|
參考文獻 1.Bateman, E.D., et al., Global strategy for asthma management and prevention: GINA executive summary. Eur Respir J, 2008. 31(1): p. 143-78. 2.Haselkorn, T., et al., Asthma control and activity limitations: insights from the Real-world Evaluation of Asthma Control and Treatment (REACT) study. Ann Allergy Asthma Immunol, 2010. 104(6): p. 471-7. 3.Kim, H.Y., R.H. DeKruyff, and D.T. Umetsu, The many paths to asthma: phenotype shaped by innate and adaptive immunity. Nat Immunol, 2010. 11(7): p. 577-84. 4.Murphy, V.E., et al., Asthma during pregnancy: mechanisms and treatment implications. Eur Respir J, 2005. 25(4): p. 731-50. 5.Sumi, Y. and Q. Hamid, Airway remodeling in asthma. Allergol Int, 2007. 56(4): p. 341-8. 6.Tillie-Leblond, I., et al., Airway remodeling is correlated with obstruction in children with severe asthma. Allergy, 2008. 63(5): p. 533-41. 7.Busse, W.W. and R.F. Lemanske, Jr., Asthma. N Engl J Med, 2001. 344(5): p. 350-62. 8.Cohn, L., J.A. Elias, and G.L. Chupp, Asthma: mechanisms of disease persistence and progression. Annu Rev Immunol, 2004. 22: p. 789-815. 9.Selgrade, M.K., et al., Assessing the health effects and risks associated with children''s inhalation exposures--asthma and allergy. J Toxicol Environ Health A, 2008. 71(3): p. 196-207. 10.Brand, S., et al., DNA methylation of TH1/TH2 cytokine genes affects sensitization and progress of experimental asthma. J Allergy Clin Immunol, 2012. 129(6): p. 1602-10 e6. 11.Brand, S., et al., Epigenetic regulation in murine offspring as a novel mechanism for transmaternal asthma protection induced by microbes. J Allergy Clin Immunol, 2011. 128(3): p. 618-25 e1-7. 12.Kwon, H.L., K. Belanger, and M.B. Bracken, Asthma prevalence among pregnant and childbearing-aged women in the United States: estimates from national health surveys. Ann Epidemiol, 2003. 13(5): p. 317-24. 13.Skadhauge, L.R., et al., [The occurrence of asthma among young adults. A population-based study in five west Danish counties]. Ugeskr Laeger, 2005. 167(6): p. 648-51. 14.Tan, K.S. and N.C. Thomson, Asthma in pregnancy. Am J Med, 2000. 109(9): p. 727-33. 15.Murphy, V.E., et al., A meta-analysis of adverse perinatal outcomes in women with asthma. BJOG, 2011. 118(11): p. 1314-23. 16.Blais, L., et al., Effect of maternal asthma on the risk of specific congenital malformations: A population-based cohort study. Birth Defects Res A Clin Mol Teratol, 2010. 88(4): p. 216-22. 17.Lin, S., et al., Maternal asthma, asthma medication use, and the risk of congenital heart defects. Birth Defects Res A Clin Mol Teratol, 2009. 85(2): p. 161-8. 18.Martel, M.J., et al., Control and severity of asthma during pregnancy are associated with asthma incidence in offspring: two-stage case-control study. Eur Respir J, 2009. 34(3): p. 579-87. 19.Martel, M.J., et al., Determinants of the incidence of childhood asthma: a two-stage case-control study. Am J Epidemiol, 2009. 169(2): p. 195-205. 20.Leme, A.S., et al., Role of breast milk in a mouse model of maternal transmission of asthma susceptibility. J Immunol, 2006. 176(2): p. 762-9. 21.Soumelis, V., et al., Human epithelial cells trigger dendritic cell mediated allergic inflammation by producing TSLP. Nat Immunol, 2002. 