跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/10 00:01
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:李岳原
研究生(外文):Yueh-Yuan Li
論文名稱:母體暴露鄰苯二甲酸二(2-乙基己基)酯對子代樹突細胞恆定作用之影響
論文名稱(外文):The transmaternal effect of Di-(2-ethylhexyl) phthalate exposure on dendritic cell homeostasis in offspring
指導教授:孫昭玲
指導教授(外文):Jau-Ling Suen
學位類別:碩士
校院名稱:高雄醫學大學
系所名稱:醫學研究所-基礎醫學組
學門:醫藥衛生學門
學類:醫學學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:68
中文關鍵詞:鄰苯二甲酸二(2-乙基己基)酯樹突細胞母體繼代影響子代氣喘
外文關鍵詞:Di-(2-ethylhexyl) phthalatedendritic celltransmaternal effectoffspringasthma
相關次數:
  • 被引用被引用:0
  • 點閱點閱:172
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
摘要
前言:鄰苯二甲酸二(2-已基己基)酯(DEHP)目前被廣泛用於製造含有聚氯乙烯(PVC)的塑膠製品,由於不是以共價鍵方式結合,所以容易暴露於環境中。大部分的研究都是針對DEHP與生殖系統的相關研究,本實驗室之前研究發現,母體暴露DEHP會讓子代肺部的過敏性發炎變嚴重,由於樹突細胞在氣喘免疫機制中扮演重要的角色,是否DEHP對樹突細胞的恆定作用會造成影響,這部分目前還不清楚。因此本研究著重於樹突細胞的恆定在DEHP的作用中所扮演的角色
實驗方法:模擬人類暴露DEHP的方式,建立DEHP母體暴露之子代小鼠氣喘模式,分析子代脾臟裡樹突細胞與其中CD4+樹突細胞和CD8+樹突細胞的比例,並且觀察骨髓細胞中樹突前驅細胞比例,最後針對這些比例之變化,觀察是否因為細胞凋亡而導致的。
實驗結果:母體長期暴露低劑量DEHP會導致F1幼鼠在經OVA致敏化的情況,脾臟中典型樹突細胞的比例與細胞數顯著下降,在骨髓細胞中樹突前驅細胞的比例也有下降的趨勢,並誘發走向細胞凋亡,而在脾臟中CD4+CD8-典型樹突細胞比例顯著上升,在CD4-CD8+典型樹突細胞比例則明顯下降。在經OVA致敏化的F1成鼠,結果發現脾臟中典型樹突細胞的比例與細胞數顯著下降,骨髓細胞中樹突前驅細胞比例無差異,而樹突前驅細胞會偏向B220+的亞群,並且也會誘發樹突前驅細胞走向細胞凋亡,而在脾臟中CD4+CD8-典型樹突細胞比例顯著上升,在CD4-CD8-典型樹突細胞比例則明顯下降。
結論:本研究發現了母體暴露DEHP會影響F1小鼠之樹突細胞恆定作用,而這樣的變化可能是導致肺部發炎較嚴重的原因。

Abstract
Introduction: Di (2-ethylhexyl) phthalate (DEHP) is widely used in plastic products such as polyvinyl chloride plastics. DEHP is not covalently bound to the plastic matrix, so DEHP exposure to the environment is easy, resulting in contamination of the external environment. Our previous studies found that maternal exposure to DEHP enhanced the severity of airway allergic inflammation in the offspring as compared to the control.
Aim: The dendritic cell (DC) plays an important role in the pathogenesis of asthma, therefore, the aim of this study is to clarify the effect of maternal DEHP exposure on DC homeostasis in F1 offspring.
Method: To simulate the ways in which humans are affected by exposure to DEHP, we established an asthma model of offspring after maternal exposure to DEHP and analyzed the percentages and numbers of splenic DCs and subsets in F1 offspring. We also observed DC precursors in bone marrow of offspring. Finally, we analyzed the apoptosis of DCs and DC precursors.
