, 1995: p. 1-28.
78.Sanchez-Amaya, J.M., et al., Monitoring the degradation of a high solids epoxy coating by means of EIS and EN. Progress in Organic Coatings, 2007. 60(3): p. 248-254.
79.Arefinia, R., et al., Anticorrosion properties of smart coating based on polyaniline nanoparticles/epoxy-ester system. Progress in Organic Coatings, 2012. 75(4): p. 502-508.
80.Lin , Nguyen , E. Macknight , Progress in Organic Coating , Vol.20 , p169 , 1992.
81. J. R. Scully , S. T. Hensley , Corrosion , p705 , 1994.
82. S. Haruyama , M. Asari, T. Tsuru , the Electrochemical Society , p137 ,1989.
83. D. Kellner , ASTM, Pliadelphia , p374 , 1986.
84. H. Leidheiser , Corrosion , Vol.39 , p189 , 1983.
85. F. Mansfeld , S.Lin, C. Chen , H. Shin, Journal of Electrochemistry Society , Vol.35 , p906 , 1988.
86. R.D. Armstrong, A.T.A. Jenkins, B.W. Johnson Corros. Sci., 37 (1995), pp. 1521–1650.
87. Irigoyen, M., et al., Effect of UV aging on electrochemical behavior of an anticorrosion paint. Progress in Organic Coatings, 2007. 59(3): p. 259-264.
88.Hu, J., et al., Ageing behavior of acrylic polyurethane varnish coating in artificial weathering environments. Progress in Organic Coatings, 2009. 65(4): p. 504-509.
89. Yang, L., Li, X., Cheng, X., Deng, H., Zhang, S., Lin, A., Diffusion behavior of water and chloride ion through acrylic polyurethane coating, J. Chin. Soc. Corros. Prot.,2006.26(1):p.6-10.
90. Marchebois, H., et al., Electrochemical behavior of zinc-rich powder coatings in artificial sea water. ElectrochimicaActa, 2004. 49(17-18): p. 2945-2954.
91. Chen JI, Chareonsak R, Puengpipat V, Marturunkakul S. Organic/inorganic composite materials for coating applications. J ApplPolymSci 1999;74:1341-1346.
92.Bierwagen, G., et al., EIS studies of coated metals in accelerated exposure. Progress in Organic Coatings, 2003. 46(2): p. 149-158.
93.蘇政緯,電化學阻抗圖譜分析水性聚氨酯的交連與改質,2013.
94.瞿金清,水性聚氨酯-丙烯酸酯的交联改性及涂膜性能,2009.
95.Daniel B., et al., Novel waterborne UV-crosslinkable thiol–ene polyurethane dispersions:Synthesis and film formation,2005.
96.Richard G. Coogan, Post-crosslinking of water-borne urethanes,1996.
97.Karl-Ludwig Noble, Waterborne polyurethanes, Progress in Organic Coatings 32 (1997) 131–136.
Daniel B. Otts, Marek W. Urban, Heterogeneous crosslinking of waterborne two-component polyurethanes.
98.(WB 2K-PUR); stratification processes and the role of water, Polymer 46 (2005) 2699–2709.
99.Yong Zhanga, Anila Asif b, Wenfang Shia,Highly branched polyurethane acrylates and their waterborne UV curing coating,2011.
100.D.K. Chattopadhyay,K.V.S.N. Raju, Structural engineering of polyurethane coatings for high performance applications, Prog. Polym. Sci. 32 (2007) 352–418.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