(3.80.6.131) 您好!臺灣時間:2021/05/14 03:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張大年
研究生(外文):Ta-Nien Chang
論文名稱:鋁渣資源化經微波電漿煅燒製備氧化鋁之研究
論文名稱(外文):Recycling of Aluminum Dross for Producing Alumina Calcined by Microwave Plasma
指導教授:蔡政賢蔡政賢引用關係
指導教授(外文):Cheng-Hsien Tsai
口試委員:楊木火蔡瀛逸廖渭銅
口試委員(外文):Mu-Huo YangYing-Yi TsaiWei-Tong Liao
口試日期:2014-04-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:常壓微波電漿廢鋁浮渣氫氧化鋁氧化鋁去雜質
外文關鍵詞:atmospheric-pressure microwave plasmaaluminum drossaluminum hydroxidealuminaremoal of impurities
相關次數:
  • 被引用被引用:3
  • 點閱點閱:604
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
金屬鋁為眾多加工行業不可缺的原料之一,回收後的廢鋁料經常以熔煉方式回收再利用,但製程中會伴隨產生大量的廢鋁浮渣(俗稱鋁渣),其富含大量鋁及鋁化合物,多以摻配方式回爐重煉或進行掩埋處理,除了需支付昂貴的處置費用,衍生的臭味問題亦造成環境汙染引起公共爭議。因此,本研究經由廢鋁浮渣與氫氧化鈉溶液於常壓下進行反應製備鋁酸鈉溶液,並探討反應溫度、反應時間及氫氧化鈉溶液濃度,對鋁渣中鋁質的溶出率之影響。然後藉由調降溶液pH值去除溶液中的雜質,得到氫氧化鋁,再以常壓微波電漿或熱煅燒,製備氧化鋁。
結果顯示:安定化的廢鋁浮渣平均粒徑18.4 μm,經由元素分析,鋁元素含量33.61%,與氫氧化鈉溶液於較適化條件(T = 50℃, t = 60 min, CNaOH = 3 M) 下鹼溶,鋁渣重量溶解率達到46.3%,且鋁元素回收率43.95%。鋁酸鈉溶液經由硫酸調降pH去除雜質,再進一步調降至pH = 7,得到氫氧化鋁,經由熱重分析及晶相分析,顯示氫氧化鋁主要晶相為Boehmite (γ-AlOOH),最後以常壓Ar-O2微波電漿(800-900 W) 於700℃下煅燒5 min,即可得到高純度的α-Al2O3,總計鋁元素經由此一簡單程序可再回收40.9%。
Aluminum is an essential raw material for industrial application and can be recycled and reused by remelting the aluminum dross. However, large amounts of chemical wastes were produced from the melting processes. The composition of aluminum dross was complicated, including metal and nonmetallic substances, such as Al-containing compounds, and metal oxides. If the dross was buried in landfill, will lead to a serious environmental pollution. Hence, this research studies the extractability of Al content by reacting aluminum dross with sodium hydroxide (NaOH) to produce sodium aluminate solution (NaAl(OH)4), the removal of impurities, and the transformation of sodium aluminate to aluminum hydroxide (Boehmite, γ-AlOOH) by adding sulfuric acid. Finally, aluminum hydroxide was filtered, washed, dried, and calcined by atmospheric-pressure microwave plasma to produce alumina.
The results showed that the optimal conditions for reaching the highest extractability of Al content was at T = 50℃, t = 60 min and CNaOH = 3 M. The dissolution efficiency of aluminum dross waste was 46.3% and the recovery ratio of Al element was 43.95% (wt % of aluminum dross). The impurity in sodium aluminate solution was almost removed by reducing pH value to 11 form initial pH value = 13.3. Then the pH value was decreased to 7 by adding sulfuric acid to produce aluminum hydroxide precipitate (Boehmite, γ-AlOOH). Finally, the high purity of α-Al2O3 could be prepared by using atmospheric-pressure microwave plasma-calcination in Ar-O2 environment at 700℃ for 5 min.