Result: After low-dose and long-term exposure to DEHP, the OVA-immunized F1 neonate mice were observed. We found that the percentage and numbers of splenic cDCs were significantly decreased in DEHP-exposed F1 neonates. In addition, the percentages of bone marrow DC precursors were also decreased in DEHP group. This may be due to the increased apoptotic rates of DC precursors in DEHP F1 offspring. We also found that percentage of the CD4+CD8- DCs was increased and the percentage of CD4-CD8+ DCs was decreased in the DEHP F1 spleen. In the immunized adult DEHP F1 mice, the percentage and cell number of splenic cDCs were also decreased. Although the percentage of DC precursors was not different in these two groups, the percentage of B220+ cells in DC precursors was increased in DEHP group. We also found that the percentage of apoptotic DC precursors was increased, the percentage of CD4+CD8- DCs was also increased and the percentage of CD4-CD8- DCs was decreased in DEHP F1 offspring.
Conclusion: These results indicate that maternal exposure to DEHP may influence the DC homeostasis and enhance the severity of allergic lung inflammation in the F1 offspring.


目錄
致謝 ii
摘要 iii
Abstract iv
前言 1
1. 氣喘(Asthma): 1
1-1. 氣喘簡介 1
1-2. 氣喘之母體繼代現象 2
2. 氣喘之免疫機制 2
2-1. 氣喘之先天性免疫機制 2
2-2. 氣喘之後天性免疫機制 3
3. 樹突細胞(dendritic cell;DC) 4
3-1. 樹突細胞簡介 4
3-2. 樹突細胞之分化過程 6
3-3. 脾臟之樹突細胞類型 7
3-4. 典型樹突細胞亞群之功能 8
4. 內分泌干擾因子(Endocrine disruptor chemical;EDC) 9
4-1 環境內分泌干擾因子之簡介 9
4-2 鄰苯二甲酸二(2-乙基己基)酯(DEHP)之簡介 11
4-3 DEHP之人體暴露與代謝 11
4-4 DEHP對人體的影響 12
4-5 DEHP之母體暴露影響 13
4-6 DEHP與氣喘相關研究 14
研究目的 16
實驗材料及方法 17
1. 實驗用小鼠 17
2. DEHP暴露方式 17
3. 幼鼠氣喘-動物模式 18
4. 成鼠氣喘之動物模式 19
5. 脾臟細胞處理 19
6. 骨髓細胞處理 20
7. 細胞表面抗原染色 21
8. 脾臟樹突細胞類型分析(dendritic cell) 22
9. 骨髓細胞之樹突前趨細胞分析(DC precurosr) 22
10. 細胞凋亡分析(Annexin V) 23
11. 統計方法 23
12. 本實驗分析細胞分群所使用的抗體 24
實驗結果 25
母體長期暴露低劑量DEHP會影響F1小鼠的脾臟樹突細胞之比例與細胞數 25
母體長期暴露低劑量DEHP會影響F1小鼠骨髓細胞中樹突前驅細胞的比例 26
母體長期暴露低劑量DEHP會誘發F1小鼠骨髓細胞中樹突前驅細胞走向細胞凋亡 27
母體長期暴露低劑量DEHP會誘發F1小鼠脾臟典型樹突細胞亞群偏向CD4+典型樹突細胞 28
結論 30
討論 32
結果圖表 38
參考文獻 54



參考文獻
1.Bateman, E.D., et al., Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J, 2008. 31(1): p. 143-78.
2.Haselkorn, T., et al., Asthma control and activity limitations: insights from the Real-world Evaluation of Asthma Control and Treatment (REACT) study. Ann Allergy Asthma Immunol, 2010. 104(6): p. 471-7.
3.Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu, The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol, 2010. 11(7): p. 577-84.
4.Murphy, V.E., et al., Asthma during pregnancy: mechanisms and treatment implications. Eur Respir J, 2005. 25(4): p. 731-50.
5.Sumi, Y. and Q. Hamid, Airway remodeling in asthma. Allergol Int, 2007. 56(4): p. 341-8.
6.Tillie-Leblond, I., et al., Airway remodeling is correlated with obstruction in children with severe asthma. Allergy, 2008. 63(5): p. 533-41.
