(3.230.143.40) 您好!臺灣時間:2021/04/21 07:50
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:郭瑞陽
研究生(外文):Jui-Yang Kuo
論文名稱:廢食用油快速轉酯化反應之研究
論文名稱(外文):The study on enhanced transesterification from waste cooking oil
指導教授:蕭明謙
指導教授(外文):Ming-Chien Hsiao
口試委員:楊振成林文崇
口試委員(外文):Yang Chen-ChengWen-Chung Lin
口試日期:2014-06-23
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:環境工程研究所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:80
中文關鍵詞:生質柴油轉酯化反應微波甲醇鈣均質機廢食用油
外文關鍵詞:Biodieseltransesterificationmicrowavemethanol calciumhomogenizerwaste cooking oil
相關次數:
  • 被引用被引用:2
  • 點閱點閱:578
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:6
  • 收藏至我的研究室書目清單書目收藏:0
近年來,随著石油儲量的日益減少以及石油燃燒所帶來的地球環境影響,研發新的對環境無害的可再生燃油成為許多科學工作者的奮鬥目標。生質柴油可作為石油燃料的替代品,具有可再生、易生物降解、無毒、含硫量低和廢氣中有害物質排放量小等優點。以植物油、動物油、廢食用油等原料與醇,例如甲醇、乙醇等,進行酯交換反應,即可製得生質柴油(脂肪酸甲酯),副產品為甘油。
透過均質機促進轉酯化反應,並找出最佳製造生質柴油之反應參數。本研究(Ⅰ)利用高酸價及低酸價油依照不同比例混合,降低廢食用油中的游離脂肪酸含量,並以均質機促進轉酯化反應,研究發現於醇油莫耳比為9:1、NaOCH3觸媒添加量為0.75 wt%、均質機轉速在7000 rpm,反應溫度在65 °C下,8分鐘後生質柴油轉換率97.1%,大幅降低高酸價廢食用油所需的時間。
考量到製油時間與成本,本研究(Ⅱ)使用均質機快速合成甲醇鈣催化劑,催化劑以XRD、FT-IR進行分析,結果說明,均質機快速合成甲醇鈣,可以有效的縮短催化劑的製備時間,並以甲醇鈣當催化劑配合均質機方式促進轉酯化反應,轉酯化最佳反應條件為:醇油莫耳比6:1,4 wt%的Ca(OCH3)2,均質機轉速在7000 rpm,在65 °C下反應1小時,生質柴油產率可達90.2 %。因此Ca(OCH3)2具有很大的潛力,可代替均相催化劑用於轉酯化反應,也可以用在其它多相催化反應的應用。
本研究(Ⅲ)以CaO為基礎,利用化學反應通過微波加熱使溴辛烷改質劑快速對CaO表面進行修飾,使催化劑表面形成一層包覆,延長催化劑的活性,催化劑的物理和化學性質進行了XRD、FT-IR、TGA分析,結果證明,微波改質與傳統催化劑改質CaO有同樣效果,且微波可大幅縮短催化劑的製備時間,微波改質CaO不論熱穩定性及烷基強度都與傳統的相當。另一方面微波加熱有利於油酯相互作用,增加生質柴油轉換率,以廢食用油為原料,利用開放式微波下促進酯化反應,使用溴辛烷5 mg/g改質CaO作為觸媒進行催化反應,最佳反應條件為:微波功率300 W、醇油莫耳比8:1、3 wt%的改質CaO、在65°C下反應75分鐘,生質柴油轉換率可達97.1%。可有效將廢食用油製造生質柴油並符合台灣CNS 15072之96.5%標準值,並減少能耗,達到節能減碳的目的。

In recent years, the amount of the oil is reducing and combustion caused the earth's environmental impact. Therefore, the development of new environmentally friendly renewable fuels become the goal of scientists. Biodiesel can be used to replace petroleum fuels with many advantages, such as, it's biodegradable, non-toxie, low sulfur content and transesterification of low emission of harmful substance. The product of vegetable oil, animal oil, waste cooking oil or other raw materials and alcohols such as methanol, ethanol, named biodiesel (fatty acid methyl ester) and a by-product, glycerol.
