跳到主要內容

臺灣博碩士論文加值系統

(44.192.92.49) 您好!臺灣時間:2023/06/08 05:33
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:曾莉婷
研究生(外文):Li-Ting Tseng
論文名稱:Clioquinol與銅離子合併治療口腔癌引發Caspase非依賴性細胞凋亡和細胞生長停滯
論文名稱(外文):Clioquinol-Copper Combined Treatment Induces Caspase-Independent Apoptosis and Cell Cycle Arrest in Oral Squamous Cell Carcinoma
指導教授:蔡婉琪蔡婉琪引用關係
指導教授(外文):Wan-Chi Tsai
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學檢驗生物技術學研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:69
中文關鍵詞:口腔癌細胞生長停滯銅離子
外文關鍵詞:oral cancercell cycle arrestcopperAIF
相關次數:
  • 被引用被引用:1
  • 點閱點閱:211
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
根據近年衛生福利部的癌症流病調查,口腔癌為台灣癌症發生率第六名的癌症,其死亡率更高達第五名。Clioquinol (CQ)是一金屬螯合劑,可與鋅、鐵、銅等二價金屬離子結合。早期CQ用於口服治療阿米巴原蟲引起的腸道感染,亦作為抗菌藥物使用。然而,近年來有研究指出CQ具有抗癌潛力。CQ藉由金屬螯合特性,調節腫瘤周邊所累積的銅離子,進而促使細胞凋亡。為了解CQ螯合銅離子在口腔癌上的抗癌機制,本研究利用液相層析串聯質譜,分析口腔癌細胞受CQ與銅離子刺激後,蛋白質表現的變化。經由多項實驗驗證,證實CQ與銅離子合併刺激口腔癌細胞株HSC-3,會促使凋亡誘發因子AIF自粒腺體內膜轉位至細胞核中,進而在細胞核內造成DNA受損,引發Caspase非依賴性細胞凋亡。同時,CQ與銅離子合併刺激會藉由抑制Cyclin A2、Cyclin B1、Cyclin B2、CDC25B等G2/M期轉換調控因子的mRNA或蛋白質表現,提升p21蛋白表現量,進而降低CDK1的活性,使HSC-3細胞生長週期停滯於G2期,阻斷細胞週期的運行,達到抑制口腔癌細胞生長的作用。

According to cancer epidemiology report from Ministry of Health and Welfare, oral squamous cell carcinoma (OSCC) is the sixth of cancer incidence and the fifth of cancer mortality in Taiwan. Clioquinol (CQ) is the metal chelator which binds to divalent ion, such as zinc, iron, copper and so on. CQ was used as an antiseptic and oral intestinal amebicide in the past. However, CQ has been notified by its anticancer function nowadays. By acting as chelator and/or ionophore, CQ regulates the copper ion, which is specifically accumulated around the tumor site, to induce cell apoptosis. It has been reported that the concentration of copper in saliva and serum is relatively higher in OSCC patients than in healthy people. To decipher the underlying mechanisms of how CQ-copper exerts the anti-cancer function in oral cancer cells, liquid chromatography-tandem mass spectrometry was used for analyzing the differences on proteins between the DMSO-treated oral cancer cells and the CQ-copper-treated group. The present data demonstrated that CQ-copper combined treatment could cause Apoptosis Inducing Factor translocate from mitochondria inner-membrane to nuclear, then further damage DNA in a Caspase-3-independent action in HSC-3 cells. Meanwhile, CQ-copper combined treatment could also induce G2 arrest through regulating several G2/M phase transition regulators. The decrease of Cyclin A2, Cyclin B1, Cyclin B2, CDC25B, and the induction of p21 led to the consequent suppression of CDK1 activity. Taken together, CQ exerts the anti-cancer effects via induction of apoptosis and cell cycle arrest simultaneously in oral cancer cells.

