跳到主要內容

臺灣博碩士論文加值系統

(100.24.118.144) 您好!臺灣時間:2022/12/06 06:11
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許文豪
研究生(外文):Wen-Hao Hsu
論文名稱:利用金屬-有機配位結構製備中孔碳複合電極 及其應用於超級電容器
論文名稱(外文):Preparation of Mesoporous Carbon Composite Electrodes Using Metal-Organic Framework Precursor for Supercapacitors
指導教授:吳茂松
指導教授(外文):Mao-Sung Wu
口試委員:卓錦江謝建德
口試委員(外文):Jiin-Jiang JowChien-Te Hsieh
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:78
中文關鍵詞:電泳動沉積法水熱法金屬-有機配位聚合物超級電容器中孔碳石墨層
外文關鍵詞:electrophoretic depositionhydrothermal synthesis methodmetal- organic frameworkssupercapacitormesoporous carbongraphite layer
相關次數:
  • 被引用被引用:2
  • 點閱點閱:361
  • 評分評分:
  • 下載下載:10
  • 收藏至我的研究室書目清單書目收藏:0
利用水熱反應合成金屬-有機(鎳-對苯二甲酸)配位聚合物(metal-organic frameworks, MOF),以不同溫度(400900℃)碳化MOF形成中孔碳複合鎳電極,探討孔洞結構和比表面積對於電容行為的影響。以X-光繞射儀與穿透式電子顯微鏡觀察石墨層的生成,並利用比表面積分析儀觀察不同碳化溫度對比表面積的影響。以循環伏安法檢視電極片在1 M KOH電解液中的電化學行為,利用恆定電流充放電來計算電極的比電容值和循環壽命。結果顯示,800℃碳化的中孔碳複合鎳薄膜電極在1 A g-1放電時,其比電容值可高達886 F g-1,無論低或高的電流密度測試,其比電容值皆比其它碳化溫度的中孔碳薄膜複合鎳電極高出許多。主要是此溫度下碳化出的中孔碳擁有的高比表面積與孔洞結構,能使電解液有效的擴散進入電極內部,進而達到儲存電荷之目的,且生成的石墨層層數適中並未降低其比表面積,又能增加其導電性,使比電容值能有效提高。
Metal-organic frameworks (MOFs, Ni-terephthalic acid) were synthesized by hydrothermal reaction. MOFs were carbonized at different temperatures (400~900℃) to form mesoporous carbon/Ni composite electrodes. The effects of porous structure and surface area on the capacitive behavior were systematically investigated. X-ray diffraction analysis and transmission electron microscopy revealed that the graphitic layers could be formed. Utilization of the specific surface area analyzer observed specific surface area of carbonized MOFs at different temperatures. Cyclic voltammetry (CV) test was carried out in 1 M KOH electrolyte solution to diagnose the reversibility of the electrodes. Galvanostatic charge and discharge tests were used to evaluate the specific capacitance value and the cycle-life stability of the electrodes. Results showed that at a discharge current density of 1 A g-1, the specific capacitance values of up to 886 F g-1 could be reached for the MOF carbonized at 800C (MOF-800 electrode). Either low or high current density test, the specific capacitance of MOF-800 electrode was much higher than that of other carbonization temperatures. Mainly with high specific surface area and porous structure of the MOF-800 electrode, the diffusion of the electrolyte can effectively enter the interior of the electrode, leading to an increase in the specific capacitance. Sufficient amount of graphitic carbon did not significantly reduce the surface area of electrode, but its conductivity was increased drastically, so that the specific capacitance can be improved effectively.