摘 要 I
ABSTRACT II
誌 謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1 研究動機與目的 1
1-2 研究內容 2
第二章 文獻回顧 4
2-1 廢鋁熔煉浮渣 4
2-1-1 鋁渣來源 4
2-1-2 鋁渣特性 5
2-1-3 鋁渣引起之環境問題 6
2-2 鋁渣處理技術及方法 7
2-2-1 處理方法 7
2-2-2 資源化技術 8
2-3 氫氧化鋁與氧化鋁 9
2-3-1 拜耳法 9
2-3-2 氫氧化鋁及氧化鋁的晶相種類 11
2-3-3 影響氫氧化鋁的沉澱機制 13
2-3-4 去除雜質 14
2-3-5 煅燒溫度對氧化鋁的生成影響 17
2-3-6 鋁渣製備氧化鋁 17
2-4 電漿煅燒 19
2-4-1 微波電漿原理 19
2-4-2 電漿煅燒 22
第三章 實驗設備及方法 24
3-1 實驗設備與材料 24
3-1-1 藥品與材料 24
3-1-2 裝置 24
3-2實驗流程與參數設定 27
3-2-1 實驗流程 27
3-2-2 參數設定 29
3-2-3 實驗步驟 30
3-3 分析儀器 32
第四章 結果與討論 35
4-1 鋁渣之特徵 35
4-1-1水解鋁渣成分與晶相分析 36
4-1-2 水洗之鹽類回收量 38
4-2 鋁渣中鋁值之鹼溶率 39
4-2-1溫度及時間對鋁值溶解率之影響 39
4-2-2氫氧化鈉濃度對鋁值溶解率之影響 42
4-3 氫氧化鋁沉澱 44
4-3-1硫酸調整pH值對雜質溶出率之影響 44
4-3-2氫氧化鋁成份及晶相分析 46
4-4 煅燒製備氧化鋁 52
4-4-1高溫加熱法 52
4-4-2常壓微波電漿法 54
4-5 質量平衡 58
第五章 結論與建議 61
5-1 結論 61
5-2 建議 62
參考文獻 63
簡 歷 70


1.Addai-Mensah, J., Barnes, M. C., Gerson, A. R.,“The Kinetics of Desilication of Synthetic Spent Bayer Liquor and Sodalite Cystal Growth”, Colloids and Surf., 147, pp. 283–295, 1999.
2.Amer, A. M., “Extracting Aluminum from Dross Tailings”, Jom-J. Min. Met. Mat. S., 54, pp. 72-75, 2002.
3.Amer, A. M., “Aluminum Extracting from Industrial Wastes”, Jom-J. Min. Met., 62, pp. 60-63, 2010.
4.Ansari, R., Khoshbakht Fahim, N., “Application of Polypyrrole Coated on Wood Sawdust for Removal of Cr(VI) ion from Aqueous Solutions”, React. Funct. Polym., 67, pp. 367-374, 2007.
5.Bhattacharya I. N., Pradhan J. K., “Factors Controlling Precipitation of Finer Size Alumina Trihydrate”, Int. J. Miner. Process, 65, pp. 109- 124, 2002.
6.Bhoraskar, S. V., Kulkarni, N. V., Karmakar, S., Banerjee, I., Das, A. K., Sahasrabudhe, S. N., “Growth of Nano-particles of Al2O3, AlN and Iron Oxide with Different Crystalline Phases in a Thermal Plasma Reactor”, Mater. Res. Bull., 44, pp. 581-588, 2009.
7.Burgess, J., Ions in Solutions : Basic Principles of Chemical Interactions, Ellis Horwood Publ., Chichester, pp. 62-73. 1988.
8.Bruckard, W. J. and Woodcock, J. T., “Recovery of Valuable Materials from Aluminum Salt Cakes”, Int. J. Miner. Process., 93, pp. 1-5, 2009.
9.Chaudhary, K., Inomata, K., Yoshimoto, M., Koinuma, H., “Open-air Silicon Etching by H2-He-CH4 Flowing Cold Plasma”, Mater. Lett., 57, pp. 3406-3411, 2003.
10.David, E., Kopac, J., “Aluminum Recovery as a Product with High Added Value Using Aluminum Hazardous Waste”, J. Hazard. Mater., 261, pp. 316-324, 2013.
11.David, E., Kopac, J., “Hydrolysis of Aluminum Dross Material to Achieve Zero Hazardous Waste”, J. Hazard. Mater., 209-210, pp. 501- 509, 2012.
