跳到主要內容

臺灣博碩士論文加值系統

(44.211.84.185) 您好!臺灣時間:2023/05/30 06:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:范永晴
研究生(外文):Yung-Ching Fan
論文名稱:鈣離子感應分子STIM1的甲基化程度具預測大腸直腸癌臨床治療成效之潛力
論文名稱(外文):The Methylation Status of Calcium Sensor, STIM1, is a Potential Marker for Clinical Outcomes of Colorectal Cancer Patients.
指導教授:王照元
指導教授(外文):Jaw-Yuan Wang
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學系基因體醫學科研究所
學門:生命科學學門
學類:生物訊息學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:94
中文關鍵詞:甲基化大腸直腸癌
外文關鍵詞:methylationcolorectal cancer
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在台灣,根據衛福部去年公布的衛生統計年報顯示,大腸直腸癌死亡率高居所有癌症第三。世界衛生組織2014年全球癌症統計年報指出大腸直腸癌每年增加140萬名新病例,而罹患大腸直腸癌死亡則有70萬人。文獻指出Store-operated calcium channel (SOC)在乳癌、肺癌及大腸直腸癌扮演關鍵角色,其中Stromal interaction molecule (STIM1)為SOC調控機轉上的鈣離子感應器,STIM1的表現量會調控鈣離子的流量而影響癌細胞的爬行與轉移。先前已有研究闡述與大腸直腸癌相關之致癌基因和抑癌基因會受到DNA甲基化所調控,因此本研究希望藉由分析大腸直腸癌患者之STIM1啟動子上的轉錄因子結合位之甲基化程度,探討STIM1基因甲基化與大腸直腸癌臨床表徵之間的關聯性,作為未來臨床診斷之參考。本研究共納入108位受過根治性手術和FOLFOX治療之大腸直腸癌患者,並在STIM1啟動子上選定被證實與致癌機轉具有高度相關之NF-κB、E2F1與CREB1結合位進行分析。經pyrosequencing分析上述轉錄因子結合位的CpG甲基化程度合併臨床資料統計分析,結果發現位於NF-κB結合位之CpG高度甲基化與大腸直腸癌遠端轉移之相關性有顯著意義(p = 0.008),NF-κB結合位高度甲基化患者之無疾病存活率亦顯著低於低度甲基化之病人(p = 0.009)。此外在E2F1與CREB1結合位之DNA甲基化與癌細胞分化程度達到顯著統計意義。本研究證實NF-κB結合位的高甲基化組與大腸直腸癌術後遠端轉移之情形有正向相關,且造成病人之無疾病存活期下降。做為首篇針對大腸直腸癌化學治療之STIM1 DNA甲基化的研究,我們期望本研究之結果能促使未來臨床上將DNA甲基化作為大腸直腸癌的診斷指標之一,提供癌症病患早期診斷與預防。

In Taiwan, according to the annual report of death statistics from Ministry of Health and Welfare last year, colorectal cancer (CRC) was the third leading cause of death among whole cancers. According to the report of GLOBOCAN 2014, there are 1.4 million new cases and 70 million deaths as a result of CRC each year. Literature has demonstrated an important role of store-operated calcium channel (SOC) in breast cancer, lung cancer and colorectal cancer. Moreover, stromal interaction molecule (STIM1) has been known to serve as a calcium sensor in the SOC-mediated pathway and regulate calcium influx which influences migration and metastasis of cancer cells. Previous studies have indicated that CRC-related oncogenes and tumor suppressor genes were regulated by DNA methylation. The aim of the study was to identify the association between STIM1 methylation and CRC clinical features through analyzing DNA methylation of transcription factor binding sites in the STIM1 promoter region. In the study, we enrolled a total of 108 CRC patients undergoing radical surgery and FOLFOX chemotherapy and selected binding sites of NF-κB, E2F1 and CREB1 in the STIM1 promoter which have been proven to be highly associated with carcinogenesis. Using the pyrosequencing method to analyze methylation of CpG islands in target transcript factor binding sites, we found high methylated NF-κB binding sites being associated with post -operation distant metastasis in CRC patients (p = 0.008). Patients with high methylated NF-κB showed lower disease free survival rate than those with low methylation (p = 0.009). Additionally, our result revealed that DNA methylation of CREB1 and E2F1 binding sites were significantly associated with histology of CRC. The study indicated that highly methylated NF-κB binding site was positively correlated with post-surgical distant metastasis decreased CRC patients’ disease free survival rate. We expected the results of the study able to promote the DNA methylation as a clinical diagnostic biomarker of CRC, providing early diagnosis and precaution for cancer patients.