Promote the transesterification reaction through a homogenizer, and find out the best reaction parameters of manufacturing biodiesel. In study (Ⅰ) by using waste cooking oil as a raw material, and promote it by the transesterification homogenizer, it found the molar ratio of alcohol oil is 9:1, NaOCH3 catalyst dosage 0.75 wt%, homogeneous speed at 7000 rpm and a reaction temperature 65 °C, biodiesel production conversion rate after 8 mins 97.1%, were significantly reduced the time required for high acid value of waste cooking oil.
Considerations to the manufacturing time and costs, study (Ⅱ) using a homogenizer rapid synthesis of Ca(OCH3)2 as catalyst analysis the catalyst by using XRD, FT-IR, the results illustrate that homogenizer rapid synthesis of methanol calcium, can effectively shorten the preparation time of the catalyst, and used the methanol cakium as with homogenizer ways to promote transesterification transesterification optimal reaction conditions: molar ratio of 6:1, 4 wt% of Ca (OCH3) 2, homogenizer at 7000 rpm for 1 hour at 65 °C, biodiesel yield of 90.2%. Therefore, Ca (OCH3) 2 has great potential to replace homogeneous catalyst for transesterification, it can also be used in applications other heterogeneous catalytic reactions.
In study (Ⅲ), using CaO as basic, microwave heating speed up the reaction of modifying the surface of CaO by using bromooctane, to form a coated catalyst to prolong the activity of catalyst. Using XRD, FT-IR, TGA to analysis the physical and chemical properties of the catalyst shows that, by comparing the conventional methods and the microwave modification methods, microwaving can reduce the preparation time of the catalyst, CaO, but the stability and the alkyl intensity is similar to the conventional methods. On the other hand, microwave heating contribute interaction of the oil, and also increase the conversion rate of biodiesel. Using the waste cooking oil as raw material, under open microwaving to promote the esterification reaction, using bromooctane 5mg/g modify CaO as catalyst, the optimal reaction conditions were: microwave power at 300W, molar ratio of alcohol oil 8:1, 3 wt% of modified CaO, reaction at 65°C for 75 minutes, the rate of conversion of biodiesel is 97.1%. These can effectively manufacture biodiesel from waste cooking oil and comply with the standard value of Taiwan CNS 15072, 96.7%, and also reduce the energy consumption, achieve the purpose of saving energy and carbon.

摘 要 I
ABSTRACT I
謝誌 IV
目錄 V
表目錄 VII
圖目錄 VIII
一、前言 1
1.1 研究動機與目的 1
二、文獻回顧 4
2.1生質柴油 4
2.1.1生質柴油起源 4
2.1.2生質柴油在台灣之發展 5
2.1.3 生質柴油的製造方法 6
2.2 廢食用油轉酯化 8
2.2.1鹼催化反應 10
2.2.2酸催化反應 11
2.2.3酶催化反應 11
2.2.4微波原理及轉酯化相關研究 12
2.3微波原理及轉酯化相關研究 12
2.3.1 微波原理 12
2.3.2微波應用在轉酯化反應 13
2.4均質機原理及轉酯化相關研究 14
2.4.1均質機原理 14
2.4.2均質機的應用 17
三、實驗方法及分析 18
3.1實驗材料 18
3.2實驗方法及步驟 18
3.2.1大豆油與廢食用油基本性質測定(酸價、皂化價、平均分子量) 18
3.2.2催化劑的合成及改質 19
3.2.3均質機系統下使用催化劑將混合廢油及廢食用油轉酯化成生質柴油 19
3.2.4利用微波將廢食用油轉化為生質柴油之研究 20
3.3實驗儀器 20
3.2.1均質機(Homogenizer) 20
3.3.2微波反應器(Microwave) 21
3.3.3氣相層析儀(Gas Chromatograph)-FID 22
3.2.4傅立葉轉換紅外線光譜儀-FTIR 23
3.2.5 X光繞射儀-XRD 23
3.2.6 TGA熱重分析儀 23
3.3.7生質柴油樣品分析 23
3.4.8催化劑之分析 25
四、結果與討論 27
4.1均質機配合甲醇鈉促進混合廢油快速轉酯化反應 27
4.2均質機配合甲醇鈣催化劑促進轉酯化反應 39
4.3微波配合改質氧化鈣促進廢食用油快速轉酯化反應 52
五、結論與建議 67
參考文獻 69

[1]Akoh, C.C., Chang, S.W., Lee, G.C., Shaw, J.F., 2007. Enzymatic approach to biodiesel production. Journal of Agricultural and Food Chemistry, 55, 8995-9005.
