(3.237.178.91) 您好!臺灣時間:2021/03/02 21:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:王貞懿
研究生(外文):Jen-Yi Wang
論文名稱:噬菌體 fkm18p 之 ORF693蛋白純化與抑菌分析
論文名稱(外文):Protein purification and bacterial inhibition analysis of ORF693 of phage fkm18p
指導教授:洪志勳洪志勳引用關係
指導教授(外文):Chih-Hsin Hung
學位類別:碩士
校院名稱:義守大學
系所名稱:化學工程學系暨生物技術與化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:64
中文關鍵詞:鮑氏不動桿菌噬菌體溶菌素
外文關鍵詞:Acinetobacter baumanniiphage lysin
相關次數:
  • 被引用被引用:0
  • 點閱點閱:207
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
鮑氏不動桿菌 (Acinetobacter baumannii) 為嗜酸性之革蘭氏陰性絕對好氧菌,A. baumannii 為一伺機性的病原菌,且在寄主免疫能力變弱的情況容易發病,適應力強並廣泛存在於大自然環境中。本實驗室已分離多株對 A. baumannii 具溶裂性的噬菌體,其中以 ϕkm18p 具有最高的溶裂能力。在動物實驗中,ϕkm18p 可使受病菌感染的小鼠 100% 存活,因此本研究針對 ϕkm18p 溶菌素基因進行基因選殖,利用基因工程方式選殖出可表現溶菌活性之重組質體。
本研究將噬菌體ϕkm18p 的溶菌基因 orf693 選殖於 pET21b 構築成表現載體 pEorf693,轉殖於 E. coli C41 (DE3) 後誘導蛋白大量表現,得到分子量約為 70 kDa 的蛋白,但不具有溶菌活性。若純化蛋白不經變性,以 zymography 方式探討具活性的溶菌蛋白位置,結果溶菌區出現於 210 kDa 左右,因此推估,轉譯後的蛋白會於菌體中形成三聚體 (trimers) 結構。以 paper disc 進行溶菌分析,1μg 溶菌蛋白即有明顯溶菌活性,抑制圈會隨培養時間而擴大。在最小抑制濃度測試 (MIC) 中,添加 0.5 mg/ml 溶菌蛋白能抑制宿主細菌生長。


Acinetobacter baumannii is an acidiphilic, obligate, aerobic and gram-negative bacterium. It is an opportunistic pathogen and people will fall to ill when they were under weak immunity. We have isolated several lytic bacteriophages from the environment to lysis A. baumannii and the km18p has the highest lytic efficiency. Phage km18p provided 100% protection and survival rate of mice that were inoculated with A. baumannii KM18. So this study will focus on clonong the lysin gene and detecting the bacterial inhibition efficiency of the expressed proteins.
On this study, the lysin gene orf693 were cloned to pET21b to from the expression plasmid pEorf693. Plasmid pEorf693 was transferred to E. coli C43 (DE3) and induced by IPTG to over-expression. The induced protein showed the molecular weight about 70 kDa in SDS-PAGE, but it did not has lytic activity. If the purified proteins didn''t denatured and protein patterns with lysis activity were identified with zymogram method, we found that the protein pattern with 210 kDa molecular weight showed the lysis clear zone. We speculated that the translated lysin proteins were assembly as trimers structure in bacterium. When bacterium lysis activity was analysis with the paper disc, 1 μg/ml purified protein would present the obvious lysis activity and the diameter of inhibition zone would also increase during 120 hr. In the minimum inhibitory concentration (MIC) assay, purified proteins with minimum concentration of 0.5 mg/ml would inhibit the growth of A. baumannii KM18.


