跳到主要內容

臺灣博碩士論文加值系統

(44.200.77.92) 您好!臺灣時間:2024/03/01 08:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:余建逸
研究生(外文):Yu,Jian-Yi
論文名稱:摻雜La與Ti之Sr2Nb2O7陶瓷製備與特性研究
論文名稱(外文):Fabrication and properties of La and Ti doped Sr2Nb2O7 ceramics
指導教授:蔡文周劉依政
指導教授(外文):Tsai,Wen-ChouLiou,Yi-Cheng
口試委員:朱聖緣
口試委員(外文):Chu,Shng-Yuan
口試日期:2014-07-30
學位類別:碩士
校院名稱:崑山科技大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:70
中文關鍵詞:熱電陶瓷Sr2Nb2O7
外文關鍵詞:Thermoelectric ceramicSr2Nb2O7
相關次數:
  • 被引用被引用:1
  • 點閱點閱:444
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
熱電材料是能將溫差轉為電能或反之將電能轉為溫差的新興研究材料,其熱電特性或所謂熱電優值ZT可由降低熱導率來提高,因此引發吾人尋找低熱導率Sr2Nb2O7陶瓷材料並且使用掺雜方式提高其導電率而成為半導性陶瓷,藉此嘗試找到特性優良具高熱電優值ZT之熱電陶瓷材料。

本文研究摻雜La與Ti之Sr2Nb2O7陶瓷與熱電特性研究,將原料粉末球磨混合、烘乾、成型後,不經煆燒步驟而直接進行燒結,並探討不同的燒結溫度與持溫時間對於微結構與熱電特性之影響。

結果顯示摻雜La與Ti之Sr2Nb2O7陶瓷其結構皆呈現單一相,隨燒結溫度或持溫時間增加陶瓷密度也隨之增加,摻雜La在1350oC以上密度增加皆有趨緩現象,而摻雜Ti在1400oC以上密度增加皆有趨緩現象,其表面微結構觀察隨溫度的增加呈現緻密化,摻雜La與Ti則明顯造成晶粒成長變緩,使晶粒數眾多而有巨量的晶粒邊界,預期將影響其導電性與熱性。

Thermoelectric materials gain much attentions in energy saving and environmental issues recently. They can capture electric power from waste heat or transfer electricity to cryogenic function. Their apparent thermoelectric properties or the so-called figure of merit Z can be improved by lowering the thermal conductivity of the materials. This leads us to find the Sr2Nb2O7 ceramic with low thermal conductivity. We try to dope the ceramics to increase their electric conductivity, which maybe even turn into semiconducting, while keeping their low thermal conductivity simultaneously. Therefore, excellent thermoelectric ceramics with high figure of merit Z were explored in this study.

Fabrication and thermoelectric properties of La- and Ti-doped Sr2Nb2O7 ceramics was conducted in this study. The Sr2Nb2O7 ceramics was prepared by reaction sintering process, which is similar to conventional oxide route process but deleting the calcination process. The effects of sintering temperatures and soaking times on the microstructures and thermoelectric properties were investigated.

The results show that no second phase exhibits in La and Ti doped Sr2Nb2O7 ceramics. The bulk density of La-doped and Ti-doped Sr2Nb2O7 ceramics increases with increasing sintering temperature up to 1350℃ and 1400℃ respectively, and remains nearly the same with further increasing temperature. Surfaces of the Sr2Nb2O7 ceramics show significant grain growth with increasing sintering temperature, but La-doping and Ti-doping seem to suppress grain growth relatively, which result in large number of crystal grains and grain boundaries. The huge grain boundaries are expected to affect conductivities and heat resistance of the ceramics.

摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧i
英文摘要‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧ii
目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧iv
表目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧vii
圖目錄‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧viii

一、 緒論
1.1 前言‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧1
1.2 熱電材料簡介‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧2
1.3 研究動機‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧10

二、 原理
2.1 熱電原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
2.1.1 Seebeck效應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧12
2.1.2 Peltier效應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧14
2.1.3 Thomson效應‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧16
2.2 燒結原理‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧17
2.2.1 再結晶與晶粒成長‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧17
2.2.2 燒結驅動力‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧19
2.2.3 影響燒結因素‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧23
2.2.4 燒結種類‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧24
三、 實驗方法
3.1 陶瓷材料的選擇‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29
3.2 實驗流程‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧29
3.3 燒結條件‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧32
3.4 特性量測介紹‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33
3.4.1 收縮率量測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33
3.4.2 相對密度量測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧33
3.4.3 SEM表面微結構分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧34
3.4.4 XRD繞射分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧35
3.4.5 熱電量測‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧36

四、 結果與討論
4.1 摻雜La之Sr2Nb2O7陶瓷材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧39
4.1.1 X-ray繞射分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧39
4.1.2 相對直徑收縮率百分比分析與密度分析‧‧‧‧‧‧‧40
4.1.3 SEM分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧46
4.2 摻雜Ti之Sr2Nb2O7陶瓷材料‧‧‧‧‧‧‧‧‧‧‧‧‧‧52
4.2.1 X-ray繞射分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧52
4.2.2 相對直徑收縮率百分比分析與密度分析‧‧‧‧‧‧‧53
4.2.3 SEM分析‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧56
4.3 熱電特性‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧59