[2]Alcantara, R., Amores, J., Canoira, L., Fidalgo, E., Franco, M.J., Navarro, A.,2000. Catalytic production of biodiesel from soy-bean oil, used frying oil and tallow. Biomass Bioenergy, 18, 515-527.
[3]Albuquerque, M.C.G., Jimenez-Urbistondo, I., Santamaria-Gonzalez, J., Mer- ida-Robles, J.M., Moreno-Tost, R., Rodríguez-Castellon E., 2008. CaO supported on mesoporous silicas as basic catalysts for transesterification reactions. Appl Catal A, 334, 35-43.
[4]ASTM, American Standards for Testing of Materials., 2003.
[5]Azcan, N., Danisman, A., 2008. Microwave assisted transesterification of rapeseed oil. Fuel, 87, 1781-1788.
[6]Bozbas, K., 2008. Biodiesel as an alternative motor fuel: production and policies in the European Union. Renew Sustain Energy Rev, 12, 542-552.
[7]Cantrell, D.G., Gillie, L.J., Lee, A.F., Wilson, K., 2005. Structure-reactivity correlations in MgAl hydrotalcite catalysts for biodiesel synthesis. Appl Catal A, 287, 183-190.
[8]Chen, P.C., Wang, W.C., Roberts, W.L., Fang, T., 2013. Spray and atomization of diesel fuel and its alternatives from a single-hole injector using a common rail fuel injection system. Fuel, 103, 850-861.
[9]Demirbas, A., 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification methods. Prog Energy Combust Sci, 31, 466-487.
[10]Deng, X., Fang, Z., Liu, Y.H., Yu, C.L., 2011. Production of biodiesel from Jatropha oil catalyzed by nanosized solid basic catalyst. Energy, 36, 777-784.
[11]Di, Y., Cheung, C.S., Huang, Z., 2009. Experimental investigation on regulated and unregulated emissions of a diesel engine fueled with ultra-low sulfur diesel fuel blended with biodiesel from waste cooking oil. Science of the Total Environment, 407, 35-846.
[12]Dmytryshyn, S.L., Dalai, A.K., Chaudhari, S.T., Mishra, H.K., Reaney, M.J., 2004. Synthesis and characterization of vegetable oil derived esters: evaluation for their diesel additive properties. Bioresour Technol, 92, 55-64.
[13]Dorado, M.P., Ballesteros, E., Arnal, J.M., Gomez, J., Lopez Gimenez, F.J., 2001. Testing waste olive oil methyl ester as a fuel in a diesel engine. Energy Fuels, 17, 1560-1565.
[14] Ebiura, T., Echizen, T., Ishikawa, A., Murai, K., Baba, T., 2005. Selective transesterification of triolein with methanol to methyl oleate and glycerol using alumina loaded with alkali metal salt as a solid-base catalyst. Applied Catalysis A: General , 283, 111-116.