3(7): p. 673-80. 22.West, E.E., M. Kashyap, and W.J. Leonard, TSLP: A Key Regulator of Asthma Pathogenesis. Drug Discov Today Dis Mech, 2012. 9(3-4). 23.Ishmael, F.T., The inflammatory response in the pathogenesis of asthma. J Am Osteopath Assoc, 2011. 111(11 Suppl 7): p. S11-7. 24.Fallon, P.G., et al., Identification of an interleukin (IL)-25-dependent cell population that provides IL-4, IL-5, and IL-13 at the onset of helminth expulsion. J Exp Med, 2006. 203(4): p. 1105-16. 25.Cohn, L., et al., Th2-induced airway mucus production is dependent on IL-4Ralpha, but not on eosinophils. J Immunol, 1999. 162(10): p. 6178-83. 26.Wills-Karp, M., et al., Interleukin-13: central mediator of allergic asthma. Science, 1998. 282(5397): p. 2258-61. 27.Holgate, S.T. and R. Polosa, Treatment strategies for allergy and asthma. Nat Rev Immunol, 2008. 8(3): p. 218-30. 28.Levine, S.J. and S.E. Wenzel, Narrative review: the role of Th2 immune pathway modulation in the treatment of severe asthma and its phenotypes. Ann Intern Med, 2010. 152(4): p. 232-7. 29.Carroll, N.G., S. Mutavdzic, and A.L. James, Distribution and degranulation of airway mast cells in normal and asthmatic subjects. Eur Respir J, 2002. 19(5): p. 879-85. 30.Holgate, S.T., Innate and adaptive immune responses in asthma. Nat Med, 2012. 18(5): p. 673-83. 31.Steinman, R.M., D. Hawiger, and M.C. Nussenzweig, Tolerogenic dendritic cells. Annu Rev Immunol, 2003. 21: p. 685-711. 32.Steinman, R.M. and M.C. Nussenzweig, Avoiding horror autotoxicus: the importance of dendritic cells in peripheral T cell tolerance. Proc Natl Acad Sci U S A, 2002. 99(1): p. 351-8. 33.Banchereau, J. and R.M. Steinman, Dendritic cells and the control of immunity. Nature, 1998. 392(6673): p. 245-52. 34.Reis e Sousa, C., Dendritic cells in a mature age. Nat Rev Immunol, 2006. 6(6): p. 476-83. 35.Liu, L., et al., Induction of Th2 cell differentiation in the primary immune response: dendritic cells isolated from adherent cell culture treated with IL-10 prime naive CD4+ T cells to secrete IL-4. Int Immunol, 1998. 10(8): p. 1017-26. 36.Ria, F., G. Penna, and L. Adorini, Th1 cells induce and Th2 inhibit antigen-dependent IL-12 secretion by dendritic cells. Eur J Immunol, 1998. 28(6): p. 2003-16. 37.Mailliard, R.B., et al., Dendritic cells mediate NK cell help for Th1 and CTL responses: two-signal requirement for the induction of NK cell helper function. J Immunol, 2003. 171(5): p. 2366-73. 38.Lambotin, M., et al., A look behind closed doors: interaction of persistent viruses with dendritic cells. Nat Rev Microbiol, 2010. 8(5): p. 350-60. 39.Jetten, A.M., Retinoid-related orphan receptors (RORs): critical roles in development, immunity, circadian rhythm, and cellular metabolism. Nucl Recept Signal, 2009. 7: p. e003. 40.Morelli, A.E. and A.W. Thomson, Tolerogenic dendritic cells and the quest for transplant tolerance. Nat Rev Immunol, 2007. 7(8): p. 610-21. 41.Shortman, K. and Y.J. Liu, Mouse and human dendritic cell subtypes. Nat Rev Immunol, 2002. 2(3): p. 151-61. 42.Geissmann, F., et al., Development of monocytes, macrophages, and dendritic cells. Science, 2010. 327(5966): p. 656-61. 43.Merad, M. and F. Ginhoux, Dendritic cell genealogy: a new stem or just another branch? Nat Immunol, 2007. 