7.Busse, W.W. and R.F. Lemanske, Jr., Asthma. N Engl J Med, 2001. 344(5): p. 350-62.
8.Cohn, L., J.A. Elias, and G.L. Chupp, Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol, 2004. 22: p. 789-815.
9.Selgrade, M.K., et al., Assessing the health effects and risks associated with children''s inhalation exposures--asthma and allergy. J Toxicol Environ Health A, 2008. 71(3): p. 196-207.
10.Brand, S., et al., DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol, 2012. 129(6): p. 1602-10 e6.
11.Brand, S., et al., Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol, 2011. 128(3): p. 618-25 e1-7.
12.Kwon, H.L., K. Belanger, and M.B. Bracken, Asthma prevalence among pregnant and childbearing-aged women in the United States: estimates from national health surveys. Ann Epidemiol, 2003. 13(5): p. 317-24.
13.Skadhauge, L.R., et al., [The occurrence of asthma among young adults. A population-based study in five west Danish counties]. Ugeskr Laeger, 2005. 167(6): p. 648-51.
14.Tan, K.S. and N.C. Thomson, Asthma in pregnancy. Am J Med, 2000. 109(9): p. 727-33.
15.Murphy, V.E., et al., A meta-analysis of adverse perinatal outcomes in women with asthma. BJOG, 2011. 118(11): p. 1314-23.
16.Blais, L., et al., Effect of maternal asthma on the risk of specific congenital malformations: A population-based cohort study. Birth Defects Res A Clin Mol Teratol, 2010. 88(4): p. 216-22.
17.Lin, S., et al., Maternal asthma, asthma medication use, and the risk of congenital heart defects. Birth Defects Res A Clin Mol Teratol, 2009. 85(2): p. 161-8.
18.Martel, M.J., et al., Control and severity of asthma during pregnancy are associated with asthma incidence in offspring: two-stage case-control study. Eur Respir J, 2009. 34(3): p. 579-87.
19.Martel, M.J., et al., Determinants of the incidence of childhood asthma: a two-stage case-control study. Am J Epidemiol, 2009. 169(2): p. 195-205.
20.Leme, A.S., et al., Role of breast milk in a mouse model of maternal transmission of asthma susceptibility. J Immunol, 2006. 176(2): p. 762-9.
21.Soumelis, V., et al., Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol, 2002. 3(7): p. 673-80.
22.West, E.E., M. Kashyap, and W.J. Leonard, TSLP: A Key Regulator of Asthma Pathogenesis. Drug Discov Today Dis Mech, 2012. 9(3-4).
23.Ishmael, F.T., The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc, 2011. 111(11 Suppl 7): p. S11-7.
24.Fallon, P.G., et al., Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med, 2006. 203(4): p. 1105-16.
25.Cohn, L., et al., Th2-induced airway mucus production is dependent on IL-4Ralpha, but not on eosinophils. J Immunol, 1999. 162(10): p. 6178-83.
26.Wills-Karp, M., et al., Interleukin-13: central mediator of allergic asthma. Science, 1998. 282(5397): p. 2258-61.
27.Holgate, S.T. and R. Polosa, Treatment strategies for allergy and asthma. Nat Rev Immunol, 2008. 8(3): p. 218-30.
28.Levine, S.J. and S.E. Wenzel, Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann Intern Med, 2010. 152(4): p. 232-7.
29.Carroll, N.G., S. Mutavdzic, and A.L. James, Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J, 2002. 19(5): p. 879-85.
30.Holgate, S.T., Innate and adaptive immune responses in asthma. Nat Med, 2012. 18(5): p. 673-83.
31.Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells. Annu Rev Immunol, 2003. 21: p. 685-711.
32.Steinman, R.M. and M.C. Nussenzweig, Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A, 2002. 99(1): p. 351-8.
33.Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52.
34.Reis e Sousa, C., Dendritic cells in a mature age. Nat Rev Immunol, 2006. 6(6): p. 476-83.
35.Liu, L., et al., Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol, 1998. 10(8): p. 1017-26.
36.Ria, F., G. Penna, and L. Adorini, Th1 cells induce and Th2 inhibit antigen-dependent IL-12 secretion by dendritic cells. Eur J Immunol, 1998. 28(6): p. 2003-16.