[15]Eevera, T., Rajendran, K., Saradha, S., 2009. Biodiesel production process optimization and characterization to assess the suitability of the product for varied environmental conditions. Renewable Energy, 34, 762-765.
[16]Fang, T., Lin, Y.C., Foong, T.M., Lee, C.F., 2008. Reducing NOx emissions from a biodiesel-fueled engine by use of low-temperature combustion. Environmental Science and Technology, 42, 8865-8870.
[17]Furuta, S., Matsuhasbi, H., Arata, K., 2004. Biodiesel fuel production with solid superacid catalysis in fixed bed reactor under atmospheric pressure. Catal. Commun., 5, 721-723.
[18]Ganesh, L., Maddikeri, A., Pandit, B., Gogate, P. R., 2013. Ultrasound assisted interesterification of waste cooking oil and methyl acetate for biodiesel and triacetin production. Fuel Processing Technology, 116, 241-249.
[19]Gao, L., Teng, G., Xiao, G., Wei, R., 2010. Biodiesel from palm oil via loading KF/Ca-Al hydrotalcite catalyst. Biomass Bioenergy, 34, 1283-1288.
[20] Ghadge,S. V., Raheman, H., 2005. Biodiesel production from mahua (Madhuca indica) oil having high free fatty acids. Biomass and Bioenergy , 28, 601-605.
[21]Graboski, M.S., McCormick, R.L., 1998. Combustion of fat and vegetable oil derived fuels in diesel engines. Prog Energy Combust Sci, 24, 125-164.
[22]Granados, M.L., Poves, M., Alonso, D.M., Mariscal, R., Galisteo, F.C., Moreno-Tost, R., 2007. Biodiesel from sunflower oil by using activated calcium oxide. Appl Catal B, 73, 317-326.
[23]Groisman, Y., Gedanken, A., 2008. Continuous flow, circulating microwave system and its application in nanoparticle fabrication and biodiesel synthesis. Journal of Physical Chemistry, 112, 8802-8808.
[24]Gui, M.M., Lee, K.T., Bhatia, S., 2008. Feasibility of edible oil vs. non-edible oil vs. waste edible oil as biodiesel feedstock. Energy, 33, 1646-1653.
[25]Gryglewicz, S., 1999. Rapeseed oil methyl esters preparation using heterogeneouscatalysts. Bioresource Technology, 70, 249-253.
[26]Gryglewicz, S., 2000. Alkaline-earth metal compounds as alcoholysis catalysts for ester oils synthesis. Appl Catal A, 192, 23-28.
[27]Hess, M.A., Haas, M.J., Foglia, T.A., 2007. Attempts to reduce NOx exhaust emissions by using reformulated biodiesel. Fuel Processing Technology, 88, 693-699.
[28]Hass, M.J., McAloon, A.J., Yee, W.C., Foglia, T.A., 2006. A process model to estimate biodiesel production costs. Bioresour Technol, 97, 671-678.
[29]Håkansson, A., Trägårdh, C., Bergenståhl, B., 2009. Studying the effects of adsorption, recoalescence and fragmentation in a high pressure homogenizer using a dynamic simulation model. Food Hydrocolloids , 23, 1177-1183.
[30]Hsiao, M.C., Lina, C.C., Chang, Y.H., 2011. Microwave irradiation-assisted transesterification of soybean oil to biodiesel catalyzed by nanopowder calcium oxide. Fuel, 90, 1963-1967.
[31]Hsien, H.T., 2004. Green energy-biodiesel demonstration plant (in Chinese). Energy Monthly, 22-24.
[32]Huppertz, T., 2011. Homogenization of Milk-Other Types of Homogenizer (High-Speed Mixing, Ultrasonics Microfluidizers, Membrane Emulsification). Encyclopedia of Dairy Sciences (Second Edition), 761-764.