五、 結論
5.1 結論‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧65

參考文獻‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧‧66

[1]朱旭山, 熱電材料與元件之原理與應用, 電子與材料雜誌, 第22期, 78-89, 2004/5/20.
[2]朱旭山, 熱電材料與元件之原理與應用, 220期工業材料雜誌, 93-103, 94年4月.
[3]巫振榮, 熱電元件應用, 奈米通訊, 卷期20:4, 00287827, 2013.
[4]T. M. Tritt and M. A. Subramanian, “Thermoelectric Materials, Phenomena, and Applications: A Bird’s Eye View,” MRS Bull., 31, pp. 188-194, 2006.
[5]D. M. Rowe, “Thermoelectric Power Generation - An Update,” 9th Cimtec-World Forum on New Materials, Symposium VII-Innovative Materials in Advanced Energy Technologies, pp. 649-664, Florence, Italy, 1998.
[6]J. Nan, J. Wu, Y. Deng, C. W. Nan, “Synthesis and thermoelectric properties of (NaxCa1-x)3Co4O9,” J. Eur. Ceram. Soc., 23, pp. 859-863, 2003.
[7]廖建能, 熱電效應之原理與應用介紹, 電子月刊第九卷第四期, 160-167, 2003年4月.
[8]M. Ohtaki, T. Tsubota, K. Eguchi, and H. Arai, “High-temperature thermoelectric properties of (Zn1-xAlx)O,” J. Appl. Phys. 79, pp. 1816-1818, 1996.
[9]M. Ohtaki, D. Ogura, K. Eguchi, H. Arai, “High-temperature thermoelectric properties of In2O3-based mixed oxides and their applicability to thermoelectric power generation,” J. Mater. Chem. 4, pp. 653-656, 1994.
[10]M. Ohtaki, D. Ogura, K. Eguchi, H. Arai, “Electrical transport properties and high temperature thermoelectric performance of (Ca0.9M0.1)MnO3,” J. Solid State Chem., 120, pp. 105-111, 1995.
[11]M. Yasukawa, N. Murayama, “High temperature thermoelectric properties of Ba1-xSrxPbO3,” J. Mater. Sci. Lett. 16, pp. 1731-1734, 1997.
[12]M. Kazeoka, H. Hiramatsu, W. Seo, K. Koumoto, “Improvement in the thermoelectric properties of (ZnO)5In2O3 throught partial substitution of yttrium for indium,” J. Mater Res. 13, pp. 523-526, 1998.
[13]T. Kobayashi, H. Takizawa, T. Endo, T. Sato, M. Shimada, “Metal-insulator transition and thermoelectric properties in the system (R1-xCax)MnO3, (R: Tb, Ho, Y),” J. Solid State Chem. 92(1), pp. 116-129, 1991.
[14]T. Itoh, T. Kawata, T. Kitajima, I. Terasaki, “Large thermoelectric power in NaCo2O4 single crystals,” Phys. Rev. B 56, pp. 12685-12687, 1997.
[15]N. T. Tinh, T. Tsuji, Physics and Engineering of New Materials, Springer Proceedings in Physics Volume 127, pp. 209-217, 2009.
[16]H. Ning, H. Yan, M. J. Reece, “Piezoelectric Strontium Niobate and Calcium Niobate Ceramics with Super-High Curie Points,” J. Am. Ceram. Soc., 93(5), pp. 1409-1413, 2010.
[17]H. Ohta, K. Sugiura, K. Koumoto, “Recent progress in oxide thermoelectric materials: p-type Ca3Co4O9 and n-Type SrTiO3” Inorg. Chem., 47:8429-36, 2008.
[18]JCPDS Card, 21-139.
[19]E. Wocermann, A. Muan, “Phase equilibria in the system CaO-cobalt oxide in air,” J. Inorg. Nucl. Chem. 32(5), pp. 1455-1459, 1970.
[20]M. Shikano, R. Funahashi, “Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure,” Appl. Phys. Lett. 82(12), pp. 1851-1853, 2003.
[21]J. Wu, X. Wei, N. P. Padture, P. G. Klemens, M. Gell, E. Garcia, P. Miranzo, M. I. Osendi, “Low Thermal Conductivity Rare-Earth Zirconates for Potential Thermal Barrier Coating Applications,” J. Am. Ceram. Soc., 85(12), pp. 3031-3035, 2002.
[22]N. P. Bansal, D. Zhu, “Effects of doping on thermal conductivity of pyrochlore oxides for advanced thermal barrier coatings,” Mater. Sci. Eng. A, 459, pp. 192-195, 2007.
[23]W. Pan, S. R. Phillpot, C. Wan, A. Chernatynskiy, Z. Qu, “Low thermal conductivity oxides,” MRS Bull., 37, pp. 917-922, 2012.
[24]Y. C. Liou, “Effect of Heating Rate on Properties of Pb(Mg1/3Nb2/3)O3 Ceramics Produced by Reaction-Sintering process,” Mater. lett., 58(6), pp. 944-947, 2004.
[25]Y. C. Liou, C. Y. Shih and C. H. Yu, “Stoichiometric Pb(Fe1/2Nb1/2)O3 Perovskite Ceramics Produced by Reaction-Sintering Process,“ Mater. Lett., 57, pp. 1977-1981, 2003.