12.Danzon, M. A., Air Quality Guidelines Second Edition, WHO Regional Office for Europe, Copenhagen, Denmark, 2000.
13.El-Katatny, E. A., Halawy, S. A., Mohamed, M. A., Zaki, M. I., “A Novel Synthesis of High-Area Alumina via H2O2-Precipitated Boehmite from Sodium Aluminate Solutions”, J. Chem. Tech. Biotechnol., 72 (4), pp. 320-328, 1998.
14.El-Katatny, E. A., Halawy, S. A., Mohamed, M. A., Zaki, M. I., “Recovery of Ethene-selective FeOx/Al2O3 Ethanol Dehydration Catalyst from Industrial Chemical Wastes”, Applied Catalysis A: General, 199, pp. 83-92, 2000A.
15.El-Katatny, E. A., Halawy, S. A., Mohamed, M. A., Zaki, M. I., “Recovery of High Surface Area Alumina from Aluminium Dross Tailings”, J. Chem. Technol. Biotechnol., 75, pp. 394-402, 2000B.
16.El-Katatny, E. A., Halawy, S. A., Mohamed, M. A., Zaki, M. I., “Surface Composition, Charge and Texture of Active Alumina Powders Recovered from Aluminum Dross Tailings Chemical Waste”, Technol., 132, pp. 137-144, 2003.
17.Filippou, D., Katiforis, N., Papassiopi, N., Adam¸ K., “On the Kinetics of Magnesia Hydration in Magnesium Acetate Solutions”, J. Chem. Technol. Biotechnol., 74, pp. 322-328, 1999.
18.Fortin, S., Breault, R., “Bayer Process Heat Exchangers Cleaning Efficiency: Optimizing the Acid Dissolution of Sodalite Scale”, Engineering Conferences International, 2003.
19.Goujon, M., Belmonte, T., Henrion, G., “OES and FTIR Diagnostic of HMDSO/O2 Gas Mixtures for SiOx Deposition Assited by RF Plasma”, Surf. Coat. Technol, 188-189, pp. 756-761, 2004.
20.Heslop, R., Jones, K., Inorganic Chemistry: a Guide to Advanced Study”, Elsevier. Scientific. Pub. Co., 1976.
21.Hiyoshi, N., “Nanocrystalline Sodalite: Preparation and Application to Epoxidation of 2-Cyclohexen-1-one with Hydrogen Peroxide”, Appl. Catal. Gen., 419-420, pp. 164-169, 2012.
22.Hyodo, T., Egashira, M., Shimizu, Y., Murakami, M., “Preparation of Hollow Alumina Microspheres by Microwave-induced Plasma Pyrolysis of Atomized Precursor Solution”, J. Eur. Ceram. Soc., 25, pp. 3563-3572, 2005.
23.Hughes, J. P., “Health Protection in Primary Aluminum Production”, Int. Prim. Alum. Inst., Semin., pp. 207, 1977.
24.Ishihara, S., Suematsu, H., Nakayama, T., Suzuki, T., Niihara, K., “Synthesis of Nanosized Alumina Powders by Pulsed Wire Discharge in Air Flow Atmosphere”, Ceram. Int., 38, pp. 4477-4484, 2012.
25.Ikegami, T., Kitami, Y., Tsutsumi, M., “Reduction in Specific Surface Area of an Alumina Powder at a Relatively Low Temperature”, Ceram. Int., 25, pp. 183-190, 1999.
26.Jirang, C., Lifeng, L., “Metallurgical Recovery of Metals from Electronic Waste: a Review”, J. Hazard. Mater., 158 (2-3), pp. 228-256, 2008.
27.Jun, K. W., Potdar, H. S., Bae, J. W., Kim, S. M., Lee, Y. J., “Synthesis of Nano-sized Porous γ-alumina Powder via a Precipitation/Digestion Route”, Appl. Catal. Gen., 321, pp. 109-116, 2007.
28.Kevorkijan, V. M., “The Quality of Aluminum Dross Particles and Cost-Effective Reinforcement for Structural Aluminum-Based Composites”, Compos. Sci. Technol., 59, pp. 1745-1751, 1999.
29.Karoly, Z., Szepvolgyi, J., “Hollow Alumina Microspheres Prepared by RF Thermal Plasma”, Technol., 132, pp. 211-215, 2003.