8(11): p. 1199-201. 44.Tsunetsugu-Yokota, Y. and M. Muhsen, Development of human dendritic cells and their role in HIV infection: antiviral immunity versus HIV transmission. Front Microbiol, 2013. 4: p. 178. 45.Fogg, D.K., et al., A clonogenic bone marrow progenitor specific for macrophages and dendritic cells. Science, 2006. 311(5757): p. 83-7. 46.Varol, C., et al., Monocytes give rise to mucosal, but not splenic, conventional dendritic cells. J Exp Med, 2007. 204(1): p. 171-80. 47.Siegal, F.P., et al., The nature of the principal type 1 interferon-producing cells in human blood. Science, 1999. 284(5421): p. 1835-7. 48.Vremec, D., et al., CD4 and CD8 expression by dendritic cell subtypes in mouse thymus and spleen. J Immunol, 2000. 164(6): p. 2978-86. 49.McLellan, A.D. and E. Kampgen, Functions of myeloid and lymphoid dendritic cells. Immunol Lett, 2000. 72(2): p. 101-5. 50.Lee, H.H., et al., Delayed maturation of an IL-12-producing dendritic cell subset explains the early Th2 bias in neonatal immunity. J Exp Med, 2008. 205(10): p. 2269-80. 51.McLellan, A.D., et al., Anatomic location and T-cell stimulatory functions of mouse dendritic cell subsets defined by CD4 and CD8 expression. Blood, 2002. 99(6): p. 2084-93. 52.Edwards, A.D., et al., Toll-like receptor expression in murine DC subsets: lack of TLR7 expression by CD8 alpha+ DC correlates with unresponsiveness to imidazoquinolines. Eur J Immunol, 2003. 33(4): p. 827-33. 53.Henri, S., et al., The dendritic cell populations of mouse lymph nodes. J Immunol, 2001. 167(2): p. 741-8. 54.Crowley, M., et al., The cell surface of mouse dendritic cells: FACS analyses of dendritic cells from different tissues including thymus. Cell Immunol, 1989. 118(1): p. 108-25. 55.Pooley, J.L., W.R. Heath, and K. Shortman, Cutting edge: intravenous soluble antigen is presented to CD4 T cells by CD8- dendritic cells, but cross-presented to CD8 T cells by CD8+ dendritic cells. J Immunol, 2001. 166(9): p. 5327-30. 56.den Haan, J.M., S.M. Lehar, and M.J. Bevan, CD8(+) but not CD8(-) dendritic cells cross-prime cytotoxic T cells in vivo. J Exp Med, 2000. 192(12): p. 1685-96. 57.Grohmann, U., et al., IL-12 acts selectively on CD8 alpha- dendritic cells to enhance presentation of a tumor peptide in vivo. J Immunol, 1999. 163(6): p. 3100-5. 58.Pulendran, B., et al., Distinct dendritic cell subsets differentially regulate the class of immune response in vivo. Proc Natl Acad Sci U S A, 1999. 96(3): p. 1036-41. 59.Shortman, K. and W.R. Heath, The CD8+ dendritic cell subset. Immunol Rev, 2010. 234(1): p. 18-31. 60.Bialecki, E., et al., Spleen-resident CD4+ and CD4- CD8alpha- dendritic cell subsets differ in their ability to prime invariant natural killer T lymphocytes. PLoS One, 2011. 6(10): p. e26919. 61.Dudziak, D., et al., Differential antigen processing by dendritic cell subsets in vivo. Science, 2007. 315(5808): p. 107-11. 62.Maldonado-Lopez, R., et al., CD8alpha+ and CD8alpha- subclasses of dendritic cells direct the development of distinct T helper cells in vivo. J Exp Med, 1999. 189(3): p. 587-92. 63.Heath, W.R., et al., Cross-presentation, dendritic cell subsets, and the generation of immunity to cellular antigens. Immunol Rev, 2004. 