(3.227.235.183) 您好!臺灣時間:2021/04/20 09:55
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:黃士華
研究生(外文):Shih-Hua Huang
論文名稱:以步階式阻抗共振器為基底之新型多工器及多頻濾波器研製
論文名稱(外文):Study of novel multiplexer and multi-band bandpass filter (BPF) based on stepped impedance resonators (SIRs)
指導教授:吳宏偉
指導教授(外文):Hung-Wei Wu
口試委員:程榮祥洪政源
口試委員(外文):Rung-Shiang ChengCheng-Yuan Hung
口試日期:2014-07-07
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:75
中文關鍵詞:三頻雙工器三工器四通帶雙工器步階式阻抗共振器源極-負載耦合線傳輸零點帶通濾波器
外文關鍵詞:tri-bandtriplexerdiplexerquad-channelstepped impedance resonator (SIR)source-load couplingbandpass filtertransmission zeros
相關次數:
  • 被引用被引用:0
  • 點閱點閱:415
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要研究為平面式多工器(Multiplexer)與多頻(Multiband)帶通濾波器之研製,其研究共分為三個部份。

第一個部份為新型多層基板三頻帶通濾波器,該結構使用存根附載共振器(stub-load resonator)與步階式阻抗共振器(stepped impedance resonator, SIR)做結合。該濾波器的頻率範圍設計在2.4,3.5 以及 5.2GHz。經由控制上層基板(on top layer)存根附載步接阻抗共振器(stub-load SIR)的阻抗與電子長度,可產生第一通帶(2.4GHz)。第二與第三通帶(3.5GHz、5.2GHz)產生來自於下層基板(on bottom layer)的存根附載共振器(stub-load resonator)。有效利用存根附載共振器(stub-load resonator)經由調整偶模態(even mode)而不影響奇模態(odd mode)的情況下,可以讓頻率選擇的範圍變得非常寬廣。
第二部份為緊湊型微帶三工器(2.4/ 3.5/ 5.8 GHz)為利用兩對耦合式步階式阻抗共振器組成(SIRs)。透過調整步階式阻抗共振器的阻抗比(K)以及長度比(α)有效的決定第一與第二根共振模態,以便設計出一個微小化的二階帶通濾波器。源極-負載耦合線的設計是對應於第一與第二輸出端之第一通帶中心頻率的四分之一波長。本研究之所提出之三工器具有簡單的結構,有效的設計方法以及微小化的電路尺寸。
最後一個部份為第二部份結構做延伸,該結構新型四通帶雙工器(1.5 / 2 GHz和2.4/ 3.5 GHz)為利用兩對耦合式步階式阻抗共振器組成(SIRs)。透過調整步階式阻抗共振器的阻抗比(K)以及長度比(α)有效的決定第一與第二根共振模態,以便設計出一個微小化的二階帶通濾波器。源極-負載耦合線的設計是對應於第一與第二輸出端之第一通帶中心頻率的四分之一波長,該研究創新之處在於針對通帶能量不足之地方,輔助該通帶源極-負載耦合線對應於該通帶四分之一波長的分支負載做設計。本研究之所提出之四通帶雙工器為該研究領域中第一個提出具有簡單的結構,有效的設計方法以及微小化的電路尺寸。


Three types of novel bandpass filter are presented in this study. The first type in this paper, the compact tri-band bandpass filter (BPF) using multilayer substrate technique is presented. The filter is designed at 2.4 GHz, 3.5 GHz and 5.2 GHz. The multilayered filter consists of the cross-shaped stepped-impedance resonator (CS-SIR) on the top layer for generating the 1st passband and two T-shaped stepped-impedance resonators (TS-SIR) on the bottom layer for generating the 2nd and 3rd passband, respectively. The transmission zeros at each passband skirts can be controlled by tuning the proposed resonators. The measured results are in good agreement with the full-wave electromagnetic (EM) simulation results.
The second type is a new compact microstrip triplexer (2.4 / 3.5 / 5.8 GHz) using the coupled stepped impedance resonators (SIRs) is proposed. The triplexer is composed of three pairs of coupled SIRs with impedance ratio (K < 1) and the source-load coupling lines. The resonant peaks can be easily determined by tuning the impedance ratio (K) and length ratio (α) of the SIRs so as to implement a 2-order bandpass filter individually. The source-load coupling lines are designed to correspond to the quarter-wavelength at the center frequency for each channel. The proposed triplexer is showing a simple configuration, an effective design method and a small circuit size.