摘要 I
Abstract II
誌謝 III
目錄 IV
圖目錄 VI
表目錄 VII
壹、前言 1
貳、文獻回顧 3
一、Acinetobacter spp.之背景 3
二、A. baumannii 之抗藥性 4
三、噬菌體 lysin 蛋白簡介、抗菌機制及應用 5
A. Lysin 蛋白簡介 5
B. Lysin 抗菌機制 6
C. Lysin 之應用 7
四、Phage 及 Lysin治療之優點 8
参、研究目的 10
肆、材料與方法 11
【實驗材料】 11
一、菌種及噬菌體來源 11
二、基因選殖所使用之引子、宿主、質體及構築質體 11
三、儀器及藥品 11
四、培養基配製 11
五、藥品與緩衝溶液配製 12
【實驗方法】 12
一、菌種活化與菌株保存 12
二、噬菌體純化 12
三、噬菌體增殖 13
四、噬菌體濃縮與保存 13
五、噬菌體 DNA 抽取 14
六、質體 (plasmid) 抽取 14
七、重組質體製備 15
A. 聚合酶鏈鎖反應 (Polymerase Chain Reaction;PCR) 15
B. PCR 產物 Clean-up 16
C. 電泳法回收 DNA 片段 16
D. DNA 端點補齊 (Fill-in) 17
E. DNA 接合反應 (Ligation) 17
F. 限制酶切割 (Restriction Enzyme Digestion) DNA之分析 18
G.洋菜膠體電泳 (Agarose gel electrophoresis) 18
八、大腸桿菌勝任細胞 (Competent cells) 製備 19
九、勝任細胞轉型作用 (Transformation) 19
十、快速篩選重組質體 20
十一、重組質體蛋白表現 20
十二、重組蛋白濃縮及保存 21
十三、SDS-PAGE 蛋白質膠體電泳 21
A.膠體電泳 21
B.孔雀藍染色 (Coomassie blue) 22
C.Zymogram 方式分析蛋白活性 22
十四、Lysin 重組蛋白抑菌測試 23
A.紙錠測試 23
B.最小抑菌濃度測試 (Minimum inhibitory concentration;MIC) 23
十五、Lysin 重組蛋白耐溫測試 23
十六、蛋白質濃度檢測線 24
伍、實驗結果 25
一、Lysin 基因選殖 25
二、重組質體之蛋白質表現、純化與抑菌分析 25
三、溶菌蛋白之耐溫性測試 26
五、最小抑菌濃度測試 (Minimum inhibitory concentration;MIC) 27
陸、討論 28
柒、參考文獻 31
Appendix 2. 藥品與廠牌 48
Appendix 3. 培養基配方 49
Appendix 4. 藥品及緩衝溶液之配製 50
Appendix 5. ORF693 蛋白質之 DNA 序列 52



A Daniel, C Euler, M Collin, P Chahales, K J. Gorelick, &; V A. Fischetti (2010). Synergism between a Novel Chimeric Lysin and Oxacillin Protects against Infection by Methicillin-Resistant Staphylococcus aureus. Antimicrobial Agents and Chemotherapy 54 1603-1612.

Bergogne-Berezin, E. (1995). The increasing significance of outbreaks of Acinetobacter spp.: the need for control and new agents. J Hosp Infect 30 Suppl, 441-452.

Bergogne-Berezin, E. &; Towner, K. J. (1996). Acinetobacter spp. as nosocomial pathogens: microbiological, clinical, and epidemiological features. Clin Microbiol Rev 9, 148-165.

Bonomo, R. A. &; Szabo, D. (2006). Mechanisms of multidrug resistance in Acinetobacter species and Pseudomonas aeruginosa. Clin Infect Dis 43 Suppl 2, S49-56.

Blanco A, Diaz P, Martinez J, Vidal T, Torres AL, Pastor FI. (1998). Cloning of a new endoglucanase gene from Bacillus sp. BP-23 and characterisation of the enzyme. Performance in paper manufacture from cereal straw. Appl Microbiol Biotechnol. 50 (1): 48-54.

Bush K, Jacoby GA, Medeiros AA. (1995). A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrob Agents Chemother. 6, 1211-33.

Catalao, J.M., Milho,C, Gik, F., Pereira, J.M., Pimentel, M. (2011). A Second Endolysin Gene Is Fully Embedded In-Frame with the lysA Gene of Mycobacteriophage Ms6. PloS One 6, 1-12.

Capparelli, R., Parlato, M., Borriello, G., Salvatore, P. &; Iannelli, D. (2007). Experimental phage therapy against Staphylococcus aureus in mice. Antimicrob Agents Chemother 51, 2765-2773

Chhibber, S., Kaur, S. &; Kumari, S. (2008). Therapeutic potential of bacteriophage in treating Klebsiella pneumoniae B5055-mediated lobar pneumonia in mice. J Med Microbiol 57, 1508-1513.