[33]Huppertz, T., 2011. Homogenization of Milk Other Types of Homogenizer (High-SpeedMixing,Ultrasonics,Microfluidizers,MembraneEmulsification). Encyclopedia of Dairy Sciences, 761-764.
[34]Inés, R., Arzamendi, G., Gandía, L.M., 2013. Heterogenization of the biodiesel synthesis catalysis: CaO and novel calcium compounds as transesterification catalysts. Chemical Engineering Research and Design Availableonline, 28.
[35]Janssen, L.M.G., Oosten, R.V., Paul, C.E., Arends, I.W.C.E., Hollmann, F., 2014. Lipase-catalyzed transesterification of ethyl formate to octyl formate. Journal of Molecular Catalysis B: Enzymatic , 105, 7-10.
[36]Jitputti, J., Kitiyanan, B., Rangsunvigit, P., Bunyakiat, K., Attanatho, L., Jenvanitpanjakul, P., 2006. Transesterification of crude palm kernel oil and crude coconut oil by different solid catalysts. Chem Eng J, 116, 61-66.
[37]Kawashima, A., Matsubara, K., Honda, K., 2009. Acceleration of catalytic activity of calcium oxide for biodiesel production. Bioresource Technology, 100, 696-700.
[38]Kelly, J.F., Stanciulescu, M., Charland, J.P., 2006. Evaluation of amines for the selective catalytic reduction (SCR) of NOx from diesel engine exhaust. Fuel, 85, 1772-1780.
[39]Kim, H.J., Kang, B.S., Kim, M.J., Park, Y.M., Kim, D.K., Lee, J.S., 2004. Transesterification of vegetable oil to biodiesel using heterogeneous base catalyst. Catal Today, 93, 315-320.
[40]Kiwjaroun, C., Tubtimdee, C., Piumsomboon, P., 2009. LCA studies comparing biodiesel synthesized by conventional and supercritical methanol methods. Journal of Cleaner Production, 17, 143-153.
[41]Knothe, G., 2010. Biodiesel and renewable diesel: A comparison. Progress in Energy and Combustion Science, 36, 364-373.
[42]Kouzu, M., Kasuno, T., Tajika, M., Yamanaka, S., Hidaka, J., 2008. Active phase of calcium oxide used as solid base catalyst for transesterification of soybean oil with refluxing methanol. Appl. Catal. A, 334, 357-365.
[43]Kulkarni, M.G., Dalai, A.K., 2006. Waste cooking oil-an economical source for biodiesel: a review. Ind Eng Chem Res, 45, 2901-2913.
[44]Kumaran, P., Mazlini, N., Hussein, I., Nazrain, M., Khairul, M., 2011. Technical feasibility studies for Langkawi WCO (waste cooking oil) derived-biodiesel. Energy, 36, 1386-1393.
[45]Kusdiana, D., Saka, S., 2004. Effects of water on biodiesel fuel production by supercritical methanol treatment. Bioresour, 91, 289-295.
[46]Lertsathapornsuk, V., Pairintra, R., Aryusuk, K., Krisnangkura, K., 2008. Microwave assisted in continuous biodiesel production from waste frying palm oil and its performance in a 100 kW diesel generator. Fuel Processing Technology, 89 , 1330-1336.
[47]Liu, X., Piao, X., Wang, Y., Zhu, S., He, H., 2008. Calcium methoxide as a solid base catalyst for the transesterification of soybean oil to biodiesel with methanol. Fuel , 87, 1076-1082.
[48] Liu,X., He, H., Wang, Y., Zhu, S., Piao, X., 2008. Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst. Fuel, 87, 216-221.
[49]Li, X., Lu, G., Guo, Y., Wang, Y., Zhang, Z., Liu, X., 2007. A novel solid superbase of Eu2O3/Al2O3 and its catalytic performance for the transesterification of soybean oil to biodiesel. Catalysis Communications, 8, 1969-1972.
