(3.227.208.0) 您好!臺灣時間:2021/04/18 13:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蔡武翰
研究生(外文):Wu-Han Tsai
論文名稱:濺鍍功率與基板溫度對於高介電薄膜之影響及其在MIM晶片電容之應用
論文名稱(外文):Effects of sputtering power and substrate temperature on high dielectric constant thin films and it’s applications to MIM on-chip capacitors
指導教授:吳宏偉
指導教授(外文):Hung-Wei Wu
口試委員:葉昌鑫蔡政穆
口試委員(外文):Chang-Sin YeCheng-Mu Tsai
口試日期:2014-07-07
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電腦與通訊研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:氧化鋅薄膜氧化鋅摻鋁薄膜MIM晶片電容射頻磁控濺鍍氮化鋁薄膜透明導電膜透光率電阻率漏電流密度電容密度
外文關鍵詞:zinc oxide filmaluminum-doped zinc oxide filmMIM capacitor chipRadio frequency magnetron sputteringaluminum nitride filmtransparent conductive filmTransmittanceresistivityleakage current densitycapacitance density
相關次數:
  • 被引用被引用:0
  • 點閱點閱:401
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
透明導電膜指的是在可見光範圍內具有高透光率,且具有良好導電性之薄膜,由於具特別的光性質及電性質,可應用在各種領域。而氮化鋁薄膜作為絕緣層之MIM晶片電容是因為散熱性佳,熱傳導率約170~190 W/mK和高絕緣度,適用於高功率LED、電子、光電、半導體、機械及冶金方面之應用備受矚目;特別在同時需要高導熱與高電絕緣的應用方面,被認為具有極高的應用潛力。
本研究利用RF磁控射頻濺鍍法沉積氧化鋅摻鋁(AZO)之透明導電薄膜,藉由改變濺鍍條件中之射頻功率、基板溫度、工作壓力等參數,探討製程參數對於沉積單層AZO薄膜之光學及導電性的影響,而MIM晶片電容則是利用DC磁控直流濺鍍法沉積鋁(Al)和氮化鋁(AlN),藉由氮化鋁(AlN)薄膜厚度,探討漏電流密度及電容密度,其分析結果定義出最佳製程條件之 AZO透明導電膜與Al/AlN/Al 之MIM晶片電容。
在薄膜的物性研究方面,藉由FE-SEM和AFM觀察薄膜之微結構變化與表面粗糙度;在透明導電薄膜光學性質方面,藉由紫外線可見光光譜儀,分析AZO薄膜之光學穿透率;在電學性質方面,使用霍爾量測其載子濃度與電子遷移率,而MIM晶片電容在電學性質方面是使用I-V與C-V量測電容密度與漏電流密度。
由實驗結果得之,AZO薄膜在基板溫度為70 ℃和濺鍍功率為250 W時,電阻率為7 × 10-4 Ω-cm (片電阻為175.2 Ω/sq),並且在可見光(300 ~ 800 nm)的平均透光率約為78 % (在415 nm) ~ 92.5 % (在630 nm),而MIM晶片電容根據ITRS Roadmap 2012年對於2014年的MIM電容密度規格至少要7 fF/μm2 以上,而我們在氮化鋁(AlN)厚度為50nm以矽為基板時能達到10.6 fF/μm2,很明顯與本實驗結果的需求相符合;漏電流的部分亦有達到規格要求(10-8 A/cm2 at 1V)。
綜合以上實驗結果得之,本論文是研究利用透明導電薄膜與MIM晶片電容之最佳參數對作為往後結合透明MIM晶片電容為主要研究。

Transparent conductive film refers to the visible light range with a high transmittance rate, and has good electrical conductivity of the film, due to the nature of special optical and electronic properties can be applied in various fields. The aluminum nitride film as an insulating layer of MIM capacitor chips because of the heat resistance, thermal conductivity of about 170 ~ 190 W / mK and a high degree of insulation, suitable for application of high-power LED, electronics, optoelectronics, semiconductors, mechanical and metallurgical aspects much attention; especially in applications requiring high thermal conductivity simultaneously with high electrical insulation, and is considered to have a high potential for application.