C.H. Hung, C. F. Kuo, C.H. Wang, C.M. Wu &; Nina Tsao. (2011). Experimental phage therapy in treating Klebsiella pneumoniae-Mediated
Liver abscesses and bacteremia in mice. Antimicrobial agents and chemotherapy. 55, 1358-1365.

Fischetti V. A.(2010). Bacteriophage endolysins: A novel anti-infective to control
Gram-positive pathogens. Int J Med Microbiol.6, 357–362.

Gaeng, S., Scherer, S., Neve, H. &; Loessner, M. J. (2000). Gene cloning and expression and secretion of Listeria monocytogenes bacteriophage-lytic enzymes in Lactococcus lactis. Appl Environ Microbiol 66, 2951-2958.

Gales, A. C., Jones, R. N. &; Sader, H. S. (2006). Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clinical Microbiology &; Infection 12, 315-321.

Gehrlein M, Leying H, Cullmann W, Wendt S, Opferkuch W. (1991). Imipenem resistance in Acinetobacter baumanii is due to altered penicillin-binding proteins. Chemotherapy. 6, 405-12.

Jado, I., Lopez, R., Garcia, E., Fenoll, A., Casal, J. &; Garcia, P. (2003). Phage lytic enzymes as therapy for antibiotic-resistant Streptococcus pneumoniae infection in a murine sepsis model. J Antimicrob Chemother 52, 967-973.

J. Gu, W. Xu, L. Lei, J. Huang, X. Feng, C. Sun, C. Du, J. Zuo, Y. Li, T. Du, L. Li &; W. Han (2011). LysGH15, a novel bacteriophage lysin, protects a murine bacteremia model efficiently against lethal Methicillin-Resistance Staphylococcus aurens infection. Journal of Clinical Microbiology, 111-117.

J. Gu, Y. Feng, X. Feng, C. Sun, L. Lei, W. Ding, F. Niu, L. Liao, M. Yang, Y. Li, X. Liu, J. Song, Z. Cui, D. Han, C. Du, Y. Yang, S. Ouyang, Z. Liu, W. Han (2014). Structural and biochemical characterization reveals LysGH15 as an unprecedented “EF-hand-like” calcium-binding phage lysin. PLoS Pathog 10

Joly-Guillou, M. L. (2005). Clinical impact and pathogenicity of Acinetobacter. Clin Microbiol Infect 11, 868-873.

M. J. Lai, N. T. Lin, A. Hu, P. C. Soo, L. K. Chen, L. H. Chen, K. C. Chang (2011). Antibacterial activity of Acinetobactor baumannii phage ΦAB2 endolysin (Lys AB2) against both Gram-positive and Gram-negative bacteria. Appl Microbiol Biotechnol 90, 529-539.

Levin, A. S. (2002). Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clinical Microbiology &; Infection 8, 144-153.

J. Li, Nation, R. L., Turnidge, J. D., Milne, R. W., Coulthard, K., Rayner, C. R. &; Paterson, D. L. (2006). Colistin: the re-emerging antibiotic for multidrug-resistant Gram-negative bacterial infections. The Lancet Infectious Diseases 6, 589-601.

Loessner, M. J., Wendlinger, G. &; Scherer, S. (1995). Heterogeneous endolysins in Listeria monocytogenes bacteriophages: a new class of enzymes and evidence for conserved holin genes within the siphoviral lysis cassettes. Mol Microbiol 16, 1231-1241.

Loessner, M. J. (2005). Bacteriophage endolysins--current state of research and applications. Curr Opin Microbiol 8, 480-487.

Maiti S.N., Philips O.A., Micetich R.G. (1998). β-lactamase Inhibitors: agents to overcome bacterial resistance. CurrMed Chem 54, 441-456.

Meng, X.P., Shi, Y.B., Ji, W.H., Meng, X.L., Zhang, J., Wang, W.G., Lu, C.P., Sun, J.H., &; Yan, Y.X. (2011). Application of a Bacteriophage Lysin To Disrupt Biofilms Formed by the Animal Pathogen Streptococcus suis. APPLIED AND ENVIRONMENTAL MICROBIOLOGY, 77, 8272–8279

Moscoso M, Esteban-Torres M, Mene´ndez M, Garcı´a E (2014). In Vitro Bactericidal and Bacteriolytic Activity of Ceragenin CSA-13 against Planktonic
Cultures and Biofilms of Streptococcus pneumoniae and Other Pathogenic Streptococci. PLoS ONE 9(7)

Navon-Venezia, S., Leavitt, A. &; Carmeli, Y. (2007). High tigecycline resistance in multidrug-resistant Acinetobacter baumannii. J Antimicrob Chemother 59, 772-774.