中文摘要 I
英文摘要 III
致謝 V
目錄 VII
表目錄 IX
圖目錄 X
壹、研究背景介紹 1
一、鈣池調控鈣離子通道 1
二、大腸直腸癌(Colorectal cancer/CRC) 8
三、DNA甲基化 14
貳、研究動機 16
参、材料與方法 17
一、細胞培養(cell culture) 17
二、短暫性DNA轉染 (Transient transfection) 19
三、組織蛋白質萃取 20
四、酵素連結免疫吸附法 21
(Enzyme-Linked lmmunosorbent Assay , ELISA) 21
五、鈣離子訊息測定 22
六、蛋白質萃取 24
七、西方墨點法 (Western blotting) 26
八、研究對象 29
九、倫理聲明 29
十、臨床資料蒐集 30
十一、組織DNA萃取 31
十二、重亞硫酸鹽轉化(Bisulfite conversion) 33
十三、甲基化核酸引子設計 35
十四、甲基化聚合酶連鎖反應 (Pyromark PCR) 38
十五、DNA洋菜膠電泳 (Agarose gel electrophoresis) 39
十六、焦磷酸測序(Pyrosequencing) 40
十七、測序結果判讀 43
十八、統計方法 44
肆、實驗結果 45
伍、結論 55
柒、參考文獻 66
捌、附錄 74


1. Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol 4: 517-529.
2. Cordeiro S, Strauss O (2011) Expression of Orai genes and I(CRAC) activation in the human retinal pigment epithelium. Graefes Arch Clin Exp Ophthalmol 249: 47-54.
3. Syntichaki P, Tavernarakis N (2003) The biochemistry of neuronal necrosis: rogue biology? Nat Rev Neurosci 4: 672-684.
4. Burnashev N (1998) Calcium permeability of ligand-gated channels. Cell Calcium 24: 325-332.
5. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16: 521-555.
6. Parekh AB, Putney JW, Jr. (2005) Store-operated calcium channels. Physiol Rev 85: 757-810.
7. Putney JW, Jr. (1986) A model for receptor-regulated calcium entry. Cell Calcium 7: 1-12.
8. Zakharov SI, Smani T, Dobrydneva Y, Monje F, Fichandler C, et al. (2004) Diethylstilbestrol is a potent inhibitor of store-operated channels and capacitative Ca(2+) influx. Mol Pharmacol 66: 702-707.
9. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, et al. (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14: 2337-2349.
10. Chang WC (2006) Store-operated calcium channels and pro-inflammatory signals. Acta Pharmacol Sin 27: 813-820.
11. Barritt GJ (1999) Receptor-activated Ca2+ inflow in animal cells: a variety of pathways tailored to meet different intracellular Ca2+ signalling requirements. Biochem J 337 ( Pt 2): 153-169.
12. Roos J, DiGregorio PJ, Yeromin AV, Ohlsen K, Lioudyno M, et al. (2005) STIM1, an essential and conserved component of store-operated Ca2+ channel function. J Cell Biol 169: 435-445.
13. Liou J, Kim ML, Heo WD, Jones JT, Myers JW, et al. (2005) STIM is a Ca2+ sensor essential for Ca2+-store-depletion-triggered Ca2+ influx. Curr Biol 15: 1235-1241.
14. Williams RT, Manji SS, Parker NJ, Hancock MS, Van Stekelenburg L, et al. (2001) Identification and characterization of the STIM (stromal interaction molecule) gene family: coding for a novel class of transmembrane proteins. Biochem J 357: 673-685.
15. Manji SS, Parker NJ, Williams RT, van Stekelenburg L, Pearson RB, et al. (2000) STIM1: a novel phosphoprotein located at the cell surface. Biochim Biophys Acta 1481: 147-155.
