(3.236.231.14) 您好!臺灣時間:2021/04/15 06:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:方嘉誠
研究生(外文):Jia-Cheng Fang
論文名稱:反置擴散火焰與側向壁之交互作用
論文名稱(外文):Interaction of Inverse Diffusion Flames with a Lateral Wall
指導教授:侯順雄侯順雄引用關係楊俞青楊俞青引用關係
指導教授(外文):Shuhn-Shyurng HouYu-Ching Yang
口試委員:林大惠林建昌
口試委員(外文):Ta-Hui LinJiann-Chang Lin
口試日期:2014-07-24
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:機械工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:氫氣反置擴散火焰側向壁火焰型態溫度分布輻射廢氣排放
外文關鍵詞:HydrogenInverse diffusion flameLateral wallFlame appearanceTemperature distributionRaditionPollutant emissions
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用雙環同軸噴流燃燒器,探討不同的側壁間距對於反置噴流擴散火焰之交互作用。結果發現,在固定側壁間距(S)與外環燃料出口速度(VF)時,逐漸增加內管空氣出口速度(VA),火焰型態會依序出現Type A、Type B、Type C和Type D四種類型的火焰。其中Type A為單層(外層)焰端閉合之擴散火焰,Type B為內層和外層擴散火焰共存之雙層焰端閉合之擴散火焰,Type C為內層和外層擴散火焰共存之雙層焰端開口(破孔)M型擴散火焰,Type D為內層火焰上飄(lift-off)並與外層火焰連接之雙層火焰。此外亦發現摻氫比例越高,內層擴散火焰穩定性較佳,臨界速度隨之增加,然而摻氫比例增加使根部藍焰較長。在相同的VF與S下,火焰高度隨著VA的增加而逐漸降低的趨勢;而相同的VF和VA情況下,火焰高度則隨著S的減少而有逐漸升高之趨勢,此為火焰與側壁之交互作用影響。當固定徑向距離r = 50 cm、VF與VA的情況下,在輻射放熱率實驗中,隨著S的減少,輻射放熱率會隨之增加;但隨著摻氫比例增加,輻射放熱率則隨之減少。火焰流場溫度中,隨著壁面越靠近火焰面,流場溫度會靠往壁面,使流場溫度呈現不對稱。在廢氣實驗中量測CO、CO2和NOX濃度,結果得到:當火焰與側壁面貼齊時,火焰接近壁面處出現淬熄(flame quenching)現象,使CO濃度上升;此外隨著氫氣濃度增加,CO和CO2濃度會隨之降低,但NOX濃度和EINOX則隨之提高。
In this study, interaction between an inverse jet diffusion flame and a lateral wall were examined using a coaxial jet burner. The results showed that when the separation distance (S) and outer stream velocity of methane (VF) are fixed, the gradual increase in the inner stream velocity of air (VA) will result in the transition of inverse diffusion flame from a single cone-shaped flame (Type A) to a double cone-shaped flame (Type B) to a M-shpaed flame with inner and outer open tips, so-called Type C flame, to a Type D flame with lifted inner flame. When VF and S were kept constant, flame height decreased with increasing VA. As S was fixed, the critical velocities of inner air stream (VA) corresponding to the occurrence of Type B and Type C flames increased with VF, while the corresponding VA for the onset of Type D flame decreased with increasing VF. With increasing central-flow air velocity or hydrogen concentration, radiative heat transfer rate decreased for a fixed radial direction distance 50 cm at a constant fuel velocity; with the decrease of S, radiative heat transfer rate will increase. The measurement of temperature distribution showed that, with the wall closer to the flame, the interaction between an inverse diffusion flame and a lateral wall became strong, leading to asymmetrical temperature field. The measurement of pollutant emissions of CO, CO2 and NOX concentrations showed that, when the flame surface was closer to the wall, the CO increased owing to the occurrence of flame quenching. With increasing hydrogen concentration, CO and CO2 concentrations decreased, but NOX and EINOX increased.