Noskin, G. A. (2005). Tigecycline: A New Glycylcycline for Treatment of Serious Infections. Clinical Infectious Diseases 41, S303-S314.

Parisien, A., Allain, B., Zhang, J., Mandeville, R. &; Lan, C. Q. (2008). Novel alternatives to antibiotics: bacteriophages, bacterial cell wall hydrolases, and antimicrobial peptides. J Appl Microbiol 104, 1-13.

Perez, F., Hujer, A. M., Hujer, K. M., Decker, B. K., Rather, P. N. &; Bonomo, R. A. (2007). Global challenge of multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 51, 3471-3484

Poirel, L. &; Nordmann, P. (2006). Carbapenem resistance in Acinetobacter baumannii: mechanisms and epidemiology. Clin Microbiol Infect 12, 826-836.

Ralston, D. J., Baer, B. S., Lieberman, M. &; Krueger, A. P. (1955). Virolysin: a virus-induced lysin from staphylococcal phage lysates. Proc Soc Exp Biol Med 89, 502-507.

R. Schuch, Han M. Lee, Brent C. Schneider, Karen L. Sauve, Christina Law, Babar K. Khan, Jimmy A. Rotolo, Yuki Horiuchi, Daniel E. Couto, Assaf Raz, Vincent A. Fischetti, David B. Huang, Robert C. Nowinski, &; Michael Wittekind (2013). Combination therapy with Lysin CF-301 and antibiotic is Superior to antibiotic alone for treating Methicillin-Resistant Staphylococcus aureus – induced murine bacteremia. Major Article 1469-1478.

Rose, W. E. &; Rybak, M. J. (2006). Tigecycline: first of a new class of antimicrobial agents. Pharmacotherapy 26, 1099-1110.

Saballs, M., Pujol, M., Tubau, F., Pena, C., Montero, A., Dominguez, M. A., Gudiol, F. &; Ariza, J. (2006). Rifampicin/imipenem combination in the treatment of carbapenem-resistant Acinetobacter baumannii infections. J Antimicrob Chemother 58, 697-700.

Tafoya DA, Hildenbrand ZL, Herrera N, Molugu SK, Mesyanzhinov VV, Miroshnikov KA &; Bernal R. A. (2013). Enzymatic characterization of a lysin encoded by bacteriophage EL. Bacteriophage .3:e25449

Thomson, J. M. &; Bonomo, R. A. (2005). The threat of antibiotic resistance in Gram-negative pathogenic bacteria: beta-lactams in peril! Curr Opin Microbiol 8, 518-524.

Vinodkumar, C. S., Kalsurmath, S. &; Neelagund, Y. F. (2008). Utility of lytic bacteriophage in the treatment of multidrug-resistant Pseudomonas aeruginosa septicemia in mice. Indian J Pathol Microbiol 51, 360-366.

Ygout, J. F., Pasteau, C., Mugnier, P., Berlioux, J. &; Daguet, G. L. (1988). Phenotypes of resistance to antibiotics of Acinetobacter baumannii. Impact on therapeutic orientation. Pathol Biol (Paris) 36, 245-249.

Zimmer, M., Vukov, N., Scherer, S. &; Loessner, M. J. (2002). The murein hydrolase of the bacteriophage phi3626 dual lysis system is active against all tested Clostridium perfringens strains. Appl Environ Microbiol 68, 5311-5317.

林峻弘 (2006). 全抗藥性鮑氏不動桿菌溶裂型噬菌體之分離及其定性. 生物技術與化學工程學研究所 (義守大學碩士論文), pp. 78

葉哲銘 (2007). 以噬菌體 km18p 治療受多重抗藥性鮑氏不動桿菌感染之小鼠研究. 生物技術與化學工程學研究所 (義守大學碩士論文), pp. 43

羅慧如 (2009). 溶裂性噬菌體phi-km18p之溶菌素分離及基因選殖. 生物技術與化學工程學研究所 (義守大學碩士論文), pp. 68


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