16. Feske S, Skolnik EY, Prakriya M (2012) Ion channels and transporters in lymphocyte function and immunity. Nat Rev Immunol 12: 532-547.
17. Feske S, Gwack Y, Prakriya M, Srikanth S, Puppel SH, et al. (2006) A mutation in Orai1 causes immune deficiency by abrogating CRAC channel function. Nature 441: 179-185.
18. Maruyama Y, Ogura T, Mio K, Kato K, Kaneko T, et al. (2009) Tetrameric Orai1 is a teardrop-shaped molecule with a long, tapered cytoplasmic domain. J Biol Chem 284: 13676-13685.
19. Lis A, Peinelt C, Beck A, Parvez S, Monteilh-Zoller M, et al. (2007) CRACM1, CRACM2, and CRACM3 are store-operated Ca2+ channels with distinct functional properties. Curr Biol 17: 794-800.
20. Vig M, Beck A, Billingsley JM, Lis A, Parvez S, et al. (2006) CRACM1 multimers form the ion-selective pore of the CRAC channel. Curr Biol 16: 2073-2079.
21. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, et al. (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443: 230-233.
22. Yeromin AV, Zhang SL, Jiang W, Yu Y, Safrina O, et al. (2006) Molecular identification of the CRAC channel by altered ion selectivity in a mutant of Orai. Nature 443: 226-229.
23. Parekh AB (2010) Store-operated CRAC channels: function in health and disease. Nat Rev Drug Discov 9: 399-410.
24. Yang S, Zhang JJ, Huang XY (2009) Orai1 and STIM1 are critical for breast tumor cell migration and metastasis. Cancer Cell 15: 124-134.
25. Feng M, Grice DM, Faddy HM, Nguyen N, Leitch S, et al. (2010) Store-independent activation of Orai1 by SPCA2 in mammary tumors. Cell 143: 84-98.
26. Wang JY, Chen BK, Wang YS, Tsai YT, Chen WC, et al. (2012) Involvement of store-operated calcium signaling in EGF-mediated COX-2 gene activation in cancer cells. Cell Signal 24: 162-169.
27. Chen YF, Chiu WT, Chen YT, Lin PY, Huang HJ, et al. (2011) Calcium store sensor stromal-interaction molecule 1-dependent signaling plays an important role in cervical cancer growth, migration, and angiogenesis. Proc Natl Acad Sci U S A 108: 15225-15230.
28. Huang WC, Chai CY, Chen WC, Hou MF, Wang YS, et al. (2011) Histamine regulates cyclooxygenase 2 gene activation through Orai1-mediated NFkappaB activation in lung cancer cells. Cell Calcium 50: 27-35.
29. Fedida-Metula S, Feldman B, Koshelev V, Levin-Gromiko U, Voronov E, et al. (2012) Lipid rafts couple store-operated Ca2+ entry to constitutive activation of PKB/Akt in a Ca2+/calmodulin-, Src- and PP2A-mediated pathway and promote melanoma tumor growth. Carcinogenesis 33: 740-750.
30. Feske S (2009) ORAI1 and STIM1 deficiency in human and mice: roles of store-operated Ca2+ entry in the immune system and beyond. Immunol Rev 231: 189-209.
31. McCarl CA, Picard C, Khalil S, Kawasaki T, Rother J, et al. (2009) ORAI1 deficiency and lack of store-operated Ca2+ entry cause immunodeficiency, myopathy, and ectodermal dysplasia. J Allergy Clin Immunol 124: 1311-1318 e1317.
32. Picard C, McCarl CA, Papolos A, Khalil S, Luthy K, et al. (2009) STIM1 mutation associated with a syndrome of immunodeficiency and autoimmunity. N Engl J Med 360: 1971-1980.
33. Schwarz A, Tutsch E, Ludwig B, Schwarz EC, Stallmach A, et al. (2004) Ca2+ signaling in identified T-lymphocytes from human intestinal mucosa. Relation to hyporeactivity, proliferation, and inflammatory bowel disease. J Biol Chem 279: 5641-5647.
34. Di Sabatino A, Rovedatti L, Kaur R, Spencer JP, Brown JT, et al. (2009) Targeting gut T cell Ca2+ release-activated Ca2+ channels inhibits T cell cytokine production and T-box transcription factor T-bet in inflammatory bowel disease. J Immunol 183: 3454-3462.