30.Kim, H. S., Chae, J. M., Oh, Y. S., Kim, H.T., Shim, K. B., Lee, S. M., “Effects of Carbothermal Reduction on the Thermal and Electrical Conductivities of Aluminum Nitride Ceramics”, Ceramint., 36, pp. 2039-2045, 2010.
31.Konigsberger, E., Schrodle, S., May, P. M., Hefter, H., “Heat Capacities of Aqueous Sodium Hydroxide/Aluminate Mixtures and Prediction of the Solubility Constant of Boehmite up to 300℃”, Geochim. Cosmochim., 74, pp. 2368-2379, 2010.
32.Le Page, J. F., Applied Heterogeneous Catalysis:Design-Manufacture, Use of Solid Catalysts, Inst. Fr. Du Petrole. Publ., Technip, 1987.
33.Li, Z., “Desilication of Sodium Aluminate Solution by Friedel's Salt”, Hydrometallurgy, 99, pp. 225-230, 2009.
34.Liew, F. C., Pyrometallurgy Versus Hydrometallurgy, Engineering Department TES-AMM Singapore, 2008.
35.Miskufova, A., Petranikova, Kovacs, M., Briancin, J., Havlik, T.,Orac, D., “Leaching of Aluminum Dross in Alkaline Solution”, Proc. Eur. Metall. Conf., 2009.
36.Murayama, N., Okajima, N., Yamaoka, S., Yamamoto, H,. Shibata, J,. “Hydrothermal Synthesis of AlPO4-5 type Zeolitic Materials by Using Aluminum Dross as a Raw Material”, J. Eur. Ceram. Soc., 26, 459-462, 2006.
37.Park, H. K., Lee, H. I., Yoon, E. P., Process for Recycling Waste Aluminum Dross, US Patent 6296817 B1, Oct. 2, 2001.
38.Peskleway, C. D., Henderson, G. S., Wicks, F. J., “Growth of Nordstrandite: Effect of Chloride on Surface Morphology”, J. Cryst., 273, pp. 614-623, 2005.
39.Petavratzi, E., Barton, J., Characterisation of Mineral Wastes, Resources and Processing Technologies – Integrated Waste Management for the Production of Construction Material, Case Study: Residues from aluminium dross recycling in cement, DEFRA Project Code WRT_177/ WRO115, 2007.
40.Pereiraa, D. A., Barroso de Aguiar, Castro, F., Almeida, M. F., Labrincha, T. A.,
“Mechanical Behaviour of Portland Cement Mortars with Incorporation of
Al-Containing Salt Slags”, Cem. Concr. Res., 30, pp. 1131-1138, 2000.
41.Pickens, J. W., & Waite, M. D., Recovery of Products from Non-Metallic Products Derived from Aluminum Dross, US Patent 6110434, Aug. 29, 2000.
42.Perry, R. H., & Green, D. W., Perry's Chemical Engineer's Handbook, 7th Ed., pp. 2-187, 1998.
43.Shinzato, M. C., Hypolito, R., “Solid Waste from Aluminum Recycling Process: Characterization and Reuse of its Economically Valuable Constituents”, Waste Management, 25, pp.37-46. 2005.
44.Smith, P., Economic Processing of High Silica Bauxites – Existing and Potential Processes, Submission to the APP as part of the project, 2008.
45.Tenorio, J. A. S., Espinosa, D. C. R., “Effect of Salt/oxide Interaction on the Process of Aluminum Recycling”, J. Light. Met., 2, pp. 89-93, 2002.
46.Tripathy, B. C., Das, B. R., Dash, B., Bhattacharya, I. N., Das S. C., “Production of η-alumina from Waste Aluminum Dross”, Miner. Eng., 20, pp. 252-258, 2007.
47.Tripathy, B. C., Das, B. R., Dash, B., Bhattacharya, I. N., Das S. C., “Acid Dissolution of Alumina from Waste Aluminium Dross”, Hydrometall., 92, pp. 48-53, 2008.
48.Wefers, K. and Misra, C., “Oxides and Hydroxides of Aluminum”, Alcoa Technical Paper No. 19, Aluminum Company of America, Point Comfort (Texas), 1987.