[26]Y. C. Liou, Z. S. Tsai, K. Z. Fung, C. Y. Liu, “Ni4Nb2O9 Ceramics Prepared by the Reaction-Sintering Process,” Ceram. Int., 36(6), pp. 1887-1892, August, 2010.
[27]Y. C. Liou, W. C. Tsai, H. M. Chen, “Low Temperature Synthesis of BiNbO4 Ceramics Using Reaction-Sintering Process,” Ceram. Int., 35(6), pp. 2119–2122, August, 2009.
[28]Y. C. Liou, “PMN-PFN Relaxor Ferroelectric Ceramics by a Reaction-Sintering Process,” J. Electroceram., 12, pp. 187-190, 2004.
[29]Y. C. Liou, C. T. Wu, K. H. Tseng and T. C. Chung, “Synthesis of BaTi4O9 ceramics by reaction-sintering process,” Mater. Res. Bull., 40(9), pp. 1483, 2005.
[30]Y. C. Liou, M. H. Weng and C. Y. Shiue, “CaNb2O6 ceramics prepared by a reaction-sintering process,” Mater. Sci. and Eng. B., 133(1-3), pp. 14-19, 2006.
[31]Y. C. Liou, U. R. Lee, “Non-calcining process for CuAlO2 and CuAl0.9Ca0.1O2 ceramics,” J. Alloys and Compounds, 467, pp. 496–500, 2009.
[32]Y. C. Liou, L. S. Chang, Y. M. Lu, H. C. Tsai, U. R. Lee, ”Effects of Mechanical Milling on Preparation and Properties of CuAl1-xFexO2 Thermoelectric Ceramics,” Ceram. Int., 38(5), pp. 3619-3624, July 2012.
[33]William D. Callister, JR. Materials Science And Engineering An Introducion, John Wiley & Sons, Inc.
[34]陳皇鈞, 陶瓷材料概論, 曉園, 台北市, 3版, (1992).
[35]朱世富, 材料科學與工程, 新文京開發出版股份有限公司, (2002).
[36]W. D. Kingery, H. K. Bowen, D. R. Ulhmann, “Introduction to Ceramics,” John Wiley & Sons, Inc.
[37]汪建民, 精密陶瓷科技, 工業技術研究院工業材料研究所, (1987).
[38]S. Yangyun, R. J. Brook, “Preparation of Zirconia-Toughened Ceramics by Reaction Sintering,” Sci. Sintering, 17(1), pp.35-47, 1985.
[39]W. J. Huppmann and G. Ptzow, “The Wlementary Mechanisms of Liquid Sintering,” Sintering Process, Plenum Press, pp.189-202, 1979.
[40]H. Y. Lu, “Physical Ceramics,” (1995).
[41]Randall M. German, John Wiley and Sons, “Sintering theory and practice,” New York, (1996).
[42]郝士明, 漫談晶體結構學:從材料學談起, 政大印書館股份有限公司, (1997).
[43]R. Raj and C. K. Chyung, “Solution-Precipitation Creep in Glass-Ceramics,” Acta Metallurgica, 29, pp.159-166, 1980.
[44]J. N. Eremenko, Y. V. Naidich and I. A. Lenko, “Liquid Consolation New York,” Ch4, 1970.
[45]K. S. Hwang, Phd Thesis, “Rensselaer Ploytechnic in Troy,” 1984.
[46]J. W. Cahn and R. B. Heady, “Analysis of capillary forces in liquid-phase sintering of jagged particles,” J. Am. Ceram. Soc., vol. 53, pp. 406-409, 1970.
[47]R. B. Heady and J. W. Cahn, “An analysis of the capillary forces in liquid-phase sintering of spherical particles,” Metall. Trans. vol. 1, pp. 185-189, 1970.
[48]R. B. Heady and J. W. Chan, “Analysis of Capillary Forces in Liquid‐Phase Sintering of Jagged Particles,” J. Am. Cream. Soc., vol. 7, pp. 406-409, 1970.
[49]M. N. Rahaman and L. C. De Jonghe, “Reaction Sintering of Zinc Ferrite During Constant Rates of Heating,” J. Am. Ceram. Soc., 76(7), pp. 1739, 1993.
[50]王宏志, 高濂郭, 景坤, SiC顆粒尺寸對Al2O3-SiC奈米複合陶瓷影響.
[51]William F. Smith, Foundations of Materials Science and Engineering: With OLC Card, Hardcover, McGRAW-HILL, ISBN:0-07-121859-9.
[52]S. Seraji, Y. Wu, S. Limmer, T. Chou, C. Nguyen, M. Forbess, G. Z. Cao, “Processing and properties of vanadium doped strontium niobate,” Materials Science and Engineering, B88, pp. 73-78, 2002.
[53]C. Fu, H. Liu, G. Chen, W. Cai, X. Deng, “Microstructure and electric properties of strontium niobate ceramics,” Ceram. Int., 38, pp. 2601-2603, 2012.
[54]Y. C. Liou, Y. R. Chen, “Synthesis and Microstructure of (LaSr)MnO3 and (LaSr)FeO3 Ceamics by a Reaction-Sintering Process,” Ceram. Int., 34(2), pp. 273-278, March, 2008.
[55]陳力俊, 廖建能, 奈米雙晶-改變原子晶界擴散行為之結構, 清華簡訊, 554期.
[56]H. Wang, C. Wang, “Thermoelectric properties of Yb-dopedLa0.1Sr0.9TiO3 ceramics at high temperature,” Ceram. Int., 39, pp. 941–946, 2013.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top