35. Lepage C, Hamza S, Faivre J (2010) [Epidemiology and screening of colon cancer]. Rev Prat 60: 1062-1067.
36. Ferlay J, Soerjomataram I, Ervik M, Dikshit R, Eser S, et al. (2014) Cancer Incidence and Mortality Worldwide: IARC CancerBase. GLOBOCAN 2012.
37. Bray F, Ren JS, Masuyer E, J. F (2013 Mar ) Estimates of global cancer prevalence for 27 sites in the adult population in 2008. Int J Cancer: 1;132(135):1133-1145.
38. Meropol NJ, Berger NA (2012) Colon cancer recurrence: insights from the interface between epidemiology, laboratory science, and clinical medicine. J Natl Cancer Inst 104: 1697-1698.
39. Mazeh H, Mizrahi I, Ilyayev N, Halle D, Brucher B, et al. (2013) The Diagnostic and Prognostic Role of microRNA in Colorectal Cancer - a Comprehensive review. J Cancer 4: 281-295.
40. Al-Sohaily S, Biankin A, Leong R, Kohonen-Corish M, Warusavitarne J (2012) Molecular pathways in colorectal cancer. J Gastroenterol Hepatol 27: 1423-1431.
41. Vogelstein B, Fearon ER, Hamilton SR, Kern SE, Preisinger AC, et al. (1988) Genetic alterations during colorectal-tumor development. N Engl J Med 319: 525-532.
42. Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144: 646-674.
43. Wu WK, Wang XJ, Cheng AS, Luo MX, Ng SS, et al. (2013) Dysregulation and crosstalk of cellular signaling pathways in colon carcinogenesis. Crit Rev Oncol Hematol 86: 251-277.
44. Roh H, Green DW, Boswell CB, Pippin JA, Drebin JA (2001) Suppression of beta-catenin inhibits the neoplastic growth of APC-mutant colon cancer cells. Cancer Res 61: 6563-6568.
45. Christie M, Jorissen RN, Mouradov D, Sakthianandeswaren A, Li S, et al. (2013) Different APC genotypes in proximal and distal sporadic colorectal cancers suggest distinct WNT/beta-catenin signalling thresholds for tumourigenesis. Oncogene 32: 4675-4682.
46. (1998) beta-catenin links the APC gene to MYC in colon cancer. Gastroenterology 115: 1041C-1042.
47. Robanus-Maandag EC, Koelink PJ, Breukel C, Salvatori DC, Jagmohan-Changur SC, et al. (2010) A new conditional Apc-mutant mouse model for colorectal cancer. Carcinogenesis 31: 946-952.
48. Khazaie K, Zadeh M, Khan MW, Bere P, Gounari F, et al. (2012) Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci U S A 109: 10462-10467.
49. Shaked H, Hofseth LJ, Chumanevich A, Chumanevich AA, Wang J, et al. (2012) Chronic epithelial NF-kappaB activation accelerates APC loss and intestinal tumor initiation through iNOS up-regulation. Proc Natl Acad Sci U S A 109: 14007-14012.
50. Wei J, Zaika E, Zaika A (2012) p53 Family: Role of Protein Isoforms in Human Cancer. J Nucleic Acids 2012: 687359.
51. Markowitz SD, Bertagnolli MM (2009) Molecular origins of cancer: Molecular basis of colorectal cancer. N Engl J Med 361: 2449-2460.
52. Bacolod MD, Barany F (2010) Gene dysregulations driven by somatic copy number aberrations-biological and clinical implications in colon tumors: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 12: 552-561.
53. Boland CR, Goel A (2010) Microsatellite instability in colorectal cancer. Gastroenterology 138: 2073-2087 e2073.
54. Chen QW, Zhu XY, Li YY, Meng ZQ (2014) Epigenetic regulation and cancer (review). Oncol Rep 31: 523-532.
55. Sharma S, Kelly TK, Jones PA (2010) Epigenetics in cancer. Carcinogenesis 31: 27-36.
56. Crea F, Paolicchi E, Marquez VE, Danesi R (2012) Polycomb genes and cancer: time for clinical application? Crit Rev Oncol Hematol 83: 184-193.