37.Mailliard, R.B., et al., Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol, 2003. 171(5): p. 2366-73.
38.Lambotin, M., et al., A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol, 2010. 8(5): p. 350-60.
39.Jetten, A.M., Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal, 2009. 7: p. e003.
40.Morelli, A.E. and A.W. Thomson, Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol, 2007. 7(8): p. 610-21.
41.Shortman, K. and Y.J. Liu, Mouse and human dendritic cell subtypes. Nat Rev Immunol, 2002. 2(3): p. 151-61.
42.Geissmann, F., et al., Development of monocytes, macrophages, and dendritic cells. Science, 2010. 327(5966): p. 656-61.
43.Merad, M. and F. Ginhoux, Dendritic cell genealogy: a new stem or just another branch? Nat Immunol, 2007. 8(11): p. 1199-201.
44.Tsunetsugu-Yokota, Y. and M. Muhsen, Development of human dendritic cells and their role in HIV infection: antiviral immunity versus HIV transmission. Front Microbiol, 2013. 4: p. 178.
45.Fogg, D.K., et al., A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science, 2006. 311(5757): p. 83-7.
46.Varol, C., et al., Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med, 2007. 204(1): p. 171-80.
47.Siegal, F.P., et al., The nature of the principal type 1 interferon-producing cells in human blood. Science, 1999. 284(5421): p. 1835-7.
48.Vremec, D., et al., CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol, 2000. 164(6): p. 2978-86.
49.McLellan, A.D. and E. Kampgen, Functions of myeloid and lymphoid dendritic cells. Immunol Lett, 2000. 72(2): p. 101-5.
50.Lee, H.H., et al., Delayed maturation of an IL-12-producing dendritic cell subset explains the early Th2 bias in neonatal immunity. J Exp Med, 2008. 205(10): p. 2269-80.
51.McLellan, A.D., et al., Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression. Blood, 2002. 99(6): p. 2084-93.
52.Edwards, A.D., et al., Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol, 2003. 33(4): p. 827-33.
53.Henri, S., et al., The dendritic cell populations of mouse lymph nodes. J Immunol, 2001. 167(2): p. 741-8.
54.Crowley, M., et al., The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. Cell Immunol, 1989. 118(1): p. 108-25.
55.Pooley, J.L., W.R. Heath, and K. Shortman, Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol, 2001. 166(9): p. 5327-30.
56.den Haan, J.M., S.M. Lehar, and M.J. Bevan, CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med, 2000. 192(12): p. 1685-96.
57.Grohmann, U., et al., IL-12 acts selectively on CD8 alpha- dendritic cells to enhance presentation of a tumor peptide in vivo. J Immunol, 1999. 163(6): p. 3100-5.
58.Pulendran, B., et al., Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A, 1999. 96(3): p. 1036-41.
59.Shortman, K. and W.R. Heath, The CD8+ dendritic cell subset. Immunol Rev, 2010. 234(1): p. 18-31.
60.Bialecki, E., et al., Spleen-resident CD4+ and CD4- CD8alpha- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One, 2011. 6(10): p. e26919.
61.Dudziak, D., et al., Differential antigen processing by dendritic cell subsets in vivo. Science, 2007. 315(5808): p. 107-11.
62.Maldonado-Lopez, R., et al., CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med, 1999. 189(3): p. 587-92.
63.Heath, W.R., et al., Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev, 2004. 199: p. 9-26.
64.Maldonado-Lopez, R., et al., Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(-) dendritic cells to prime Th1/Th2 cells in vivo. J Immunol, 2001. 167(8): p. 4345-50.
65.McLachlan, J.A., Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev, 2001. 22(3): p. 319-41.
66.Safe, S., Clinical correlates of environmental endocrine disruptors. Trends Endocrinol Metab, 2005. 16(4): p. 139-44.
67.Whaley, D.A., D. Keyes, and B. Khorrami, Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals. Drug Chem Toxicol, 2001. 24(4): p. 359-420.