Finally, new compact quad-channel diplexer (1.5 / 2 GHz and 2.4 / 3.5 GHz) using the coupled stepped impedance resonators (SIRs) is proposed. The quad-channel diplexer is composed of two pairs of coupled SIRs with impedance ratio (K > 1) and the source-load coupling lines. By tuning the impedance ratio and length ratio (α) of SIRs, the resonant modes can be easily determined so as to implement a 2-order bandpass filter with very close dual-passbands. The source-load coupling lines are designed to correspond to the quarter-wavelength at the center frequency of first passband for each output port. The proposed quad-channel diplexer is showing a simple configuration, an effective design method and a small circuit size.


中文摘要 ii
Abstract iv
Acknowledgements vi
Contents vii
Table Contents ix
Figure Contents x
Chapter 1 Introduction 1
1.1 Review of Multi Plexer Filters 2
1.2 Review of Multiband Bandpass Filters 12
1.3 Outline of the Thesis 19
Chapter 2 Transmission Line Theory 21
2.1 Basic theory of microwave filters 21
2.2 General the Theory of Couplings 25
2.3 Selective Filters with a Single Pair of Transmission Zeros 37
2.4 Introduction of Stepped Impedance Resonator 38
Chapter 3 Design of Compact Tri-Band Bandpass Filter Using Multilayer Substrate Technique 40
3.1 Introduction 40
3.2 Circuit design 41
3.3 Results 47
Chapter 4 Compact Microstrip Triplexer Based on Coupled Stepped Impedance Resonators 49
4.1 Introduction 49
4.2 Circuit design 50
4.3 Results 55
Chapter 5 Design of New Quad-Channel Diplexer with Compact Circuit Size 58
5.1 Introduction 58
5.2 Circuit design 59
5.3 Results 65
Chapter 6 Conclusion 68
Reference 70
List of Publications 74


[1]V. Radisic, Y. Qian, R. Coccioli, and T. Itoh, “Novel 2-D Photonic Bandgap Structure for Microstrip Lines,” IEEE Microwave and Guided Wave Letters, vol. 8, no. 2, pp. 69-71, 1998.
[2]S. Srisathit, S. Patisang, R. Phromloungsri, S. Bunnjaweht, S. Kosulvit and M. Chongcheawchamnan, “High isolation and compact size microstrip hairpin diplexer,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 2, pp. 101-103, 2005.
[3]S. Hong and K. Chang, “A 10–35-GHz six-channel microstrip multiplexer for wide-band communication systems,” IEEE Trans. Microw. Theory Tech., vol. 54, no. 4, pp. 1370-1378, 2006.
[4]C. F. Chen, T. Y. Huang, C. P. Chou and R. B. Wu, “Microstrip diplexers design with common resonator sections for compact size, but high isolation,” IEEE Trans. Microw. Theory Tech., vol 54, no. 5, pp. 1945-1952, 2006.
[5]P. H. Deng, M. I. Lai, S. K. Jeng, and C. H. Chen, “Design of matching circuits for microstrip triplexers based on stepped-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 54, no. 12, pp. 4185-4191, 2006.
[6]Y. S. Lin, P. C. Wang, C. W. You and P. Y. Chang, “New designs of bandpass diplexer and switchplexer based on parallel-coupled bandpass filters,” IEEE Trans. Microw. Theory Tech., vol. 58, no. 12, pp. 3417-3426, 2010.
[7]S. Sun and L. Zhu, “Compact Dual-Band Microstrip Bandpass Filter without External Feeds,” IEEE Microw. Wireless Compon. Lett., vol. 15, no. 10, pp. 847–849, 2005.
[8]M. H. Weng, C. Y. Huang, H. W. Wu, K. Shu, and Y. K. Sua “Compact Dual-band Bandpass Filter with Enhanced Feed Coupling Structures,” Microw. Opt. Technol. Lett., vol. 49, no. 1, pp. 171-173, 2007.
[9]M. H. Weng, Y. C. Chang, H. W. Wu, and C. Y. Huang, “Design of Multilayered Dual-band Bandpass Filter Using Cross-coupled Stepped Impedance Resonators,” Microw. Opt. Technol. Lett., vol. 49, no. 11, pp. 2713-2717, 2007.
[10]M. H. Weng, H. W. Wu, and Y. K. Sua, “Compact and Low Loss Dual-band Bandpass Filter Using Pseudo-interdigital Stepped Impedance Resonators for WLANs,” IEEE Microw. Wireless Compon. Lett., vol. 17, no. 3, pp. 187–189, 2007.