In this study, using RF magnetron RF sputtering deposition of zinc oxide doped with aluminum (AZO) of the transparent conductive film, by changing the sputtering conditions of RF power, substrate temperature, working pressure and other parameters to explore the process parameters for the deposition of single AZO and the conductive thin film optical effects, and MIM capacitor is to use the chip DC magnetron DC sputtering deposition of aluminum (Al) and aluminum nitride (AlN), aluminum nitride by (AlN) film thickness, the leakage current Discussion density and capacitance density, its analysis to define the optimum process conditions of AZO transparent conductive film with Al / AlN / Al of MIM chip capacitor.
In the study of the physical properties of thin films by micro-FE-SEM and AFM observation of structural changes in the film and the surface roughness; in terms of the optical properties of the transparent conductive film by UV-visible spectrophotometer to analyze the optical penetration rate of AZO films; in electricity properties, its measurement using the Hall carrier concentration and electron mobility rate, while MIM capacitors in electrical nature of the wafer using I-V and C-V measurements capacitance density and leakage current density.
The experimental results obtained by, AZO film at a substrate temperature of 70 ℃ and when the sputtering power of 250 W, a resistivity of 7 × 10-4 Ω-cm (sheet resistance of 175.2 Ω / sq), and in the visible (300 ~ 800 nm) of the average Transmittance approximately 78% (at 415 nm) ~ 92.5% (at 630 nm), while the MIM capacitor according to the wafer ITRS Roadmap 2012 the year for 2014 MIM capacitance density of at least 7 fF/μm2 above specifications and we in the aluminum nitride (AlN) thickness of 50nm silicon substrates can reach 10.6 fF/μm2, obviously consistent with the needs of the experimental results; leakage current section also meet the specifications required (10-8 A / cm2 at 1V).
Based on the above experimental results obtained in the present paper is to study the use of a transparent conductive film and MIM capacitors chip optimum parameters of the future as a major research combined with a transparent chip capacitor .

中文摘要 i
英文摘要 iii
誌謝 vi
目錄 viii
表目錄 xi
圖目錄 xii
第一章、緒論 1
1.1 研究背景 1
1.2 研究動機與目的 4
1.3 名詞解釋 6
第二章、基礎理論與文獻回顧 8
2.1 電漿 8
2.1.1 低溫電漿 8
2.1.2 高溫電漿 10
2.2 濺鍍理論 11
2.2.1 磁控濺鍍 12
2.2.2 直流濺鍍 14
2.2.3 射頻濺鍍 15
2.3 AZO薄膜特性之介紹 17
2.3.1 AZO薄膜之結構與性質 17
2.3.2 AZO薄膜之光學特性 22
2.3.3 AZO薄膜之電學特性 25
2.4 薄膜沈積理論 28
2.4.1 薄膜表面及截面型態結構 29
2.5 陷阱輔助穿隧效應 31
第三章、實驗設備與量測儀器 33
3.1 實驗流程 33
3.1.1 透明導電薄膜(TCO)之實驗流程 33
3.1.2 MIM晶片電容之實驗流程 34
3.2 實驗設備 35
3.2.1 射頻磁控濺鍍系統 (RF Magnetron Sputtering System) 35
3.2.2 直流磁控濺鍍系統(DC Magnetron Sputtering System) 41
3.3 量測儀器 44
3.3.1 薄膜厚度之量測 (Film Thickness Measurement) 44
3.3.1.1 表面輪廓粗度儀 (Alpha-step) 44