總目錄

中文摘要 I
ABSTRACT II
誌 謝 IV
總目錄 V
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1-1研究緣起與目的 1
1-2 研究架構與內容 2
第二章 文獻回顧 4
2-1 碳系材料簡介 4
2-2 中孔洞材料簡介 6
2-3中孔碳系材料簡介 8
2-4金屬-有機配位聚合物簡介 10
2-5水熱合成法簡介 12
2-6超級電容器介紹 13
2-6-1超級電容器簡介 13
2-6-2 超級電容器的儲電機制 16
2-6-3電容量測方式 18
2-7電泳動沉積法簡介 19
2-8金屬-有機配位聚合物在超電容器之應用 20
第三章 實驗方法與步驟 22
3-1基材前處理 22
3-1-1不鏽鋼前處理 22
3-1-2發泡鎳網前處理 23
3-2水熱合成金屬-有機配位聚合物及碳化 24
3-2-1水熱法合成金屬-有機配位聚合物粉體 24
3-2-2碳化MOF粉體製中孔洞碳材 27
3-3 中孔碳材薄膜電極製備 29
3-3-1 各式碳材電泳動沉積懸浮液配製 29
3-3-2 以電泳動沉積法製備中孔碳薄膜電極 30
3-4 材料物理分析 33
3-6 薄膜電極電性測試 35
3-7實驗藥品及材料 37
3-8實驗儀器 38
3-9材料特性分析儀器 39
第四章 實驗結果與討論 40
4-1中孔碳粉體與其薄膜電極物理性質探討 40
4-1-1 中孔碳電泳動懸浮液界面電位量測 40
4-1-2 不同溫度碳化之中孔碳粉體微結構分析 42
4-1-3 不同溫度碳化的MOF中孔碳複合電極表面型態分析 48
4-1-4 不同溫度碳化之MOF中孔碳的晶格結構分析 53
4-2 不同溫度碳化之中孔碳電極電化學性質探討 55
4-2-1 MOF薄膜電極之循環伏安分析 55
4-2-2 MOF薄膜電極之恆電流充放電測試 57
4-2-3 MOF薄膜電極之循環壽命測試 59
第五章 結論 60
參考文獻 61


1.A. Burke, Ultracapacitor: why, how, and where is the technology, J. Power Sources, 2000, 91, 37.

2.謝建德,陳金銘,黃裕豪,郭蓉蓉,羅珮玲,李中天,奈米複合碳材合成及其電雙層行為探討,工業材料雜誌,225期,2005,95頁。

3.傅彥皓,電泳動沉積法製備奈米結構石墨烯/氧化錳複合電極及其電化學特性研究,國立高雄應用科技大學化學工程與材料工程系碩士論文,2013。

4.S. Iijima, Direct observation of the tetrahedral bonding in graphitized carbon black by high resolution electron microscopy, J. Crystal Growth, 1980, 50, 675.

5.S. Iijima, Nature, 354 (1991) 56.

6.T. W. Ebbesen, Carbon nanotubes—preparation and properties, Boca Raton, CRC Press. 1997. ISBN 0-8493-960-6.

7.http://zh.wikipedia.org/zh-tw/%E7%A2%B3#mediaviewer/File:Eight_Allotropes_of_Carbon.png

8.C.T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710.

9.A. Monnier, F. Schuth, Q. Huo, Science, 1993, 261, 1299.

10.J. S. Beck, J. C. Vartuli, W. J. Roth, J. Am. Chem. Soc., 1992, 114, 834.

11.J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T.-W. Chu, D. H. Olson, E. W. Sheppard, S. B. McCullen, J. B. Higgins and J. L. Schlenker, J. Am. Chem. Soc., 1992, 114, 10834.

12.C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S.Beck, Nature, 1992, 359, 710.

13.http://www.chem.ncu.edu.tw/KaoHM/%E7%B6%B2%E9%A0%81/SBA.htm.

14.C. D. Liang, Z. J. Li, S. Dai, Mesoporous carbon materials: synthesis and modification, Angew Chem. Int. Edit, 2008, 47, 3717.

15.Y. Wan, Y. F. Shi, D. Y. Zhao, Supramolecular aggregates as tem-plates: ordered mesoporous polymers and carbons, Chem. Mater., 2008, 20, 932.

16.X. Y. Chuan, S. H. Zhou, Preparation of mesoporous carbons by a template method, New Carbon Mater., 2011, 26, 151.

17.L. Liu, Z. Y. Yuan, Recent progress in the synthesis of mesoporous carbon materials, Sciencepaper Online, 2011,6, 161.

18.R. Ryoo, S. H. Joo, S. Jun, Synthesis of highly ordered carbon molecular sieves via template-mediated structural transformation, J. Phys. Chem B, 1999, 103, 7743.

19.J. Lee, S. Yoon, T. Hyeon, Synthesis of a new mesoporous carbon and its application to electrochemical double-layer capacitors, Chem. Commun., 1999, 2177.