199: p. 9-26. 64.Maldonado-Lopez, R., et al., Cytokines regulate the capacity of CD8alpha(+) and CD8alpha(-) dendritic cells to prime Th1/Th2 cells in vivo. J Immunol, 2001. 167(8): p. 4345-50. 65.McLachlan, J.A., Environmental signaling: what embryos and evolution teach us about endocrine disrupting chemicals. Endocr Rev, 2001. 22(3): p. 319-41. 66.Safe, S., Clinical correlates of environmental endocrine disruptors. Trends Endocrinol Metab, 2005. 16(4): p. 139-44. 67.Whaley, D.A., D. Keyes, and B. Khorrami, Incorporation of endocrine disruption into chemical hazard scoring for pollution prevention and current list of endocrine disrupting chemicals. Drug Chem Toxicol, 2001. 24(4): p. 359-420. 68.Swedenborg, E., et al., Endocrine disruptive chemicals: mechanisms of action and involvement in metabolic disorders. J Mol Endocrinol, 2009. 43(1): p. 1-10. 69.Carere, C., et al., Bird populations as sentinels of endocrine disrupting chemicals. Ann Ist Super Sanita, 2010. 46(1): p. 81-8. 70.Liu, J., et al., Distribution and bioaccumulation of steroidal and phenolic endocrine disrupting chemicals in wild fish species from Dianchi Lake, China. Environ Pollut, 2011. 159(10): p. 2815-22. 71.Colborn, T., F.S. vom Saal, and A.M. Soto, Developmental effects of endocrine-disrupting chemicals in wildlife and humans. Environ Health Perspect, 1993. 101(5): p. 378-84. 72.Walker, D.M. and A.C. Gore, Transgenerational neuroendocrine disruption of reproduction. Nat Rev Endocrinol, 2011. 7(4): p. 197-207. 73.Bornehag, C.G., et al., Phthalates in indoor dust and their association with building characteristics. Environ Health Perspect, 2005. 113(10): p. 1399-404. 74.Afshari, A., et al., Emission of phthalates from PVC and other materials. Indoor Air, 2004. 14(2): p. 120-8. 75.Koch, H.M., R. Preuss, and J. Angerer, Di(2-ethylhexyl)phthalate (DEHP): human metabolism and internal exposure-- an update and latest results. Int J Androl, 2006. 29(1): p. 155-65; discussion 181-5. 76.Guo, J., et al., Pulmonary toxicity and adjuvant effect of di-(2-exylhexyl) phthalate in ovalbumin-immunized BALB/c mice. PLoS One, 2012. 7(6): p. e39008. 77.Lhuguenot, J.C., Recent European Food Safety Authority toxicological evaluations of major phthalates used in food contact materials. Mol Nutr Food Res, 2009. 53(8): p. 1063-70. 78.Koch, H.M., et al., New metabolites of di(2-ethylhexyl)phthalate (DEHP) in human urine and serum after single oral doses of deuterium-labelled DEHP. Arch Toxicol, 2005. 79(7): p. 367-76. 79.Sjoberg, P., U. Bondesson, and M. Hammarlund, Non-linearities in the pharmacokinetics of di-(2-ethylhexyl) phthalate and metabolites in male rats. Arch Toxicol, 1985. 58(2): p. 72-7. 80.Dostal, L.A., et al., Testicular toxicity and reduced Sertoli cell numbers in neonatal rats by di(2-ethylhexyl)phthalate and the recovery of fertility as adults. Toxicol Appl Pharmacol, 1988. 95(1): p. 104-21. 81.Poon, R., et al., Subchronic oral toxicity of di-n-octyl phthalate and di(2-Ethylhexyl) phthalate in the rat. Food Chem Toxicol, 1997. 35(2): p. 225-39. 82.David, R.M., et al., Chronic toxicity of di(2-ethylhexyl)phthalate in mice. Toxicol Sci, 2000. 58(2): p. 377-85. 