57. Migheli F, Stoccoro A, Coppede F, Wan Omar WA, Failli A, et al. (2013) Comparison study of MS-HRM and pyrosequencing techniques for quantification of APC and CDKN2A gene methylation. PLoS One 8: e52501.
58. Jones PA, Baylin SB (2007) The epigenomics of cancer. Cell 128: 683-692.
59. Toyota M, Ahuja N, Ohe-Toyota M, Herman JG, Baylin SB, et al. (1999) CpG island methylator phenotype in colorectal cancer. Proc Natl Acad Sci U S A 96: 8681-8686.
60. Nishio M, Sakakura C, Nagata T, Komiyama S, Miyashita A, et al. (2010) RUNX3 promoter methylation in colorectal cancer: its relationship with microsatellite instability and its suitability as a novel serum tumor marker. Anticancer Res 30: 2673-2682.
61. Lee BB, Lee EJ, Jung EH, Chun HK, Chang DK, et al. (2009) Aberrant methylation of APC, MGMT, RASSF2A, and Wif-1 genes in plasma as a biomarker for early detection of colorectal cancer. Clin Cancer Res 15: 6185-6191.
62. Mirchev MB, Kahl P, Friedrichs N, Kotzev IA, Buettner R (2010) DNA methylation in patients with colorectal cancer--correlation with some clinical and morphological features and with local tumour invasion. Folia Med (Plovdiv) 52: 22-30.
63. Kim JH, Rhee YY, Bae JM, Kwon HJ, Cho NY, et al. (2013) Subsets of microsatellite-unstable colorectal cancers exhibit discordance between the CpG island methylator phenotype and MLH1 methylation status. Mod Pathol 26: 1013-1022.
64. Schwitalla S, Fingerle AA, Cammareri P, Nebelsiek T, Goktuna SI, et al. (2013) Intestinal tumorigenesis initiated by dedifferentiation and acquisition of stem-cell-like properties. Cell 152: 25-38.
65. Feinberg AP, Ohlsson R, Henikoff S (2006) The epigenetic progenitor origin of human cancer. Nat Rev Genet 7: 21-33.
66. Das PM, Singal R (2004) DNA methylation and cancer. J Clin Oncol 22: 4632-4642.
67. Yang AS, Estecio MR, Doshi K, Kondo Y, Tajara EH, et al. (2004) A simple method for estimating global DNA methylation using bisulfite PCR of repetitive DNA elements. Nucleic Acids Res 32: e38.
68. Antelo M, Balaguer F, Shia J, Shen Y, Hur K, et al. (2012) A high degree of LINE-1 hypomethylation is a unique feature of early-onset colorectal cancer. PLoS One 7: e45357.
69. Hahn MA, Pfeifer GP (2010) Methods for genome-wide analysis of DNA methylation in intestinal tumors. Mutat Res 693: 77-83.
70. Ogino S, Nosho K, Kirkner GJ, Kawasaki T, Chan AT, et al. (2008) A cohort study of tumoral LINE-1 hypomethylation and prognosis in colon cancer. J Natl Cancer Inst 100: 1734-1738.
71. Sunami E, de Maat M, Vu A, Turner RR, Hoon DS (2011) LINE-1 hypomethylation during primary colon cancer progression. PLoS One 6: e18884.
72. Edge SB, Compton CC (2010) The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 17: 1471-1474.
73. Nelson RL, Dollear T, Freels S, Persky V (1997) The relation of age, race, and gender to the subsite location of colorectal carcinoma. Cancer 80: 193-197.
74. Kozak KR, Moody JS (2008) The impact of T and N stage on long-term survival of rectal cancer patients in the community. J Surg Oncol 98: 161-166.
75. Betge J, Langner C (2011) Vascular invasion, perineural invasion, and tumour budding: predictors of outcome in colorectal cancer. Acta Gastroenterol Belg 74: 516-529.
76. Umemura M, Baljinnyam E, Feske S, De Lorenzo MS, Xie LH, et al. (2014) Store-operated Ca2+ entry (SOCE) regulates melanoma proliferation and cell migration. PLoS One 9: e89292.