目錄
中文摘要 I
英文摘要 II
致謝 III
1.背景介紹 1
1.1 口腔癌流行病學 1
1.2 口腔癌致癌因子 2
1.3 口腔癌致病機轉 3
1.4 口腔癌臨床治療 4
1.5 金屬銅離子 6
1.6 Clioquinol藥物介紹 7
1.7 Apoptosis inducing factor (AIF) 10
1.8 細胞週期G2/M的轉換 11
1.9 研究動機 12
2.材料與方法 14
2.1 細胞培養 14
2.2 液相層析串聯質譜分析 14
2.3 即時偵測聚合酶連鎖反應 (Real-Time PCR) 16
2.4 西方墨點法 17
2.5 細胞生長週期分析 19
2.6 細胞即時影像分析 20
2.7 螢光免疫染色法 20
3.結果 21
3.1 液相層析串聯式質譜分析分別於實驗組和對照組偵測出Caspase非依賴性之細胞凋亡調節蛋白—AIF和細胞週期G2/M轉換調控蛋白—Cyclin B2。 21
3.2 AIF蛋白轉位至細胞核進行染色體濃縮、DNA裂解,為CQ與Cu2+引發HSC-3細胞凋亡的路徑之一。 22
3.3 CQ與Cu2+合併刺激抑制HSC-3的Cyclin B2蛋白和mRNA表現。 23
3.4 CQ與Cu2+合併刺激造成HSC-3生長週期停滯於G2期。 24
3.5 CQ與Cu2+合併刺激降低HSC-3細胞週期調控相關因子—p53、Cyclin A2、CDC25B的mRNA表現。 25
3.6 CQ與Cu2+合併刺激藉由調控CDK1蛋白活性,使HSC-3生長週期停滯於G2期。 26
4.討論 29
5.結論 34
6.參考資料 35
7.附錄 45


參考資料
1.Jemal A, Bray F, Center MM, Ferlay J, Ward E, Forman D., Global cancer statistics. CA Cancer J Clin, 2011. 61(2): 69-90.
2.Warnakulasuriya S., Global epidemiology of oral and oropharyngeal cancer. Oral Oncol, 2009. 45(4-5): 309-16.
3.La Vecchia C, Lucchini F, Negri E, Levi F., Trends in oral cancer mortality in Europe. Oral Oncol, 2004. 40(4): 433-9.
4.Pfeifer GP, Denissenko MF, Olivier M, Tretyakova N, Hecht SS, Hainaut P., Tobacco smoke carcinogens, DNA damage and p53 mutations in smoking-associated cancers. Oncogene, 2002. 21(48): 7435-51.
5.Hecht SS, Rivenson A, Braley J, DiBello J, Adams JD, Hoffmann D., Induction of oral cavity tumors in F344 rats by tobacco-specific nitrosamines and snuff. Cancer Res, 1986. 46(8): 4162-6.
6.Park JH, Gelhaus S, Vedantam S, Oliva AL, Batra A, Blair IA, Troxel AB, Field J, Penning TM., The pattern of p53 mutations caused by PAH o-quinones is driven by 8-oxo-dGuo formation while the spectrum of mutations is determined by biological selection for dominance. Chem Res Toxicol, 2008. 21(5): 1039-49.
7.Council E., Council Directive 67/548/EEC of 27 June 1967 on the approximation of laws, regulations and administrative provisions relating to the classification, packaging and labelling of dangerous substances. Off J Eur Comm 1967;196:1-98.
8.Figuero Ruiz E, Carretero Pelaez MA, Cerero Lapiedra R, Esparza Gomez G, Moreno Lopez LA., Effects of the consumption of alcohol in the oral cavity: relationship with oral cancer. Med Oral, 2004. 9(1): 14-23.
9.Poschl G, Seitz HK., Alcohol and cancer. Alcohol Alcohol, 2004. 39(3): 155-65.
10.Kumar V, A.A., Fausto N, Mitchell RN., Robbins Basic Pathology. 2007: 290-291.
11.Wight AJ, Ogden GR., Possible mechanisms by which alcohol may influence the development of oral cancer--a review. Oral Oncol, 1998. 34(6): 441-7.
12.Poggi P, Rodriguez y Baena R, Rizzo S, Rota MT., Mouthrinses with alcohol: cytotoxic effects on human gingival fibroblasts in vitro. J Periodontol, 2003. 74(5): 623-9.
13.Reidy J, McHugh E, Stassen LF., A review of the relationship between alcohol and oral cancer. Surgeon, 2011. 9(5): 278-83.