83.Davis, B.J., R.R. Maronpot, and J.J. Heindel, Di-(2-ethylhexyl) phthalate suppresses estradiol and ovulation in cycling rats. Toxicol Appl Pharmacol, 1994. 128(2): p. 216-23. 84.Mose, T., et al., Phthalate monoesters in perfusate from a dual placenta perfusion system, the placenta tissue and umbilical cord blood. Reprod Toxicol, 2007. 23(1): p. 83-91. 85.Latini, G., et al., In utero exposure to di-(2-ethylhexyl)phthalate and duration of human pregnancy. Environ Health Perspect, 2003. 111(14): p. 1783-5. 86.Adibi, J.J., et al., Prenatal exposures to phthalates among women in New York City and Krakow, Poland. Environ Health Perspect, 2003. 111(14): p. 1719-22. 87.Kato, K., et al., Quantifying phthalate metabolites in human meconium and semen using automated off-line solid-phase extraction coupled with on-line SPE and isotope-dilution high-performance liquid chromatography--tandem mass spectrometry. Anal Chem, 2006. 78(18): p. 6651-5. 88.Grande, S.W., et al., A dose-response study following in utero and lactational exposure to di(2-ethylhexyl)phthalate: effects on female rat reproductive development. Toxicol Sci, 2006. 91(1): p. 247-54. 89.Oie, L., L.G. Hersoug, and J.O. Madsen, Residential exposure to plasticizers and its possible role in the pathogenesis of asthma. Environ Health Perspect, 1997. 105(9): p. 972-8. 90.Jaakkola, J.J., et al., Interior surface materials in the home and the development of bronchial obstruction in young children in Oslo, Norway. Am J Public Health, 1999. 89(2): p. 188-92. 91.Bornehag, C.G., et al., The association between asthma and allergic symptoms in children and phthalates in house dust: a nested case-control study. Environ Health Perspect, 2004. 112(14): p. 1393-7. 92.Lee, M.H., et al., Enhancement of interleukin-4 production in activated CD4+ T cells by diphthalate plasticizers via increased NF-AT binding activity. Int Arch Allergy Immunol, 2004. 134(3): p. 213-22. 93.Thor Larsen, S., et al., Di-(2-ethylhexyl) phthalate possesses an adjuvant effect in a subcutaneous injection model with BALB/c mice. Toxicol Lett, 2001. 125(1-3): p. 11-8. 94.Larsen, S.T., et al., Airway inflammation and adjuvant effect after repeated airborne exposures to di-(2-ethylhexyl)phthalate and ovalbumin in BALB/c mice. Toxicology, 2007. 235(1-2): p. 119-29. 95.Bornehag, C.G. and E. Nanberg, Phthalate exposure and asthma in children. Int J Androl, 2010. 33(2): p. 333-45. 96.Diao, J., et al., Characterization of distinct conventional and plasmacytoid dendritic cell-committed precursors in murine bone marrow. J Immunol, 2004. 173(3): p. 1826-33. 97.MartIn-Fontecha, A., et al., Regulation of dendritic cell migration to the draining lymph node: impact on T lymphocyte traffic and priming. J Exp Med, 2003. 198(4): p. 615-21. 98.Vandenberg, L.N., et al., Hormones and endocrine-disrupting chemicals: low-dose effects and nonmonotonic dose responses. Endocr Rev, 2012. 33(3): p. 378-455. 99.Wei, Z., et al., Maternal exposure to di-(2-ethylhexyl)phthalate alters kidney development through the renin-angiotensin system in offspring. Toxicol Lett, 2012. 212(2): p. 212-21. 100.Blystone, C.R., et al., Determination of the di-(2-ethylhexyl) phthalate NOAEL for reproductive development in the rat: importance of the retention of extra animals to adulthood. Toxicol Sci, 2010. 