中文摘要 -------------------------------------------------------------------I
英文摘要 -------------------------------------------------------------------III
誌謝 -------------------------------------------------------------------V
總目錄 -------------------------------------------------------------------VI
圖目錄 -------------------------------------------------------------------VIII
一、緒論----------------------------------------------------------------------1
1.1研究背景----------------------------------------------------------1
1.2文獻回顧----------------------------------------------------------3
1.2.1 同軸標準擴散火焰--------------------------------------5
1.2.2 同軸反置擴散火焰--------------------------------------6
1.3 研究目的---------------------------------------------------------7
二、實驗設備與方法-------------------------------------------------------------10
2.1 實驗設備---------------------------------------------------------10
2.2 實驗方法與步驟----------------------------------------------------13
三、結果與討論-----------------------------------------------------------------15
3.1不同側壁間距下之純甲烷反置噴流擴散火焰之火焰型態、結構和穩定性----------------------------------------------16
3.2不同側壁間距下之甲烷/氫氣反置噴流擴散火焰之火焰型態、結構和穩定性--------------------------------------------18
3.3不同側壁間距下之甲烷/氫氣反置噴流擴散火焰輻射量測分析------------------------------------------------------24
3.4不同側壁間距下之甲烷/氫氣反置噴流擴散火焰之流場溫度分析-----------------------------------------------------27
3.5不同側壁間距下之甲烷/氫氣反置噴流擴散火焰之廢氣排放分析-----------------------------------------------------32
四、結論--------------------------------------------------------------37
五、參考文獻-----------------------------------------------------------41
六、圖表---------------------------------------------------------------47


[1]BP statistical review of world energy 2012, British Petroleum 2012.
[2]International energy outlook 2012, Energy Information Administration (EIA), Department of Energy (DOE), USA, 2012
[3]Das L.M., Gulati R. andGupta P.K., A Comparative evaluation of theperformance characteristics of a spark ignition engine usinghydrogen and compressed natural gas as alternative fuels.Int J Hydrogen Energy, Vol. 25, pp. 783-93, 2000.
[4]Genovese A. and Ragona R., Public transport and CO2 emission: a comparative assessment between conventional and innovative vehicles, In: proceeding of the 6th international conference of technologies and combustion for a clean environment. Porto, Portugal, Vol. 1, pp. 475-480, 2003.
[5]Momirlan M. and Veziroglu T.N., The properties of hydrogen as fuel tomorrow in sustainable energy system for a cleaner planet. Int J Hydrogen Energy, Vol. 30, pp. 795-802, 2005.
[6]「能源領域」,政府科技發展策略規劃報告(民國98年版),行政院國家科學委員會 2009。
[7]El-Ghafour S.A.A., El-dein A.H.E. andAref A.A.R., Combustion characteristics of natural gas–hydrogen hybrid fuel turbulent diffusion flame, International Journal of Hydrogen Energy, Vol. 33, pp. 2556-2565, 2010.
[8]Weiland N., Chen R.H. andStrakey P., Effects of coaxial air on nitrogen-diluted hydrogenjet diffusion flame length and NOx emission, Proceedings of the Combustion Institute, Vol. 33, pp. 2983-2989, 2011.
[9]Kim M., Oh J. and Yoon Y., Flame length scaling in a non-premixed turbulent diluted hydrogen jet with coaxial air, Fuel, Vol. 90, pp. 2624-2629, 2011.
[10]Choudhuri A.R. and Gollahalli S.R., Combustion characteristics of hydrogen-hydrocarbon hybrid fuels. Int J Hydrogen Energy, Vol. 25, pp. 451-462, 2000.
[11]Cozzi F. and Coghe A., Behavior of hydrogen-enriched non-premixed swirled natural gas flames. Int J Hydrogen Energy, Vol. 31, pp. 669-677, 2006.
[12]Akande A.J., Production of hydrogen by reforming of crude ethanol. Ph .D. Dissertation, University of Saskatchewan Saskatoon, askatchewan; 2005.
[13]Hill S.C. and Smoot L.D., Modeling of nitrogen oxides formation and destruction in combustion systems, Progress in Energy and Combustion Science, Vol. 26, pp. 417-458, 2000.
[14]İlbas M., Yılmaz İ. and Kaplan Y., Investigations of hydrogen and hydrogen–hydrocarbon composite fuel combustion and NOx emission characteristics in a model combustor, International Journal of Hydrogen Energy, Vol. 30, pp. 1139-1147, 2005.
[15]Rørtveit G.J., Hustad J.E., Li S.C. and Willams F.A., Effects of diluents on NOx formation in hydrogen counterflow flames, Combustion and Flame, Vol. 130, pp. 48-61, 2002.