3.3.2 微結構分析 (Microstructural Analysis) 45
3.3.2.1 場發射掃瞄式電子顯微鏡 (Field Emission Scanning Electronic Microscopy,FE-SEM) 45
3.3.2.2 原子力顯微鏡 (Atomic Force Microscopy,AFM) 48
3.3.2.3 X光繞射儀 (X-Ray Diffraction,XRD) 49
3.3.3 光學特性量測 (Optical Properties Measurement) 50
3.3.3.1 紫外光可見光光譜儀 (UV-Visible-NIR Spectrophotometer) 50
3.3.4 電特性分析 (Electrical Properties Measurement) 51
3.3.4.1 四點探針 (Four Point Probe) 51
3.3.4.2 霍爾量測 (Hall Measurement ) 54
3.3.4.3 半導體參數分析儀(Semiconductor Parameter Analyzer) 56
第四章、利用射頻磁控濺鍍法探討在不同基板溫度和濺鍍功率之氧化鋅摻雜鋁(AZO)薄膜 59
4.1 前言 59
4.2 實驗方法 60
4.3 結果與討論 61
4.4 結論 69
第五章、探討氮化鋁薄膜厚度對於MIM晶片電容之影響 70
5.1 前言 70
5.2 實驗方法 70
5.3 結果與討論 71
5.4 結論 75
未來展望 76
參考文獻 77
個人著作目錄 87
[1] 楊明輝,2001,「金屬氧化物透明導電材料的基本原理」,工業材料,第179 期,第134-144 頁。
[2] 楊明輝,2006,透明導電膜,藝軒圖書出版社,台北,第1頁。
[3] D.P. Norton, Y.W. Heo, M.P. Ivill, K.Ip,S.J. Pearton, M.F. Chisholm, 2004, T.Steiner, ZnO: growth, doping & processing, materialstoday June, pp. 34-40.
[4] S.K. Park, J.I. Lee, C.S. Hwang, H.Y. Chu, 2005, “Characteristics of Organic Light Emitting Diodes with Al-Doped ZnO Anode Deposited by Atomic Layer Deposition, “ Jpn. J. Appl. Phys. Vol.44, No. 7, pp. 242-245.
[5] M.A. Martinez, J. Herrero, M.T. Gutierrez, 1997, “Deposition of transparent and conductive Al-doped ZnO thin films for photovoltaic solar cells,” Solar Energy Materials & Solar Cells, Vol. 45, pp. 75-86.
[6] J. A.Babcock, S. G. Balster, A. Pinto, C. Dirnecker, P. Steinmann, R. Jumpertz, and B. El-Kareh, IEEE Electron Device Lett.,vol. 22, pp.230, 2002.
[7] S. van Huylenbroeck, S. Decoutere, R. Venegas, S. Jenei, and G. Winderickx, IEEE Electron Device Lett.,vol. 23, pp.191, 2002.
[8] Z. Chen, L. Guo, M. Yu, and Y. Zhang, IEEE Microwave Wireless Comp. Lett.,vol. 12, pp. 246, 2002.
[9] M. Armacost, A. Augustin, P. Felsner, Y. Feng, G. Friese, J. Heidenreich, G. Hueckel, O. Prigge, and K. Stein, in IEDM Tech. Dig, pp.157, 2000.
[10] C. C. Lin, H. M. Hsu, Y. H. Chen, T. Shih, S. M. Jang, C. H. Yu,and M. S. Liang, in Proc. Symp. VLSI Technology, pp. 113, 2001.
[11] C. H. Ng, and S. F. Chu, IEEE Electron Device Lett.,vol. 23, pp.529, 2002.
[12] G. B. Alers, R. M. Fleming, Y. H. Wong, B. Dennis, and A. Pinczuk,“Nitrogen plasma annealing for low-temperature Ta2O5 films,” Appl. Phys. Lett., vol. 72, no. 11, pp. 1308–1310, 1998.
[13] Sun Jung Kim, Student Member, IEEE, Byung Jin Cho, Senior Member, IEEE, Ming Fu Li, Senior Member, IEEE, Xiongfei Yu, Chunxiang Zhu, Member, IEEE, Albert Chin, Senior Member, IEEE, and Dim-Lee Kwong, Senior Member, IEEE, “PVD HfO2 for High-Precision MIM Capacitor Applications,” IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 6, JUNE 2003.
[14] S. B. Chen, C. H. Lai, A. Chin, J. C. Hsieh, and J. Liu,“High-density MIM capaciters using Al2O3 and AlTiOx dielectrics,” IEEE Electron Device Lett., vol. 23, pp. 185-187, Apr, 2002.