68.Swedenborg, E., et al., Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol, 2009. 43(1): p. 1-10.
69.Carere, C., et al., Bird populations as sentinels of endocrine disrupting chemicals. Ann Ist Super Sanita, 2010. 46(1): p. 81-8.
70.Liu, J., et al., Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ Pollut, 2011. 159(10): p. 2815-22.
71.Colborn, T., F.S. vom Saal, and A.M. Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect, 1993. 101(5): p. 378-84.
72.Walker, D.M. and A.C. Gore, Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol, 2011. 7(4): p. 197-207.
73.Bornehag, C.G., et al., Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect, 2005. 113(10): p. 1399-404.
74.Afshari, A., et al., Emission of phthalates from PVC and other materials. Indoor Air, 2004. 14(2): p. 120-8.
75.Koch, H.M., R. Preuss, and J. Angerer, Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. Int J Androl, 2006. 29(1): p. 155-65; discussion 181-5.
76.Guo, J., et al., Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLoS One, 2012. 7(6): p. e39008.
77.Lhuguenot, J.C., Recent European Food Safety Authority toxicological evaluations of major phthalates used in food contact materials. Mol Nutr Food Res, 2009. 53(8): p. 1063-70.
78.Koch, H.M., et al., New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol, 2005. 79(7): p. 367-76.
79.Sjoberg, P., U. Bondesson, and M. Hammarlund, Non-linearities in the pharmacokinetics of di-(2-ethylhexyl) phthalate and metabolites in male rats. Arch Toxicol, 1985. 58(2): p. 72-7.
80.Dostal, L.A., et al., Testicular toxicity and reduced Sertoli cell numbers in neonatal rats by di(2-ethylhexyl)phthalate and the recovery of fertility as adults. Toxicol Appl Pharmacol, 1988. 95(1): p. 104-21.
81.Poon, R., et al., Subchronic oral toxicity of di-n-octyl phthalate and di(2-Ethylhexyl) phthalate in the rat. Food Chem Toxicol, 1997. 35(2): p. 225-39.
82.David, R.M., et al., Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicol Sci, 2000. 58(2): p. 377-85.
83.Davis, B.J., R.R. Maronpot, and J.J. Heindel, Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol, 1994. 128(2): p. 216-23.
84.Mose, T., et al., Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod Toxicol, 2007. 23(1): p. 83-91.
85.Latini, G., et al., In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect, 2003. 111(14): p. 1783-5.
86.Adibi, J.J., et al., Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect, 2003. 111(14): p. 1719-22.
87.Kato, K., et al., Quantifying phthalate metabolites in human meconium and semen using automated off-line solid-phase extraction coupled with on-line SPE and isotope-dilution high-performance liquid chromatography--tandem mass spectrometry. Anal Chem, 2006. 78(18): p. 6651-5.
88.Grande, S.W., et al., A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development. Toxicol Sci, 2006. 91(1): p. 247-54.
89.Oie, L., L.G. Hersoug, and J.O. Madsen, Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ Health Perspect, 1997. 105(9): p. 972-8.
90.Jaakkola, J.J., et al., Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway. Am J Public Health, 1999. 89(2): p. 188-92.
91.Bornehag, C.G., et al., The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect, 2004. 112(14): p. 1393-7.
92.Lee, M.H., et al., Enhancement of interleukin-4 production in activated CD4+ T cells by diphthalate plasticizers via increased NF-AT binding activity. Int Arch Allergy Immunol, 2004. 134(3): p. 213-22.
93.Thor Larsen, S., et al., Di-(2-ethylhexyl) phthalate possesses an adjuvant effect in a subcutaneous injection model with BALB/c mice. Toxicol Lett, 2001. 125(1-3): p. 11-8.
94.Larsen, S.T., et al., Airway inflammation and adjuvant effect after repeated airborne exposures to di-(2-ethylhexyl)phthalate and ovalbumin in BALB/c mice. Toxicology, 2007. 235(1-2): p. 119-29.
95.Bornehag, C.G. and E. Nanberg, Phthalate exposure and asthma in children. Int J Androl, 2010. 33(2): p. 333-45.