[16]Konnov A.A., Colson G. and Ruyck J.D., NO formation rates for hydrogen combustion in stirred reactors, Fuel, Vol. 80, pp. 49-65, 2001.
[17]Guo H., Smallwood G.J., Liu F., Ju Y. and GÜlder Ö.L., The effect of hydrogen addition on flammability limit and NOx emission in ultra-lean counterflow CH4/Air premixed flames, Proceedings of the Combustion Institute, Vol. 30, pp. 303-311, 2005.
[18]Choudhuri A.R. and Gollahalli S.R., Combustion characteristics of hydrogen-hydrocarbon hybrid fuels, International Journal of Hydrogen Energy, Vol. 25, pp. 451-462, 2000.
[19]Ozalp N. and Hyman B., Calibrated models of on-site power and steam production in US manufacturing industries, Applied Thermal Engineering, Vol. 26, pp. 530-539, 2006.
[20]Naha S. and Aggarwal S.K., Fuel effect on NOx emission in partially premixed flames, Combustion and Flame, Vol. 139, pp. 90-105, 2004.
[21]ChoudhuriaA.R. andGollahalli S.R., Characteristics of hydrogen–hydrocarbon composite fuel turbulent jet flames, International Journal of Hydrogen Energy, Vol. 28, pp. 445-454, 2003.
[22]Jones, H.R.N., The Application of Combustion Principles to Gas Burner Design, British Gas, 1989.
[23]William P., Partridge Jr., Normand M., Laurendeau, Nitric oxide formation by inverse diffusion flames in staged-Air Burners, Fuel, Vol. 74, pp. 1424-1430, 1995.
[24]Peters N., Partially premixed diffusion flamelets in non-premixed turbulent combustion, Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 353-360, 1984., 7 Law, C.K., Dynamics of Stretched Flames, Twenty-second Symposium (International) on Combustion, The Combustion Institute, pp. 1381-1402, 1988.
[25]Burke S.P., Schumann T.E.W., Diffusion Flame, Ind. Eng. Chem, Vol. 20, pp. 998-1004, 1928
[26]Wohl, K., Gazley, C. and Kapp, N., Diffusion flames, Third Symposium (International) on Combustion, The Combustion Institute, pp. 288-300, 1949.
[27]Barr J., Diffusion flames, Fourteenth Symposium (International) on Combustion, The Combustion Institute, pp. 765-771, 1953.
[28]Friend, J.N., The Chemistry of Combustion, Gurney & Jackson, London, p.34, 1922.
[29]Authur J.B. and Napier D.H., Formation of carbon and rlated materials in diffusion flames, Fifth Symposium (International) on Combustion, The Combustion Institute, pp. 303-315, 1955.
[30]Weller A.E., Final Report on Investigation of Gravity-Fed Vaporizing Puddling Type Burners, Battelle Me, orial Institute, 1958.
[31]Walker J., Scientific American, pp. 192-200, 1979.
[32]Wu K.T. and Robert H. Esenhigh, Mapping and Structure of Inverse Diffusion Flames of Methane, Twentieth Symposium (International) on Combustion, The Combustion Institute, pp. 1925-1932, 1984.
[33]Zhen H.S., Leung C.W. and Cheung C.S., Emission of impinging swirling and non-swirling inverse diffusion flames, Applied Energy, Vol. 88, pp.1629-1634, 2011.
[34]Francis K.A., Sreenivasan R. and Raghavan V., Investigation of structures and reaction zones of ethane-hydrogen laminar jet diffusion flames, international journal of hydrogen energy, Vol. 36, pp. 83-94, 2011.
[35]Zhen H.S., Leung C.W. and Cheung C.S., A comparison of the thermal, emission and heat transfer characteristics of swirl-stabilized premixed and inverse diffusion flames, Energy Conversion and Management, Vol. 52, pp. 1263-1271, 2011.
[36]Sze L.K., Cheung C.S. and Leung C.W., Appearance, temperature, and NOx emission of two inverse diffusion flames with different port design, Combustion and Flame, Vol. 144, pp. 237-248, 2006.
[37]Dong L.L., Cheung C.S. and Leung C.W., Combustion optimization of a port-array inverse diffusion flame jet, Energy, Vol. 36, pp. 2834-2846, 2011.