14.Ogden, G.R. and A.J. Wight, Aetiology of oral cancer: alcohol. Br J Oral Maxillofac Surg, 1998. 36(4): 247-51.
15.Chiba I., Prevention of Betel Quid Chewers'' Oral Cancer in the Asian-Pacific Area. Asian Pac J Cancer Prev, 2001. 2(4): 263-269.
16.Tobacco habits other than smoking; betel-quid and areca-nut chewing; and some related nitrosamines. IARC Working Group. Lyon, 23-30 October 1984. IARC Monogr Eval Carcinog Risk Chem Hum, 1985. 37: 1-268.
17.Sundqvist K, Liu Y, Erhardt P, Nair J, Bartsch H, Grafstrom RC., Areca-nut toxicity in cultured human buccal epithelial cells. IARC Sci Publ, 1991(105): 281-5.
18.Wary KK, Sharan RN., Cytotoxic and cytostatic effects of arecoline and sodium nitrite on human cells in vitro. Int J Cancer, 1991. 47(3): 396-400.
19.IARC Working Group on the Evaluation of Carcinogenic Risks to Humans., Betel-quid and areca-nut chewing and some areca-nut derived nitrosamines. IARC Monogr Eval Carcinog Risks Hum, 2004. 85: 1-334.
20.Travasso C., Betel quid chewing is responsible for half of oral cancer cases in India, finds study. BMJ, 2013. 347: f7536.
21.Blot WJ, McLaughlin JK, Winn DM, Austin DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB,Stemhagen A, Fraumeni JF Jr., Smoking and drinking in relation to oral and pharyngeal cancer. Cancer Res, 1988. 48(11): 3282-7.
22.Radoi L, Luce D., A review of risk factors for oral cavity cancer: the importance of a standardized case definition. Community Dent Oral Epidemiol, 2013. 41(2): 97-109, e78-91.
23.Znaor A, Brennan P, Gajalakshmi V, Mathew A, Shanta V, Varghese C, Boffetta P., Independent and combined effects of tobacco smoking, chewing and alcohol drinking on the risk of oral, pharyngeal and esophageal cancers in Indian men. Int J Cancer, 2003. 105(5): 681-6.
24.Sankaranarayanan R, Duffy SW, Padmakumary G, Day NE, Padmanabhan TK., Tobacco chewing, alcohol and nasal snuff in cancer of the gingiva in Kerala, India. Br J Cancer, 1989. 60(4): 638-43.
25.Sankaranarayanan R, Duffy SW, Padmakumary G, Day NE, Krishan Nair M., Risk factors for cancer of the buccal and labial mucosa in Kerala, southern India. J Epidemiol Community Health, 1990. 44(4): 286-92.
26.Jayalekshmi PA, Gangadharan P, Akiba S, Nair RR, Tsuji M, Rajan B., Tobacco chewing and female oral cavity cancer risk in Karunagappally cohort, India. Br J Cancer, 2009. 100(5): 848-52.
27.Wen CP, Tsai MK, Chung WS, Hsu HL, Chang YC, Chan HT, Chiang PH, Cheng TY, Tsai SP., Cancer risks from betel quid chewing beyond oral cancer: a multiple-site carcinogen when acting with smoking. Cancer Causes Control, 2010. 21(9): 1427-35.
28.Williams, H.K., Molecular pathogenesis of oral squamous carcinoma. Mol Pathol, 2000. 53(4): 165-72.
29.Todd R, Donoff RB, Wong DT., The molecular biology of oral carcinogenesis: toward a tumor progression model. J Oral Maxillofac Surg, 1997. 55(6): 613-23
30.Derynck R., The physiology of transforming growth factor-alpha. Adv Cancer Res, 1992. 58: 27-52.
31.Todd R, Chou MY, Matossian K, Gallagher GT, Donoff RB, Wong DT., Cellular sources of transforming growth factor-alpha in human oral cancer. J Dent Res, 1991. 70(5): 917-23.
32.Partridge M, Gullick WJ, Langdon JD, Sherriff M., Expression of epidermal growth factor receptor on oral squamous cell carcinoma. Br J Oral Maxillofac Surg, 1988. 26(5): 381-9.