96.Diao, J., et al., Characterization of distinct conventional and plasmacytoid dendritic cell-committed precursors in murine bone marrow. J Immunol, 2004. 173(3): p. 1826-33.
97.MartIn-Fontecha, A., et al., Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med, 2003. 198(4): p. 615-21.
98.Vandenberg, L.N., et al., Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev, 2012. 33(3): p. 378-455.
99.Wei, Z., et al., Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol Lett, 2012. 212(2): p. 212-21.
100.Blystone, C.R., et al., Determination of the di-(2-ethylhexyl) phthalate NOAEL for reproductive development in the rat: importance of the retention of extra animals to adulthood. Toxicol Sci, 2010. 116(2): p. 640-6.
101.Yanagisawa, R., et al., Effects of maternal exposure to di-(2-ethylhexyl) phthalate during fetal and/or neonatal periods on atopic dermatitis in male offspring. Environ Health Perspect, 2008. 116(9): p. 1136-41.
102.Gaunt, I.F. and K.R. Butterworth, Autoradiographic study of orally administered di-(2-ethylhexyl) phthalate in the mouse. Food Chem Toxicol, 1982. 20(2): p. 215-7.
103.Pollack, G.M., et al., Effects of route of administration and repetitive dosing on the disposition kinetics of di(2-ethylhexyl) phthalate and its mono-de-esterified metabolite in rats. Toxicol Appl Pharmacol, 1985. 79(2): p. 246-56.
104.Muhlenkamp, C.R. and S.S. Gill, A glucose-regulated protein, GRP58, is down-regulated in C57B6 mouse liver after diethylhexyl phthalate exposure. Toxicol Appl Pharmacol, 1998. 148(1): p. 101-8.
105.Daniel, J.W. and H. Bratt, The absorption, metabolism and tissue distribution of di(2-ethylhexyl)phthalate in rats. Toxicology, 1974. 2(1): p. 51-65.
106.Rhodes, C., et al., Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl) phthalate (DEHP) in rats and marmosets: extrapolation of effects in rodents to man. Environ Health Perspect, 1986. 65: p. 299-307.
107.Rhodes, C., et al., The disposition of 14C-di-2-ethylhexylphthalate (DEHP) in the marmoset. Dev Toxicol Environ Sci, 1983. 11: p. 579-81.
108.Zhang, X.F., et al., Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environ Mol Mutagen, 2013. 54(5): p. 354-61.
109.Bersten, D.C., et al., bHLH-PAS proteins in cancer. Nat Rev Cancer, 2013. 13(12): p. 827-41.
110.Ito, Y., et al., Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. J Occup Health, 2007. 49(3): p. 172-82.
111.Eveillard, A., et al., Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): a novel signalling pathway sensitive to phthalates. Biochem Pharmacol, 2009. 77(11): p. 1735-46.
112.Yang, Q., Y. Xie, and J.W. Depierre, Effects of peroxisome proliferators on the thymus and spleen of mice. Clin Exp Immunol, 2000. 122(2): p. 219-26.
113.Sakazaki, H., H. Ueno, and K. Nakamuro, Estrogen receptor alpha in mouse splenic lymphocytes: possible involvement in immunity. Toxicol Lett, 2002. 133(2-3): p. 221-9.
114.Schlezinger, J.J., et al., Environmental and endogenous peroxisome proliferator-activated receptor gamma agonists induce bone marrow B cell growth arrest and apoptosis: interactions between mono(2-ethylhexyl)phthalate, 9-cis-retinoic acid, and 15-deoxy-Delta12,14-prostaglandin J2. J Immunol, 2004. 173(5): p. 3165-77.
115.Li, N., et al., Di-(2-ethylhcxyl) phthalate reduces progesterone levels and induces apoptosis of ovarian granulosa cell in adult female ICR mice. Environ Toxicol Pharmacol, 2012. 34(3): p. 869-75.
116.Skinner, M.K., What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol, 2008. 25(1): p. 2-6.
117.Peaston, A.E. and E. Whitelaw, Epigenetics and phenotypic variation in mammals. Mamm Genome, 2006. 17(5): p. 365-74.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