[38]Sze L.K., Cheung C.S. and Leung C.W., Temperature distribution and heat transfer characteristics of an inverse diffusion flame with circumferentially arranged fuel ports, International Journal of Heat and Mass Transfer, Vol. 47, pp. 3119-3129, 2004.
[39]Lee E.J., Oh K.C. and Shin H. D., Soot formation in inverse diffusion flames of diluted ethane, Fuel, Vol.84, pp.543-550, 2005
[40]Liu F. and Smallwood G.J., Control of the structure and sooting characteristics of a co-flow laminar methane/air diffusion flame using a central air jet: An experimental and numerical study, Proceedings of the Combustion Institute, Vol.33, pp. 1063-1070, 2011.
[41]Shaddix C.R., Williams T.C., Blevins L.G. and Schefer R.W., Flame structure of steady and pulsed sooting inverse jet diffusion flames, Proceedings of the Combustion Institute, Vol. 30, pp.1501–1508, 2005.
[42]Zhen H.S., Choy Y.S., Leung C.W. and Cheung C.S., Effects of nozzle length on flame and emission behaviors of multi-fuel-jet inverse diffusion flame burner, Applied Energy, Vol. 88, pp. 2917-2924, 2011.
[43]Bindar Y. and Irawan A., Characteristics of flame shapes and map for LPG and hydrogen inverse confined diffusion flames at high level of fuel excess, AJCHE, Vol. 12, No.1, pp.1-10, 2012.
[44]Takeno T. and Nishioka M., Species Conservation and Emission Indices for Flame Described by Similarity Solutions, Combust Flame, Vol. 92, No. 4, pp. 465-468, 1993.
[45]魯冠軍,趙黛青,楊浩林,楊衛斌,“甲烷/富氧噴流擴散火焰NOX的排放特性”,過程工程學報,第7卷,第1期,2007年2月,第29-33頁。
[46]Zhen H.S., Leung C.W. and Cheung C.S., Thermal and emission characteristics of a turbulent swirling inverse diffusion flame, International Journal of Heat and Mass Transfer, Vol. 53, pp. 902-909, 2010.
[47]仇曉龍,吳玉新,于海洋,張海,吕俊复,反置擴散火焰温度場特性的實驗研究,中國工程熱物理學會,學術會議論文: 104332.
[48]Mikofski M.A., Williams T.C., Shaddix C.R., Fernandez-Pello A.C. and Blevins L.G., Structure of laminar sooting inverse diffusion flames, Combustion and Flame, Vol. 149, pp. 463-478, 2007.
[49]Jung Y.J., Oh K.C., Bae C. and Shin H.D., The effect of oxygen enrichment on incipient soot particles in inverse diffusion flames, Fuel, Vol. 102, pp. 199-207, 2012.
[50]Mahesh S. and Mishra D.P., Flame structure of LPG-air Inverse diffusion flame in a backstep burner, Fuel, Vol. 89, pp. 2145-2148, 2010.
[51]Stelzner B., Hunger F., Voss S., Keller J., Hasse C. and Trimis D., Experimental and numerical study of rich inverse diffusion flame structure, Proceedings of the Combustion Institute, Vol. 34, pp. 1045-1055, 2013.
[52]柯永章,多噴口燃燒器之氣態火焰分析,國立成功大學機械工程系,中華民國九十三年六月。
[53]Chao Y.C.and WuC.Y., A study of the interaction between a jet flame and lateral wall, Combust. Sci. and Tech, Vol. 158, pp. 93-113, 2000.
[54]Tayebi B., Galizzi C., Leone J.F. and Ėscudié D., Experimental study of the flame-wall interaction, European Combustion Meeting (ECM), 2007.
[55]Tayebi B., Galizzi C.,Leone J.F. and Ėscudié D., Topology structure and flame surface density in flame-wall interaction, European Thermal Sciences Conference, The Netherlands, 2008.
[56]Tayebi B., Galizzi C., Guo H. andĖscudié D., An experimental study of flame-wall interaction: temperature analysis near the wall, The 19th International Symposium on Transport Phenomena, Iceland, 2008.
[57]Ghiti N., Bentebbiche A.A., Hanchi S. and Boulkroune R., A study of interaction brtween a jet flame and a lateral wall, Canadian Journal on Mechanical Sciences & Engineering, Vol. 3 No. 2, 2012.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