33.Scully C., Oncogenes, tumor suppressors and viruses in oral squamous carcinoma. J Oral Pathol Med, 1993. 22(8): 337-47.
34.Yarbrough WG, Shores C, Witsell DL, Weissler MC, Fidler ME, Gilmer TM., ras mutations and expression in head and neck squamous cell carcinomas. Laryngoscope, 1994. 104(11 Pt 1): 1337-47.
35.Kiaris H, Spandidos DA, Jones AS, Vaughan ED, Field JK., Mutations, expression and genomic instability of the H-ras proto-oncogene in squamous cell carcinomas of the head and neck. Br J Cancer, 1995. 72(1): 123-8.
36.Saranath D, Chang SE, Bhoite LT, Panchal RG, Kerr IB, Mehta AR, Johnson NW, Deo MG., High frequency mutation in codons 12 and 61 of H-ras oncogene in chewing tobacco-related human oral carcinoma in India. Br J Cancer, 1991. 63(4): 573-8.
37.Kuo MY, Jeng JH, Chiang CP, Hahn LJ., Mutations of Ki-ras oncogene codon 12 in betel quid chewing-related human oral squamous cell carcinoma in Taiwan. J Oral Pathol Med, 1994. 23(2): 70-4.
38.Vogelstein B, Kinzler KW., The multistep nature of cancer. Trends Genet, 1993. 9(4): 138-41.
39.Somers KD, Cartwright SL, Schechter GL., Amplification of the int-2 gene in human head and neck squamous cell carcinomas. Oncogene, 1990. 5(6): 915-20.
40.Schantz SP., Basic science advances in head and neck oncology: the past decade. Semin Surg Oncol, 1995. 11(3): 272-9.
41.Shah JP, Gil Z., Current concepts in management of oral cancer--surgery. Oral Oncol, 2009. 45(4-5): 394-401.
42.Silverman S Jr., Oral cancer: complications of therapy. Oral Surg Oral Med Oral Pathol Oral Radiol Endod, 1999. 88(2): 122-6.
43.Murdoch-Kinch, C.A. and S. Zwetchkenbaum, Dental management of the head and neck cancer patient treated with radiation therapy. J Mich Dent Assoc, 2011. 93(7): 28-37.
44.Epstein JB, Guneri P, Barasch A., Appropriate and necessary oral care for people with cancer: guidance to obtain the right oral and dental care at the right time. Support Care Cancer, 2014. 22(7):1981-8.
45.Hancock PJ, Epstein JB, Sadler GR., Oral and dental management related to radiation therapy for head and neck cancer. J Can Dent Assoc, 2003. 69(9): 585-90.
46.Epstein JB, Thariat J, Bensadoun RJ, Barasch A, Murphy BA, Kolnick L, Popplewell L, Maghami E., Oral complications of cancer and cancer therapy: from cancer treatment to survivorship. CA Cancer J Clin, 2012. 62(6): 400-22.
47.Siegel R, Naishadham D, Jemal A., Cancer statistics, 2012. CA Cancer J Clin, 2012. 62(1): 10-29.
48.Harris ZL, Gitlin JD., Genetic and molecular basis for copper toxicity. Am J Clin Nutr, 1996. 63(5): 836S-41S.
49.Tapiero H, Townsend DM, Tew KD., Trace elements in human physiology and pathology. Copper. Biomed Pharmacother, 2003. 57(9): 386-98.
50.Turski ML, Thiele DJ., New roles for copper metabolism in cell proliferation, signaling, and disease. J Biol Chem, 2009. 284(2): 717-21.
51.Brewer GJ., Anticopper therapy against cancer and diseases of inflammation and fibrosis. Drug Discov Today, 2005. 10(16): 1103-9.
52.Goodman VL, Brewer GJ, Merajver SD., Copper deficiency as an anti-cancer strategy. Endocr Relat Cancer, 2004. 11(2): 255-63.
53.Tadakamadla J, Kumar S, GP M., Evaluation of serum copper and iron levels among oral submucous fibrosis patients. Med Oral Patol Oral Cir Bucal, 2011. 16(7): e870-3.