[15] K. W. Kwon, C. S. Kang, H. K. Kang, and S. T. Ahn, “ThermallyBRobust Ta2O5 Capacitor for the 256-Mbit DRAM,” IEEE Transaction on Electron Devices, vol. 43, no. 6, Junel 1996.
[16] C. Y. Sze and J. Y. Lee, “The Electrical Characteristics of MFIS for Non-volatile Memory Applications,” SIMC-XI 2000
[17] L. Yinyin, T. Ting-ao, L. Yun, H. Weining, J. Guobao, “Fabrication and characteristics of Au/Cr/PZT/PT/Ti/ZrO2/Si structure for MFMIS FET application,” Solid-State and Integrated-Circuit Tec.
[18] Xiongfei Yu, Chunxiang Zhu, Member, IEEE, Hang Hu, Albert Chin, Senior Member, IEEE, M. F. Li Senior Member, IEEE, Byung Jin Cho, Senior Member, IEEE, Dim-Lee Kwong, P. D. Foo, and Ming Bin Yu,”A High-Density MIM Capacitor (13fF/μm2) Using ALD HfO2 Dielectrics,” IEEE ELECTRON DEVICE LETTERS, VOL. 24, NO. 2, FEBRUARY 2003.
[19] Hang Hu, Chunxiang Zhu, Y. F. Lu, Y. H. Wu, T. Liew, M.F. Li, B. J. Cho, W. K. Choi, and N. Yakovlev, “Physical and electrical characterization of HfO2 metal-insulator-metal capacitors for Si analog circuit applications,” JOURNAL OF APPLIED PHYSICS, VOLUME 94, NUMBER 1, 1 JULY 2003.
[20] S. Kobayashi, K. Amanuma, and H. Hada, “Effect of Interconnect Layer on Pb(Zr, Ti)O3 Thin Film Capacitor Degradation,” IEEE Electron Device Letters, vol. 19, no. 11, Nov. 1998.
[21] The International Technology Roadmap for Semiconductors, Semicond. Ind. Assoc., 2012.
[22] R. J. Goldston and P. H. Rutherford, 1995,"Introduction to plasma physics,” Institute of Physics Publishing.
[23] 林昭憲,1995,以電漿化學氣相沉積法蒸鍍氧化鋁薄膜之研究,碩士論文,國立成功大學,材料科學及工程系,台南。
[24] M. Konuma, 1992, “Film deposition by plasma techniques,” Springer-verlag Berlin Heidelberg.
[25] 楊錦章,1983,「基礎濺鍍電漿」,電子發展月刊,第68 期,第13-40頁。
[26] 張勁燕,2002,半導體製程設備,五南圖書出版股份有限公司,第二版,第359-360頁。
[27] Brian Chapman, 1980, Glow Discharge Processes, John Wiley and Sons, New York.
[28] 林光隆,2001,「表面工程講義」,第七章,國立成功大學,材料科學及工程學系,台南。
[29] L. John Vossen and Werner Kerm, 1999, “Thin Film Process,” Academic Process, pp. 134.
[30] Wasa, K., and Hayakawa, S., 1992, Handbook of sputter deposition technology, Noyes publications.
[31] Goldman, J. R., and Prybyla, J. A., 1994, “Ultrafast dynamics of laser-excited electron distributions in silicon,” Phys. Rev. Lett, Vol. 72, pp. 1364-1378.
[32] 王敬龍,1996,以溶膠-凝膠法製備ITO 薄膜之製程研究,碩士論文,國立成功大學,材料科學及工程研究所,台南。
[33] 許國銓,1993,「科技玻璃-高性能透明導電膜玻璃」,材料與社會,第84 期,第110-119 頁。
[34] Davis, L., 1993, “Properties of transparent conducting oxides deposited at room temperature,” Thin Solid Films, Vol. 236, pp. 1-5.
[35] Shanthi, E., Banerjee, A., Dutta, V., and Chopra, K. L., 1982, “Electrical and optical properties of Tin Oxide films doped with F and(Sb+F) ,” Journal of Applied Physics, Vol. 53, pp. 1615-1621.
[36] Park, K. C., Ma, D. Y., and Kim, K. H., 1997, “The physical properties of Al-doped zinc oxide films prepared by RF magnetron sputtering,” Thin Solid Films, Vol. 305, pp.201–209.