[50]Lott, M., QSS Group Inc. 4500 Forbes Boulevard, Suite 200, Lanham, MD20706,2002.
[51]López Granados, M., Zafra Poves, M.D., Martín Alonso, D., 2007. Biodiesel from sunflower oil by using activated calcium oxide. Applied Catalysis B: Environmental, 73, 317-326.
[52]Lutz, H.D., Möller, H., Schmidt, M., 1994. Lattice vibration spectra. Part LXXXII. Brucite-type hydroxides M(OH)2 (M = Ca, Mn, Co, Fe, Cd) - IR and Raman spectra, neutron diffraction of Fe(OH)2. Journal of Molecular Structure, 328, 121-132.
[53]Ma, F., A Hanna, M., 1999. Biodiesel production: a review. Bioresource Technology, 70, 1-15.
[54]Meher, L.C., Sagar, D.V., Naik, S.N., 2006. Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energy Rev., 10, 248-68.
[55]Meher, L.C., Kulkarni, M.G., Dalai, A.K., Naik, S.N., 2006. Transesterification of karanja (Pongamia pinnatea) oil by solid basic catalysts. Eur. J. Lipid Sci. Technol., 108, 389-397.
[56]Meng, X., Yang, J. Xu, X., Zhang, L., Nie, Q., Xian, M., 2009. Biodiesel production from oleaginous microorganisms. Renewable Energy , 34, 1-5.
[57]Mittelbach, M., Enzelsberger, H., 1999. Transesterification of heated rapeseed oil for extending diesel fuel. J Am Oil Chem Soc, 76, 545-550.
[58]Mittelbach, M., Remschmidt, C., 2004. Biodiesel-the comprehensive handbook. M. Mittelbach, Graz, Austria.
[59]Mittelbach, M., Gangl, S., 2001. Long storage stability of biodiesel made from rapeseed and used frying oil. J Am Oil Chem Soc, 78, 573-577.
[60]Modi, M.K., Reddy, J.R.C., Rao, B.V.S.K., Prasad, R.B.N., 2007. Lipase-mediated conversion of vegetable oils into biodiesel using ethyl acetate as acylacceptor. Bioresource Technology , 98, 1260-1264.
[61]Muncrief, R.L., Rooks, C.W., Cruz, M., Harold, M.P., 2008. Combining biodiesel and exhaust gas recirculation for reduction in NOx and particulate emissions. Energy & Fuels, 22, 1285-1296.
[62]Murayama, T., Fujiwara, Y., Noto, T., 2000. Evaluating waste vegetable oils as a diesel fuel. Proc Inst Mech Engrs, Part D. J Automobile Eng, 214, 141-148.
[63]Motasemi, F., Ani, F.N., 2012. A review on microwave-assisted production of biodiesel. Renewable and Sustainable Energy Reviews, 16, 4719-4733.
[64]Ngamcharussrivichai, C., Wiwatnimit, W., Wangnoi, S., 2007. Modified dolomites as catalysts for palm kernel oil transesterification. Journal of Molecular Catalysis A: Chemical, 276, 24-33.
[65]Noshadi, I., Richard, N.A.S., Parnas, S., 2012. Continuous production of biodiesel from waste cooking oil in a reactive distillation column catalyzed by solid hetero- polyacid: Optimization using response surface methodology(RSM). Fuel, 94, 156-164.
[66]Ong, H.C., Masjuki, H.H., Mahlia, T.M.I., Silitonga, A.S., Chong, W.T., Leong, K.Y., 2014. Optimization of biodiesel production and engine performance from highfree fatty acid Calophyllum inophyllum oil in CI diesel engine. Energy Conversion and Management, 81, 30-40.
[67]Othman, M., Aziz, N., Kim, J., Fernando, W., Helwani, Z., 2009. Solid heterogeneous catalysts for transesterification of triglycerides with methanol: a review. 363, 1-10.