116(2): p. 640-6. 101.Yanagisawa, R., et al., Effects of maternal exposure to di-(2-ethylhexyl) phthalate during fetal and/or neonatal periods on atopic dermatitis in male offspring. Environ Health Perspect, 2008. 116(9): p. 1136-41. 102.Gaunt, I.F. and K.R. Butterworth, Autoradiographic study of orally administered di-(2-ethylhexyl) phthalate in the mouse. Food Chem Toxicol, 1982. 20(2): p. 215-7. 103.Pollack, G.M., et al., Effects of route of administration and repetitive dosing on the disposition kinetics of di(2-ethylhexyl) phthalate and its mono-de-esterified metabolite in rats. Toxicol Appl Pharmacol, 1985. 79(2): p. 246-56. 104.Muhlenkamp, C.R. and S.S. Gill, A glucose-regulated protein, GRP58, is down-regulated in C57B6 mouse liver after diethylhexyl phthalate exposure. Toxicol Appl Pharmacol, 1998. 148(1): p. 101-8. 105.Daniel, J.W. and H. Bratt, The absorption, metabolism and tissue distribution of di(2-ethylhexyl)phthalate in rats. Toxicology, 1974. 2(1): p. 51-65. 106.Rhodes, C., et al., Comparative pharmacokinetics and subacute toxicity of di(2-ethylhexyl) phthalate (DEHP) in rats and marmosets: extrapolation of effects in rodents to man. Environ Health Perspect, 1986. 65: p. 299-307. 107.Rhodes, C., et al., The disposition of 14C-di-2-ethylhexylphthalate (DEHP) in the marmoset. Dev Toxicol Environ Sci, 1983. 11: p. 579-81. 108.Zhang, X.F., et al., Diethylhexyl phthalate exposure impairs follicular development and affects oocyte maturation in the mouse. Environ Mol Mutagen, 2013. 54(5): p. 354-61. 109.Bersten, D.C., et al., bHLH-PAS proteins in cancer. Nat Rev Cancer, 2013. 13(12): p. 827-41. 110.Ito, Y., et al., Di(2-ethylhexyl)phthalate induces hepatic tumorigenesis through a peroxisome proliferator-activated receptor alpha-independent pathway. J Occup Health, 2007. 49(3): p. 172-82. 111.Eveillard, A., et al., Di-(2-ethylhexyl)-phthalate (DEHP) activates the constitutive androstane receptor (CAR): a novel signalling pathway sensitive to phthalates. Biochem Pharmacol, 2009. 77(11): p. 1735-46. 112.Yang, Q., Y. Xie, and J.W. Depierre, Effects of peroxisome proliferators on the thymus and spleen of mice. Clin Exp Immunol, 2000. 122(2): p. 219-26. 113.Sakazaki, H., H. Ueno, and K. Nakamuro, Estrogen receptor alpha in mouse splenic lymphocytes: possible involvement in immunity. Toxicol Lett, 2002. 133(2-3): p. 221-9. 114.Schlezinger, J.J., et al., Environmental and endogenous peroxisome proliferator-activated receptor gamma agonists induce bone marrow B cell growth arrest and apoptosis: interactions between mono(2-ethylhexyl)phthalate, 9-cis-retinoic acid, and 15-deoxy-Delta12,14-prostaglandin J2. J Immunol, 2004. 173(5): p. 3165-77. 115.Li, N., et al., Di-(2-ethylhcxyl) phthalate reduces progesterone levels and induces apoptosis of ovarian granulosa cell in adult female ICR mice. Environ Toxicol Pharmacol, 2012. 34(3): p. 869-75. 116.Skinner, M.K., What is an epigenetic transgenerational phenotype? F3 or F2. Reprod Toxicol, 2008. 25(1): p. 2-6. 117.Peaston, A.E. and E. Whitelaw, Epigenetics and phenotypic variation in mammals. Mamm Genome, 2006. 17(5): p. 365-74.
|