54.Gupte A, Mumper RJ., Elevated copper and oxidative stress in cancer cells as a target for cancer treatment. Cancer Treat Rev, 2009. 35(1): 32-46.
55.Ayinampudi BK, Narsimhan M., Salivary copper and zinc levels in oral pre-malignant and malignant lesions. J Oral Maxillofac Pathol, 2012. 16(2): 178-82.
56.Barrea RA, Chen D, Irving TC, Dou QP., Synchrotron X-ray imaging reveals a correlation of tumor copper speciation with Clioquinol''s anticancer activity. J Cell Biochem, 2009. 108(1): 96-105.
57.Lowndes SA, Harris AL., The role of copper in tumour angiogenesis. J Mammary Gland Biol Neoplasia, 2005. 10(4): 299-310.
58.Schmitt SM, Frezza M, Dou QP., New applications of old metal-binding drugs in the treatment of human cancer. Front Biosci (Schol Ed), 2012. 4: 375-91.
59.Di Vaira M, Bazzicalupi C, Orioli P, Messori L, Bruni B, Zatta P., Clioquinol, a drug for Alzheimer''s disease specifically interfering with brain metal metabolism: structural characterization of its zinc(II) and copper(II) complexes. Inorg Chem, 2004. 43(13): 3795-7.
60.Cuajungco MP, Faget KY, Huang X, Tanzi RE, Bush AI., Metal chelation as a potential therapy for Alzheimer''s disease. Ann N Y Acad Sci, 2000. 920: 292-304.
61.Huckle R., PBT-1 Prana Biotechnology. Curr Opin Investig Drugs, 2005. 6(1): 99-107.
62.Lee JY, Mook-Jung I, Koh JY., Histochemically reactive zinc in plaques of the Swedish mutant beta-amyloid precursor protein transgenic mice. J Neurosci, 1999. 19(11): RC10.
63.Smith MA, Harris PL, Sayre LM, Perry G., Iron accumulation in Alzheimer disease is a source of redox-generated free radicals. Proc Natl Acad Sci U S A, 1997. 94(18): 9866-8.
64.Lovell MA, Robertson JD, Teesdale WJ, Campbell JL, Markesbery WR., Copper, iron and zinc in Alzheimer''s disease senile plaques. J Neurol Sci, 1998. 158(1): 47-52.
65.Suh SW, Jensen KB, Jensen MS, Silva DS, Kesslak PJ, Danscher G, Frederickson CJ., Histochemically-reactive zinc in amyloid plaques, angiopathy, and degenerating neurons of Alzheimer''s diseased brains. Brain Res, 2000. 852(2): 274-8.
66.Cherny RA, Legg JT, McLean CA, Fairlie DP, Huang X, Atwood CS, Beyreuther K, Tanzi RE, Masters CL, Bush AI., Aqueous dissolution of Alzheimer''s disease Abeta amyloid deposits by biometal depletion. J Biol Chem, 1999. 274(33): 23223-8.
67.Bareggi SR, Cornelli U., Clioquinol: review of its mechanisms of action and clinical uses in neurodegenerative disorders. CNS Neurosci Ther, 2012. 18(1): 41-6.
68.Ritchie CW, Bush AI, Mackinnon A, Macfarlane S, Mastwyk M, MacGregor L, Kiers L, Cherny R, Li QX, Tammer A, Carrington D, Mavros C, Volitakis I, Xilinas M, Ames D, Davis S, Beyreuther K, Tanzi RE, Masters CL., Metal-protein attenuation with iodochlorhydroxyquin (clioquinol) targeting Abeta amyloid deposition and toxicity in Alzheimer disease: a pilot phase 2 clinical trial. Arch Neurol, 2003. 60(12): 1685-91.
69.Ritchie CW, Bush AI, Masters CL., Metal-protein attenuating compounds and Alzheimer''s disease. Expert Opin Investig Drugs, 2004. 13(12): 1585-92.
70.Nguyen T, Hamby A, Massa SM., Clioquinol down-regulates mutant huntingtin expression in vitro and mitigates pathology in a Huntington''s disease mouse model. Proc Natl Acad Sci U S A, 2005. 102(33): 11840-5.