[11]X. Y. Zhang, Q. Xue, and B. J. Hu “Planar Tri-Band Bandpass Filter With Compact Size” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 5, pp. 262–264, 2007.
[12]G. L. Matthaei, L. Young, E. M. T. Jone, Microwave Filters, Impedance-maching Networks and Coupling Strustures, New York, McGraw Hill, 1964.
[13]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A Miniaturized Monolithic Dual-band Filter Using Ceramic Lamination Technique for Dual-mode Portable Telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., vol. 2, pp. 789–792. 1997.
[14]H. Miyake, S. Kitazawa, T. Ishizaki, T. Yamada, and Y. Nagatomi, “A miniaturized monolithic dual band filter using ceramic lamination techniquefor dual mode portable telephones,” in IEEE MTT-S Int. Microw. Symp. Dig., Vol. 2, 789–792, 1997.
[15]H. Joshi, and W. J. Chappell, “Dual-band lumped-element bandpass filter,” IEEE Trans. Microw. Theory Tech., Vol. 54, 12, 4169-4177, 2006.
[16]L. C. Tsai and C. W. Huse, “Dual-band bandpass filters using equallength coupled-serial-shunted lines and Z-transform techniques,” IEEE Trans. Microw. Theory Tech., Vol. 52, 1111-1117, 2004.
[17]H. C. Tseng and H. Y. Shao, “A new dual-band microstrip bandpass filter using net-type resonators,” IEEE Microw. Wireless Compon. Lett., vol. 20, no. 4, pp. 196–198, 2010.
[18]P. H. Deng and J. H. Jheng, “A switched reconfigurable high-isolation dual-band bandpass filter,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 2, pp. 71–73, 2011.
[19]W. S. Chang and C. Y. Chang, “Analytical design of microstrip short-circuit terminated stepped-impedance resonator dual-band filter,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 7, pp. 1730-1739, 2011.
[20]C. F. Chen., T. Y. Huang and R. B. Wu, “Design of dual- and triple-passband filters using alternately cascaded multiband resonators,” IEEE Trans. Microw. Theory Tech., vol.54, no. 9, pp. 3550-3558, 2006.
[21]W. Y. Chen, M. H. Weng and S. J. Chang, “A new tri-band bandpass filter based on stub-loaded step-impedance resonator,” IEEE Microw. Wireless Compon. Lett ., vol. 22, no. 4, pp. 179-181, 2012.
[22]X. Lai, C. H. Liang, H. Di, and B. Wu, “Design of tri-band filter based on stub loaded resonator and DGS resonator,” IEEE Microw. Wireless Compon. Lett ., vol. 20, no. 5, pp. 265–267, 2010.
[23]IE3D Simulator, Zeland Software, Inc., 2002.
[24]M. Makimoto, and S. Yamashita, “Bandpass filters using parallel coupled stripline stepped impedance resonators,” IEEE Trans. Microw. Theory Tech., vol. 28, pp. 1413–1417, 1980.
[25]J. S. Hong, and M. J. Lancaster, Microstrip Filters for RF/Microwave Application, 2nd Edition, New York: Wiley, 2011.
[26]C. F. Chen, T. Y. Huang, T. M. Shen and R. B. Wu, “A miniaturized microstrip common resonator triplexer without extra matching network,” Proc. Asia-Pacific Microw. Conf., pp. 1439-1442, 2006
[27]J. Y. Wu, K. W. Hsu, Y. H. Tseng, and W. H. Tu, “High-isolation microstrip triplexer using multiple-mode resonators,” IEEE Trans. Microw. Theory Tech., vol. 22, no. 4, pp. 173-175, 2012.
[28]S. C. Lin, “Microstrip dual/quad-band filters with coupled lines and quasi-lumped impedance inverters based on parallel-path transmission,” IEEE Trans. Microw. Theory Tech., vol. 59, no. 8, pp. 1937-1946, 2011.
[29]H. W. Wu, Y. F. Chen and Y. W. Chen, “Multi-layered dual-band bandpass filter using stub-loaded stepped-impedance and uniform-impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 22, no. 3, pp. 114-116, 2012.
[30]H. W. Wu and R. Y. Yang, “A new quad-band bandpass filter using asymmetric stepped impedance resonators,” IEEE Microw. Wireless Compon. Lett., vol. 21, no. 4, pp. 203-205, 2011.
[31]F. C. Chen and Q. X. Chu, “Design of compact tri-band bandpass filters using assembled resonators,” IEEE Trans. Microw. Theory Tech., vol. 57, no. 1, pp. 165-171, 2009.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