[68]Ozsezen, A.N., Canakci, M., Turkcan, A., Sayin, C., 2009. Performance and combustion characteristics of a DI diesel engine fueled with waste palm oil and canola oil methyl esters. Fuel, 88, 629-636.
[69]Patil, P.D., Gude, V.G., Camacho, L.M., Deng, S., 2010. Microwave-assisted catalytic transesterification of Camelina sativa oi. Energy & Fuels, 24, 1298-1304.
[70]Parag Gogate, R., 2008. Cavitational reactors for process intensification of chemical processing applications: A critical review. Chemical Engineering and Processing, 47, 515-527.
[71]Prokop, T., Western, I.P., 14970 Chandler St.Coachella, CA 9172(2002).
[72]Reddy, C.R.V., Oshel, R., Verkade, J.G., 2006. Room-temperature conversion of soybean oil and poultry fat to biodiesel catalyzed by nanocrystalline calcium oxides. Energy Fuel, 20, 1310-1314.
[73]Saheki, A., Seki, J., Nakanishi, T., Tamai, I., 2012. Effect of back pressure on emulsification of lipid nanodispersions in a high-pressure homogenizer. International Journal of Pharmaceutics, 422, 489-494.
[74]Saravanan, S., Nagarajan, G., Lakshmi, G., Rao, N., Sampath, S., 2010. Combustion characteristics of a stationary diesel engine fuelled with a blend of crude rice bran oil methyl ester and diesel. Energy, 35, 94-100.
[75]Schönborn, A., Ladommatosa, N., Williams, J., Allan, R., Rogerson, J., 2009. The influence of molecular structure of fatty acid monoalkyl esters on diesel combustion. Combustion and Flame, 156, 1396-1412.
[76]Sharma, Y.C., Singh, B., 2008. Development of biodiesel from karanja, a tree found in rural India. Fuel, 87, 1740-1742.
[77]Shibasaki-Kitakawa, N., Honda, H., Kuribayashi, H., Toda, T., Fukumura, T., Yonemoto, T., 2007. Biodiesel production using anionic ion-exchange resin as heterogeneous catalyst. Bioresour Technol, 98, 416-421.
[78]Soares Dias, A.P., Bernardo, J., Felizardo, P., Neiva Correia, M.J., 2012. Biodiesel production over thermal activated cerium modified Mg-Al hydrotalcites. Energy, 41, 344-353.
[79]Sridharan, R., Mathai, I.M., 1974. Transesterification reactions. Sci. Ind. Resource, 33, 178-187.
[80]Srilatha, K., Prabhavathi Devi, B.L.A., Lingaiah, N., Prasad, R.B.N., Sai Prasad, P.S., 2012. Biodiesel production from used cooking oil by two-step heterogeneous catalyzed process. Bioresource Technology, 119, 306-311.
[81]Srivastava, A., Prasad, R., 2000. Triglycerides-based diesel fuels. Renew. Sustain. Energy Rev., 4, 111-133.
[82]Sun, H., Ding, Y., Duan, J., Zhang, Q., Wang, Z., Lou, H., 2010. Transesterification of sunflower oil to biodiesel on ZrO2 supported La2O3 catalyst. Bioresour Technol, 101, 953-958.
[83]Sun, J., Caton, J.A., Jacobs, T.J., 2010. Oxides of nitrogen emissions from biodiesel-fuelled diesel engines. Progress in Energy and Combustion Science, 36 , 677-695.
[84]Stojković, I.J., Stamenković, O.S., Povrenović, D.S., Veljković, V.B., 2014. Purification technologies for crude biodiesel obtained by alkali-catalyzed transesterification. Renewable and Sustainable Energy Reviews, 32, 1-15.
[85]Suppes, G.J., Dasari, M.A., Doskocil, E.J., Mankidy, P.J., Goff, M.J., 2004. Transesterification of soybean oil with zeolite and metal catalysts. Appl Catal A, 257, 213-223.