71.Chen D, Cui QC, Yang H, Barrea RA, Sarkar FH, Sheng S, Yan B, Reddy GP, Dou QP., Clioquinol, a therapeutic agent for Alzheimer''s disease, has proteasome-inhibitory, androgen receptor-suppressing, apoptosis-inducing, and antitumor activities in human prostate cancer cells and xenografts. Cancer Res, 2007. 67(4): 1636-44.
72.Zhai S, Yang L, Cui QC, Sun Y, Dou QP, Yan B., Tumor cellular proteasome inhibition and growth suppression by 8-hydroxyquinoline and clioquinol requires their capabilities to bind copper and transport copper into cells. J Biol Inorg Chem, 2010. 15(2): 259-69.
73.Cater MA, Haupt Y., Clioquinol induces cytoplasmic clearance of the X-linked inhibitor of apoptosis protein (XIAP): therapeutic indication for prostate cancer. Biochem J, 2011. 436(2): 481-91.
74.Ding WQ, Liu B, Vaught JL, Yamauchi H, Lind SE., Anticancer activity of the antibiotic clioquinol. Cancer Res, 2005. 65(8): 3389-95.
75.Ding WQ, Yu HJ, Lind SE., Zinc-binding compounds induce cancer cell death via distinct modes of action. Cancer Lett, 2008. 271(2): 251-9.
76.Yu H, Zhou Y, Lind SE, Ding WQ., Clioquinol targets zinc to lysosomes in human cancer cells. Biochem J, 2009. 417(1): 133-9.
77.Yu H, Lou JR, Ding WQ., Clioquinol independently targets NF-kappaB and lysosome pathways in human cancer cells. Anticancer Res, 2010. 30(6): 2087-92.
78.Zheng J, Benbrook DM, Yu H, Ding WQ., Clioquinol suppresses cyclin D1 gene expression through transcriptional and post-transcriptional mechanisms. Anticancer Res, 2011. 31(9): 2739-47.
79.Cao B, Li J, Zhu J, Shen M, Han K, Zhang Z, Yu Y, Wang Y, Wu D, Chen S, Sun A, Tang X, Zhao Y, Qiao C,Hou T, Mao X., The antiparasitic clioquinol induces apoptosis in leukemia and myeloma cells by inhibiting histone deacetylase activity. J Biol Chem, 2013. 288(47): 34181-9.
80.Du T, Filiz G, Caragounis A, Crouch PJ, White AR., Clioquinol promotes cancer cell toxicity through tumor necrosis factor alpha release from macrophages. J Pharmacol Exp Ther, 2008. 324(1): 360-7.
81.Tuller ER, Brock AL, Yu H, Lou JR, Benbrook DM, Ding WQ., PPARalpha signaling mediates the synergistic cytotoxicity of clioquinol and docosahexaenoic acid in human cancer cells. Biochem Pharmacol, 2009. 77(9): 1480-6.
82.Gobec M, Kljun J, Sosič I, Mlinarič-Raščan I, Uršič M, Gobec S, Turel I., Structural characterization and biological evaluation of a clioquinol-ruthenium complex with copper-independent antileukaemic activity. Dalton Trans, 2014. 43(24): 9045-51.
83.Ding WQ, Liu B, Vaught JL, Palmiter RD, Lind SE., Clioquinol and docosahexaenoic acid act synergistically to kill tumor cells. Mol Cancer Ther, 2006. 5(7): 1864-72.
84.Schimmer AD, Jitkova Y, Gronda M, Wang Z, Brandwein J, Chen C, Gupta V, Schuh A, Yee K, Chen J, Ackloo S,Booth T, Keays S, Minden MD., et al., A phase I study of the metal ionophore clioquinol in patients with advanced hematologic malignancies. Clin Lymphoma Myeloma Leuk, 2012. 12(5): 330-6.
85.Susin SA, Lorenzo HK, Zamzami N, Marzo I, Snow BE, Brothers GM, Mangion J, Jacotot E, Costantini P, Loeffler M, Larochette N, Goodlett DR, Aebersold R, Siderovski DP, Penninger JM, Kroemer G., Molecular characterization of mitochondrial apoptosis-inducing factor. Nature, 1999. 397(6718): 441-6.