[37] Ozgur, U., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J., and Morkoc, H., 2005, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, Vol. 98, pp. 041301.
[38] Eberspacher, C., Fahrenbruch, A. L., and Bube, R. H., 1986 “Properties of ZnO films deposited onto InP by spray pyrolysis,” Thin Solid Films, Vol. 136, pp. 1-10.
[39] Hartnagel, H. L., and Jagadish, A. K., 1995, Semiconducting Transparent Thin Films, Taylor & Francis, United States of America.
[40] P. Nunes, E. Fortunato, R. Martins, 2001, “Influence of the annealing conditions on the properties of ZnO thin films,” The International Journal of Inorganic Materials, Vol. 3, No. 8, pp. 1125-1128.
[41] 楊明輝,2006,透明導電膜,台北,藝軒圖書出版社,第67-70 頁。
[42] Fukudome, T., Kaminaka, A., Isshiki, H., Saito, R., Yugo, S., and Kimura, T., 2003, “Optical characterization of Er-implanted ZnO films formed by sol–gel method,” Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, Vol. 206, pp. 287-290.
[43] Moss, T. S., 1954, ”The interpretation of the properties of Indium Antimonide,” Phys. Soc. London Sect. B, Vol. 67, pp. 775-782.
[44] Ozgur, U., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J., and Morkoc, H., 2005, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, Vol. 98, pp. 041301.
[45] 王茂進,2007,利用射頻磁控濺鍍法在具有鑽石薄膜之矽晶片上沉積氧化鋅薄膜及表面聲波之應用,碩士論文,大同大學,光電工程研究所,台北。
[46] Chen, P. L., Muller, R. S., Jolly, R. D., Halac, G. L., White, R. M., Andrews, A. P., Lim, T. C., and Motamedi, M. E., 1982, “Integrated silicon microbeam PI-FET accelerometer,” IEEE Trans. Electron Devices, Vol. 29, pp. 27.
[47] 汪建民,2001,「材料分析」,中華材料科學學會發行,第122 頁。
[48] Ozgur, U., Alivov, Ya. I., Liu, C., Teke, A., Reshchikov, M. A., Dogan, S., Avrutin, V., Cho, S. J., and Morkoc, H., 2005, “A comprehensive review of ZnO materials and devices,” Journal of Applied Physics, Vol. 98, pp. 041301.
[49] T. Minami, S. Suzuki, T. Miyata, 2001, “Electrical Conduction Mechanism of Highly Transparent and Conductive ZnO Thin Films”, MRS Symp. Proc., Vol. 666.
[50] T. Minami, 2000, “New n-type transparent conducting oxides”, MRS Bulletin, Aug. C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, 2004, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films”, J. Appl. Phys., Vol. 95, pp. 1911-1917.
[51] C. Agashe, O. Kluth, J. Hüpkes, U. Zastrow, B. Rech, M. Wuttig, 2004, “Efforts to improve carrier mobility in radio frequency sputtered aluminum doped zinc oxide films”, J. Appl. Phys., Vol. 95, pp. 1911-1917.
[52] Chopra,K. L., Major, S., and Pandya, D. K., 1983, “Transparent conductors-A status review,” Thin solid films, Vol. 102, pp. 1-46.
[53] B. S. Chun, H. C. Wu, M, 2010,” The effect of deposition power on the electrical properties of Al-doped zinc oxide thin films”, APPLIED PHYSICS LETTERS, Vol. 97, pp. 082109.
[54] 陳建華,2003,P-型透明導電膜應用於有機發光二極體,碩士論文,國立成功大學,化學工程研究所,台南。
[55] 楊明輝,1999,工業材料,第179 期,第134 頁。
[56] Chopra,K. L., Major, S., and Pandya, D. K., 1983, “Transparent conductors-A status review,” Thin solid films, Vol. 102, pp. 1-46.
[57] H. W. Lee, S. P. Laua, Y. G. Wanga, K. Y. Tse, H. H. Hng, and B. K.Tay, 2004, J. Cryst.Growth, Vol. 268, pp. 596.