[86]Tan, K.T., Lee, K.T., Mohamed, A.R., 2006. Potential of waste palm cooking oil for catalyst-free biodiesel production. Energy, 36, 2085-2088.
[87]Tashtoush, G., Al-Widyan, M.I., Al-Shyoukh, A.O., 2003. Combustion perf- ormance and emissions of ethyl ester of a waste vegetable oil in a water-cooled furnace. Appl Thermal Eng, 23, 285-293.
[88]Thitsartarn, W., Kawi, S., 2011. An active and stable CaO-CeO2 catalyst for transesterification of oil to biodiesel. Green Chem, 13, 3423-3430.
[89]Tsolakis, A., Megaritis, A., Wyszynski, M.L., Theinnoi, K., 2007. Engine performance and emissions of a diesel engine operating on diesel-RME (rapeseed methyl ester) blends with EGR (exhaust gas recirculation). Energy, 32, 2072-2080.
[90] Van Kasteren, J.M.N., Nisworo, A.P., 2007. A process model to estimate the cost of industrial scale biodiesel production from waste cooking oil by supercritical transesterification. Resour Conserv Recy, 50, 442-458.
[91]Vicente, G., Martinez, M., Aracil, J., 2004. Integrated biodiesel production: a comparison of different homogeneous catalysts systems. Bioresour Technol, 92 , 297-305.
[92] Vujicic, Dj., Comic, D., Zarubica, A., Micic, R., Boskovic, G., 2010. Kinetics of biodieselsynthesis from sunflower oil over CaO heterogeneous catalyst. Fuel, 89, 2054-2061.
[93]Wang, L. Yang, J. 2007. Transesterification of soybean oil with nano-MgO or not in supercritical and subcritical methanol. Fuel, 86, 328-333.
[94] Wang, D., Xiao, R., Zhang, H., He, G., 2010. Comparison of catalytic pyrolysis of biomass with MCM-41 and CaO catalysts by using TGA-FTIR analysis. Journal of Analytical and Applied Pyrolysis, 89,171-177.
[95]Wan Omar, W.N.N., Amin, N.A.S., 2011. Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Process Technol, 92, 2397-2405.
[96]Wilson, K., Hardacre, C., Lee, A. Montero, J., Shellard, L., 2008. The application of calcined natural dolomitic rock as a solid base catalyst in triglyceride transesterification for biodiesel synthesis. Green Chem., 10, 654-659.
[97]Xie, W., Yang, Z., 2007. Ba-ZnO catalysts for soybean oil transesterification. Catal Lett, 117, 159-165.
[98] Yuan, H., Yang, B.L., Zhu, G.L., 2009. Synthesis of biodiesel using microwave absorption catalysts. Energy Fuels, 23, 548-552.
[99]Yang, Z., Xie, W., 2007. Soybean oil transesterification over zinc oxide modified with alkali earth metals. Fuel Process Technol, 88, 631-638.
[100] Yang, F.X., Su, Y.Q., Li, X.H., 2007. The research on alkali-refining of Idesia polycarpa var. vestita bites. J. Northwest A & F Univ. (Nat. Sci. Ed.), 35, 203-207.
[101] Zhang, Y., Dube, M.A., McLean, D.D., Kates, M., 2003. Biodiesel production from waste cooking oil: 2. Economic assessment and sensitivity analysis. Bioresour Technol, 90, 229–240.
[102] 楊士傑,"大豆油轉酯化反應研究",國立嘉義大會應用化學研究所,碩士論 文,(2007)。
[103] 陳育智,"生質柴油非勻相催化轉酯製程之探討",國立臺灣大學生農學院生 物產業機電工程研究所,碩士論文,(2008)。
[104] 乳化燃料網,http://www.emfuel.com/big5/produce/shearing.htm。
(詠欣有限公司)
[105] 經濟部能源局網站http://www.moeaboe.gov.tw

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