86.Norberg E, Orrenius S, Zhivotovsky B., Mitochondrial regulation of cell death: processing of apoptosis-inducing factor (AIF). Biochem Biophys Res Commun, 2010. 396(1): 95-100.
87.Otera H, Ohsakaya S, Nagaura Z, Ishihara N, Mihara K., Export of mitochondrial AIF in response to proapoptotic stimuli depends on processing at the intermembrane space. EMBO J, 2005. 24(7): 1375-86.
88.Lipton SA, Bossy-Wetzel E., Dueling activities of AIF in cell death versus survival: DNA binding and redox activity. Cell, 2002. 111(2): 147-50.
89.Stark GR, Taylor WR., Control of the G2/M transition. Mol Biotechnol, 2006. 32(3): 227-48.
90.Lorca T, Labbe JC, Devault A, Fesquet D, Strausfeld U, Nilsson J, Nygren PA, Uhlen M, Cavadore JC, Doree M., Cyclin A-cdc2 kinase does not trigger but delays cyclin degradation in interphase extracts of amphibian eggs. J Cell Sci, 1992. 102 ( Pt 1): 55-62.
91.Moore JD, Yang J, Truant R, Kornbluth S., Nuclear import of Cdk/cyclin complexes: identification of distinct mechanisms for import of Cdk2/cyclin E and Cdc2/cyclin B1. J Cell Biol, 1999. 144(2): 213-24.
92.Takizawa CG, Weis K, Morgan DO., Ran-independent nuclear import of cyclin B1-Cdc2 by importin beta. Proc Natl Acad Sci U S A, 1999. 96(14): 7938-43.
93.Hagting A, Karlsson C, Clute P, Jackman M, Pines J., MPF localization is controlled by nuclear export. EMBO J, 1998. 17(14): 4127-38.
94.Toyoshima F, Moriguchi T, Wada A, rFukuda M, Nishida E., Nuclear export of cyclin B1 and its possible role in the DNA damage-induced G2 checkpoint. EMBO J, 1998. 17(10): 2728-35.
95.Yang J, Bardes ES, Moore JD, Brennan J, Powers MA, Kornbluth S., Control of cyclin B1 localization through regulated binding of the nuclear export factor CRM1. Genes Dev, 1998. 12(14): 2131-43.
96.Poon RY, Yamashita K, Adamczewski JP, Hunt T, Shuttleworth J., The cdc2-related protein p40MO15 is the catalytic subunit of a protein kinase that can activate p33cdk2 and p34cdc2. EMBO J, 1993. 12(8): 3123-32.
97.Fesquet D, Labbe JC, Derancourt J, Capony JP, Galas S, Girard F, Lorca T, Shuttleworth J, Doree M, Cavadore JC., The MO15 gene encodes the catalytic subunit of a protein kinase that activates cdc2 and other cyclin-dependent kinases (CDKs) through phosphorylation of Thr161 and its homologues. EMBO J, 1993. 12(8): 3111-21.
98.Bayliss R, Fry A, Haq T, Yeoh S., On the molecular mechanisms of mitotic kinase activation. Open Biol, 2012. 2(11): 120136.
99.Booher RN, Holman PS, Fattaey A., Human Myt1 is a cell cycle-regulated kinase that inhibits Cdc2 but not Cdk2 activity. J Biol Chem, 1997. 272(35): 22300-6.
100.Liu F, Stanton JJ, Wu Z, Piwnica-Worms H., The human Myt1 kinase preferentially phosphorylates Cdc2 on threonine 14 and localizes to the endoplasmic reticulum and Golgi complex. Mol Cell Biol, 1997. 17(2): 571-83.
101.Parker LL, Piwnica-Worms H., Inactivation of the p34cdc2-cyclin B complex by the human WEE1 tyrosine kinase. Science, 1992. 257(5078): 1955-7.
102.Draetta G, Eckstein J., Cdc25 protein phosphatases in cell proliferation. Biochim Biophys Acta, 1997. 1332(2): M53-63.
103.Malumbres M, Barbacid M., Cell cycle, CDKs and cancer: a changing paradigm. Nat Rev Cancer, 2009. 9(3): 153-66.