77. Abdullaev IF, Bisaillon JM, Potier M, Gonzalez JC, Motiani RK, et al. (2008) Stim1 and Orai1 mediate CRAC currents and store-operated calcium entry important for endothelial cell proliferation. Circ Res 103: 1289-1299.
78. Chiu WT, Tang MJ, Jao HC, Shen MR (2008) Soft substrate up-regulates the interaction of STIM1 with store-operated Ca2+ channels that lead to normal epithelial cell apoptosis. Mol Biol Cell 19: 2220-2230.
79. Liteplo RG, Frost P, Kerbel RS (1985) Genetic and epigenetic aspects of tumor progression and tumor heterogeneity. Basic Life Sci 33: 285-305.
80. Frost P, Kerbel RS (1983) On a possible epigenetic mechanism(s) of tumor cell heterogeneity. The role of DNA methylation. Cancer Metastasis Rev 2: 375-378.
81. Ku JL, Jeon YK, Park JG (2011) Methylation-specific PCR. Methods Mol Biol 791: 23-32.
82. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB (1996) Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci U S A 93: 9821-9826.
83. Tost J, Gut IG (2007) DNA methylation analysis by pyrosequencing. Nat Protoc 2: 2265-2275.
84. Khare S, Verma M (2012) Epigenetics of colon cancer. Methods Mol Biol 863: 177-185.
85. Wang S, Liu Z, Wang L, Zhang X (2009) NF-kappaB signaling pathway, inflammation and colorectal cancer. Cell Mol Immunol 6: 327-334.
86. Sakamoto K, Maeda S, Hikiba Y, Nakagawa H, Hayakawa Y, et al. (2009) Constitutive NF-kappaB activation in colorectal carcinoma plays a key role in angiogenesis, promoting tumor growth. Clin Cancer Res 15: 2248-2258.
87. Viennois E, Chen F, Merlin D (2013) NF-kappaB pathway in colitis-associated cancers. Transl Gastrointest Cancer 2: 21-29.
88. Wu Y, Zhou BP (2010) TNF-alpha/NF-kappaB/Snail pathway in cancer cell migration and invasion. Br J Cancer 102: 639-644.
89. 1 GY, HF (2009) E2F1: A colon cancer specific putative tumor suppressor and a valuable therapeutic targe.
90. Morris EJ, Ji JY, Yang F, Di Stefano L, Herr A, et al. (2008) E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455: 552-556.
91. Sandoval S, Pigazzi M, Sakamoto KM (2009) CREB: A Key Regulator of Normal and Neoplastic Hematopoiesis. Adv Hematol 2009: 634292.
92. Sakamoto KM, Frank DA (2009) CREB in the pathophysiology of cancer: implications for targeting transcription factors for cancer therapy. Clin Cancer Res 15: 2583-2587.
93. Chhabra A, Fernando H, Watkins G, Mansel RE, Jiang WG (2007) Expression of transcription factor CREB1 in human breast cancer and its correlation with prognosis. Oncol Rep 18: 953-958.
94. Rountree MR, Selker EU (1997) DNA methylation inhibits elongation but not initiation of transcription in Neurospora crassa. Genes Dev 11: 2383-2395.
95. Samowitz WS, Albertsen H, Herrick J, Levin TR, Sweeney C, et al. (2005) Evaluation of a large, population-based sample supports a CpG island methylator phenotype in colon cancer. Gastroenterology 129: 837-845.
96. Yamauchi M, Morikawa T, Kuchiba A, Imamura Y, Qian ZR, et al. (2012) Assessment of colorectal cancer molecular features along bowel subsites challenges the conception of distinct dichotomy of proximal versus distal colorectum. Gut 61: 847-854.
97. Wong R (2010) Proximal tumors are associated with greater mortality in colon cancer. J Gen Intern Med 25: 1157-1163.
98. Wray CM, Ziogas A, Hinojosa MW, Le H, Stamos MJ, et al. (2009) Tumor subsite location within the colon is prognostic for survival after colon cancer diagnosis. Dis Colon Rectum 52: 1359-1366.
99. Weiss JM, Pfau P, O''Connor E, LoConte NK, Kennedy G, et al. (2012) Is Colon Cancer Survival Influenced by Tumor Location? Reply. Journal of Clinical Oncology 30: 1733-1734.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