[58] Z. C. Zin, I. Hamberg, and C.G. Granqvist, 1988, J. Appl. Phys., Vol. 64, pp. 5117.
[59] T. Minami, H. Nanto, and S. Takata, 1985, Jpn. J. Appl. Phys., Vol. 24, L605.
[60] I. Hamberg and C. G. Granqvist, 1986, J. Appl. Phys., Vol. 60, R123.
[61] S. Fujihara, Y. Ogawa, and A. Kasai, 2004, Chem. Mater., Vol. 16, pp. 2965.
[62] Y. Natsume and H. Sakata, 2002, Mater. Chem. Phys., Vol. 78, pp. 170.
[63] N. R. Aghamalyan, E. A. Kafadaryan, R. K. Hovsepyan, and S. I.Petrosyan, 2005, Semicond. Sci. Tech., Vol 20, pp. 80.
[64] H. L. Hartnagel, A. L. Dawar, A. K. Jain, and C. Jagadish, 1995, Semiconducting Transparent Thin Films, Institute of Physics Publishing.
[65] 潘漢昌、蕭銘華、蘇健穎、蕭健男, 2004,透明導電膜簡介,科儀新知,第26 期,第46 頁。
[66] U. Ozgur, Ya. I. Alivov, C. Liu, A. Teke, M. A. Reshchikov, S. Dogan, V.Avrutin, S. J. Cho, and H. Morkoc, 2005, J. Appl. Phys., Vol. 98, pp. 041301.
[67] J. H. Lee and B. O. Park, 2003, Thin Solid Films, Vol. 426, pp. 94.
[68] S. Y. Lee and B. O. Park, 2005, Thin Solid Films, Vol. 484, pp. 184.
[69] Aoshima, Y., Miyazaki, M., Sato, K., Akao, Y., Takaki, S., and Adachi, K., 2000, “Development of silver-based multilayer coating electrodes with low resistance for use in flat panel displayers,” Journal of applied physics, Vol. 39, pp. 4884-4889.
[70] Ando, E., and Miyazaki, M., 1999, “Moisture degradation mechanism of silver-based low-emissivity coatings,” Thin Solid Films, Vol. 351, pp.308-312.
[71] Miyazaki, M., and Ando, E., 1994, “Durability improvement of Ag-based low-emissivity coatings,” Journal of Non-Crystalline Solids, Vol. 178, pp.245-249.
[72] Takata, M., Tsubone, D., and Yanagida, H., 1976, “Dependence of electrical conductivity of ZnO on degree of sintering,” Journal of the American Ceramic Society, Vol. 59, pp. 4-8.
[73] Ryoken, H., Sakaguchi, I., Ohashi, N., Sekiguchi, T., Hishita, S., and Haneda, H., 2005, “Non-equilibrium defects in aluminum-doped zinc oxide thin films grown with a pulsed laser deposition method,” J. Mater. Res, Vol. 20, pp. 2866-2872.
[74] 周安琪,1975,薄膜材料,徐氏基金會。
[75] J.A. Thornton, 1974, “Influence of apparatus geometry and deposition condition on the structure and topography of thick sputtered coating,” J. Vac. Sci. Technol., Vol. 11, No. 4, pp. 666.
[76] J.A. Thornton, 1975, “Influence of substrate temparature and deposition rate on tructure of thick sputtered Cu coatings,” J. Vac. Sci. Technol., Vol. 12, No. 4, pp. 830.
[77] T. Minami, 2008, Present status of transparent conducting oxide thin-film development for Indium-Tin-Oxide (ITO) substitutes. Thin Solid Films, Vol. 516, pp.5822.
[78] B.S. Chua, S. Xu, Y.P. Ren, Q.J. Cheng, K. Ostrikov, 2009, High-rate, room temperature plasma-enhanced deposition of aluminum-doped zinc oxide nanofilms for solar cell applications. J. Alloys Compd. Vol. 485, pp.379
[79] W. Gao, Z.W. Li, 2008, Photoluminescence properties of ZnO films grown by wet oxidation: Effect of processing. J. Alloys Compd. Vol. 449, pp.202.