104.Yam CH, Fung TK, Poon RY., Cyclin A in cell cycle control and cancer. Cell Mol Life Sci, 2002. 59(8): 1317-26.
105.Erdem NF, Carlson ER, Gerard DA, Ichiki AT., Characterization of 3 oral squamous cell carcinoma cell lines with different invasion and/or metastatic potentials. J Oral Maxillofac Surg, 2007. 65(9): 1725-33.
106.Haupt S, Berger M, Goldberg Z, Haupt Y., Apoptosis - the p53 network. J Cell Sci, 2003. 116(Pt 20): 4077-85.
107.Beckerman R, Prives C., Transcriptional regulation by p53. Cold Spring Harb Perspect Biol, 2010. 2(8): a000935.
108.Joerger AC, Fersht AR., Structural biology of the tumor suppressor p53 and cancer-associated mutants. Adv Cancer Res, 2007. 97: 1-23.
109.Wang P, Reed M, Wang Y, Mayr G, Stenger JE, rAnderson ME, Schwedes JF, Tegtmeyer P., p53 domains: structure, oligomerization, and transformation. Mol Cell Biol, 1994. 14(8): 5182-91.
110.Sakai E, Tsuchida N., Most human squamous cell carcinomas in the oral cavity contain mutated p53 tumor-suppressor genes. Oncogene, 1992. 7(5): 927-33.
111.Kim H, Kim K, Choi J, Heo K, Baek HJ, Roeder RG, An W., p53 requires an intact C-terminal domain for DNA binding and transactivation. J Mol Biol, 2012. 415(5): 843-54.
112.Hamard PJ, Lukin DJ, Manfredi JJ., p53 basic C terminus regulates p53 functions through DNA binding modulation of subset of target genes. J Biol Chem, 2012. 287(26): 22397-407.
113.Muller PA, Vousden KH., Mutant p53 in cancer: new functions and therapeutic opportunities. Cancer Cell, 2014. 25(3): 304-17.
114.Yan W, Liu S, Xu E, Zhang J, Zhang Y, Chen X, Chen X., Histone deacetylase inhibitors suppress mutant p53 transcription via histone deacetylase 8. Oncogene, 2013. 32(5): 599-609.
115.Loh SN., The missing zinc: p53 misfolding and cancer. Metallomics, 2010. 2(7): 442-9.
116.Boggs K, Henderson B, Reisman D., RBP-Jkappa binds to and represses transcription of the p53 tumor suppressor gene. Cell Biol Int, 2009. 33(3): 318-24.
117.Boggs K, Reisman D., Increased p53 transcription prior to DNA synthesis is regulated through a novel regulatory element within the p53 promoter. Oncogene, 2006. 25(4): 555-65.
118.Muller GA, Engeland K., The central role of CDE/CHR promoter elements in the regulation of cell cycle-dependent gene transcription. FEBS J, 2010. 277(4): 877-93.
119.Wasner M, Haugwitz U, Reinhard W, Tschop K, Spiesbach K, Lorenz J, Mossner J, Engeland K., Three CCAAT-boxes and a single cell cycle genes homology region (CHR) are the major regulating sites for transcription from the human cyclin B2 promoter. Gene, 2003. 312: 225-37.
120.Tschop K, Engeland K., Cell cycle-dependent transcription of cyclin B2 is influenced by DNA methylation but is independent of methylation in the CDE and CHR elements. Febs j, 2007. 274(20): 5235-49.
121.Taylor WR, Stark GR., Regulation of the G2/M transition by p53. Oncogene, 2001. 20(15): 1803-15.
122.Cooke MS, Evans MD, Dizdaroglu M, Lunec J., Oxidative DNA damage: mechanisms, mutation, and disease. FASEB J, 2003. 17(10): 1195-214.
123.Kang MA, So EY, Simons AL, Spitz DR, Ouchi T., DNA damage induces reactive oxygen species generation through the H2AX-Nox1/Rac1 pathway. Cell Death Dis, 2012. 3: e249.
124.Mao X, Schimmer AD., The toxicology of Clioquinol. Toxicol Lett, 2008. 182(1-3): 1-6.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