49.Yen, F. S., Wang, M. Y., Chang, J. L., “Temperature Reduction of θ- to α-phase Transformation Induced by High-pressure Pretreatments of Nano-sized Alumina Powders Derived from Boehmite”, J. Cryst., 236, pp. 197-209, 2002.
50.Yoo, K. S., Seo, C. W., Jung, K. D., Lee, K. Y., “Dehydration of Methanol over Nordstrandite Based Catalysts for Dimethyl Ether Synthesis”, J. Ind. Eng. Chem., 15, pp. 649-652, 2009.
51.Zhao, D., SenGupta, A. K., Stewart, L., “Selective Removal of Cr(VI) Oxyanions with a New Anion Exchanger”, Ind. Eng. Chem. Res., 37(11), pp. 4383-4387, 1998.
52.臺灣大百科全書,文建會http://taiwanpedia.culture.tw/web/content?ID=7345
53.行政院環境保護署,http://law.epa.gov.tw/zh-tw/
54.陶錫富,二次鋁渣於一貫作業煉鋼廠再利用之探討,國立高雄應用科技大學,碩士論文,2009。
55.柳萬霞、王厚傳、李秀霞、黃志峰、陳明輝、章裕民,“非鐵金屬熔煉業戴奧辛防制之可行控制技術分析”,工業污染防治,第92期,第132-161頁,2004。
56.張文宗,鋁渣資源化剩餘物之再利用探討,國立成功大學,碩士論文,2003。
57.郭艷玲,“採用煉鋁渣製造的陶瓷材料”,耐火材料及石灰,第37(2)期,第36-41頁,2012。
58.吳煜壑,二次鋁渣灰資源化之處理方法,中華民國發明專利,I277463,2007。
59.陳清齊、楊奉儒、賴明柱、陳志恒,鋁渣安定化及再利用之處理方法,I234587 號,2005。
60.汪建民,陶瓷技術手冊,經濟部技術部、中華民國粉末冶學會、中華民國產業發展協進會出版,1994。
61.陸文聰、張良苗、馮永利、陳念貽,“溶膠-凝膠法製備納米氫氧化鋁溶膠”,物理化學學報,第23期,第728-732頁,2007。
62.吳艷、翟玉春、牟文寧、孫揚,煤灰提鋁渣中二氧化矽在高濃度鹼液中的溶解行為,中國有色金屬學報,第18卷專輯1,第407-411頁,2008。
63.彭志宏、王浩宇、劉桂華、周秋生、李小斌,“二氧化矽在鋁酸鈉溶液中的反應行為”,礦冶工程,第29卷第6期,第57-60頁,2009。
64.顧立德,特種耐火材料,冶金工業出版社,2006。
65.張毓寬,鉻污泥資源化基礎研究,國立成功大學,碩士論文,2002。
66.陳彥志,氧化鎵奈米線及氧化銦顆粒成長及分析,國立成功大學,碩士論文,2004。
67.徐曉虹、熊碧玲、吳建鋒、李鵬、佘子偉、鄧大侃,“廢鋁灰制備陶瓷清水磚的研究”,武漢理工大學學報,第5期,第13-16頁,2006。
68.楊昇府、葉俊彥、張彥華、蔣世傑,“廢煉鋁爐渣為原料製作耐火材料之研究”,鑛冶,第55(1)期,第51-56頁,2011。
69.趙宏、陸勝、解曉斌,“用粉煤灰制備高純超細氧化鋁粉的研究”,粉煤灰綜合利用,第6期,第8-10頁,2002。
70.孫任賢,微波誘導奈米零價鐵降解四氯乙烯及五氯酚之研究,國立高雄第一科技大學,碩士論文,2005。
71.李珠,“感應耦合電漿質譜儀在材料分析的應用”,工業材料雜誌,第201期,第117-122頁,2003。
72.廖原章,次微米級氫氧化鋁粉末之製備及其熱性質分析之研究,中原大學,碩士論文,2005。
73.蘇亮誌,鐵氧化物吸附與鐵氧磁體法處理重金屬溶液之研究,國立成功大學,碩士論文,2004。
74.丁宏婭、馬鴻文、王蕾、李賀香,“利用高鋁粉煤灰製備氫氧化鋁的實驗”,現代地質,第20卷第3期,第405-408頁,2006。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