[80] M.H. Huang, S. Mao, H. Feick, H. Yan, Y. Wu, H. Kind, E. Weber, R. Russo, P. Yang, 2001, Room-Temperature Ultraviolet Nanowire Nanolasers. Science. Vol. 292, pp.1897.
[81] L. Schmidt-Mende, J.L. MacManus-Driscoll, 2007, ZnO – nanostructures, defects, and devices. Mater. Today Vol. 10, pp.40.
[82] Y.S. Kim, W.P. Tai, 2007, Electrical and optical properties of Al-doped ZnO thin films by sol–gel process. Appl. Surf. Sci. Vol. 253, pp.4911.
[83] H. Kim, A. Pique, J.S. Horwitz, H. Murata, Z.H. Kafafi, C.M. Gilmore, D.B. Chrisey, 2000, Effect of aluminum doping on zinc oxide thin films grown by pulsed laser deposition for organic light-emitting devices. Thin Solid Films, Vol.798, pp.377.
[84] W.T. Yen, Y.C. Lin, P.C. Yao, J.H. Ke, Y.L. Chen, 2010, Effect of post-annealing on the optoelectronic properties of ZnO:Ga films prepared by pulsed direct current magnetron sputtering. Thin Solid Films, Vol. 518, pp.3882.
[85] D.R. Sahu, S.Y. Lin, J.L. Huang, 2007, Study on the electrical and optical properties of Ag/Al-doped ZnO coatings deposited by electron beam evaporationAppl. Surf. Sci. Vol. 253, pp.4886.
[86] M.J. Lee, T.I. Lee, J. Lim, J. Bang, W. Lee, T. Lee, J.M. Myoung, 2009, Effect of the Deposition Temperature and a Hydrogen Post-Annealing Treatment on the Structural, Electrical, and Optical Properties of Ga-Doped ZnO Films. Electron. Mater. Lett. Vol. 5, pp.127.
[87] X.T. Hao, L.W. Tan, K.S. Ong, F. Zhu, 2006, High-performance low-temperature transparent conducting aluminum-doped ZnO thin films and applications. J. Cryst. Growth Vol. 287, pp.44.
[88] B.D. Cullity, 197) Elements of X-ray diffraction, 2nd edn. Addison-Wesley, pp. 102.
[89] D.M. Mattox, 1989, Particle bombardment effects on thin‐film deposition: A review. J. Vac. Sci. Technol. A 7, 1105.
[90] M. Suchea, S. Christoulakis, N. Katsarakis, T. Kitsopoulos, G. Kiriakidis, 2007, Comparative study of zinc oxide and aluminum doped zinc oxide transparent thin films grown by direct current magnetron sputtering. Thin Solid Films, Vol. 515, pp.6562.
[91] G. Haacke, 1976, New figure of merit for transparent conductors. J. Appl. Phys. Vol. 47, pp.4086.
[92] H. Kim, C.M. Gilmore, J. S. Horwitz, A. Pique, H. Murata, G. P. Kushto, R. Schlaf, Z. H. Kafafi, D. B. Chrisey, 2000, Transparent conducting aluminum-doped zinc oxide thin films for organic light-emitting devices. Appl. Phys. Lett. Vol. 76, pp.259–261
[93] J.H. Park, J.M. Shin, S.Y. Cha, J.W. Park, S.Y. Jeong, H.K. Pak, C.R. Cho, J. Korean, 2006, Deposition-temperature effects on AZO thin films prepared by RF magnetron sputtering and their physical properties Phys. Soc. Vol. 49, pp.584-588.
[94] S.M. Jung, Y.H. Kim, S.I. Kim, S.I. Yoo, 2011, Characteristics of transparent conducting Al-doped ZnO films prepared by dc magnetron sputtering. Curr. Appl. Phys. Vol. 11, pp.191.
[95] F. Wang, M.Z. Wu, Y.Y. Wang, Y.M. Yu, X.M. Wu, L.J. Zhuge, 2013, Influence of thickness and annealing temperature on the electrical, optical and structural properties of AZO thin films. Vacuum. Vol. 89, pp.127-113.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