20.S. S. Kim, D. K. Lee, J. Shah, Nanocasting of carbon nano-tubes: in-situ graphitization of a low-cost mesostructured silica templated by non-ionic surfactant micelles, Chem. Commun., 2003, 1436.

21.J. Kim, J. Lee, T. Hyeon, Direct synthesis of uniform mesoporous carbons from the carbonization of as-synthesized silica / triblockcopolymer nanocomposites, Carbon, 2004, 42, 2711.

22.X. B. Liu, F. X. Chang, L. Xu, Synthesis and characterization of a new nanoporous carbon material with a bimodal pore system, Carbon, 2006, 44, 184.

23.H. H. Song, L. X. Li, X. H. Chen. The synthesis of ordered mesoporous carbons via a template method, New Carbon Mater., 2006, 21, 374.

24.N. Li, X. Y. Wang, S. Yi, Template synthesis of mesoporous carbon materials, Progress in Chem., 2008, 20, 1202.

25.S. Tanaka, N. Nishiyama, Y. Egashira, Synthesis of ordered mesoporous carbons with channel structure from an organic-organic nanocomposite, Chem. Commun., 2005, 2125.

26.Y. Meng, D. Gu, F. Q. Zhang, Ordered mesoporous polymers and homologous carbon frameworks: amphiphilic surfacetant templating and direct transformation, Angew Chem. Int. Edit, 2005, 44, 7053.

27.X. Q. Wang, C. D. Liang, S. Dai, Facile synthesis of ordered mesoporous carbons with high thermal stability by self-assembly of resorcinol-formaldehyde and block copolymers under highly acidic condition,, Langmuir, 2008, 24, 7500.

28.Y. Meng, D. Gu, F. Q. Zhang, A family of highly ordered mesoporous polymer resin and carbon structures from organic-organic self-assembly, Chem. Mater., 2006, 18, 4447.

29.呂光烈, 自組裝合成孔洞配位聚合物,中央研究院化學研究所, 自然科學簡訊第十八卷第二期 研究成果報導, 民國95 年5 月

30.Z. J. Yin, X. Gao, Z. L. Sun, L. J. Song, X. T. Zhang, Synthesis and applications of metal-organic frameworks, Chemistry and Adhesion, 1001-0017(2009)03-0061-05.

31.S. Noro, R. Kitaura, M. Kondo, Framework engineering by anions and porous functionalities of Cu(Ⅱ) / 4,4'-bpy coordination polymers, J. Am. Chem. Soc., 2002, 124, 2568.

32.M. Eddaoudi, J. Kim, N. Rose, Systematic design of pore size and functionality in isoreticular MOFs and their application in methane storage, Science, 2002, 295, 469.

33.H. C. Danil, N. Dybtsev, Synthesis, X-ray crystal structures, and gas sorption properties of pillared square grid nets based on paddle-wheel motifs: implications for hydrogen storage in porous material, Chem. Eur. J., 2005, 11, 3521.

34.W. Chen, J. Y. Wang, C. Chen, Photoluminescent metal-organic polymer constructed from trimetallic clusters and mixed carboxylates, Inorg. Chem., 2003, 42, 944.

35.http://wenku.baidu.com/view/5e3d3ec26137ee06eff91833.html

36.R. R. Xu, W. Q. Pang, Q.S. Huo, Modern Inorganic Synthetic Chemistry. Elsevier, ISBN : 978-0-444-53599-3

37.陳元杰, 廖秋峰, 電雙層電容器簡介, 工業材料雜誌, 176期, 2001, 160頁。

38.R. J. Hunter, Zeta Potential in Colloid Science – Principles and Applications, Academic Press, ISBN 0-12-361960-2.

39.方偉權/工研院材化所, 超高電容器電極薄膜材料應用及其製作技術, 工業材料雜誌257期。

40.張榮錡, 廖秋峰, 電容器面面觀, 電子與材料雜誌, 13期, 132頁。

41.M. Winter, R. J. Brodd, What are batteries, fuel cells, and supercapacitors, Chem. Reviews, 2004, 104, 4245.

42.B. E. Conway, Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications, Springer, pp. 1–8, 1999, ISBN 0306457369.

43.C. D. Lokhande, D. P. Dubal, O. S. Joo, Metal oxide thin film based supercapacitors, Current Appl. Phys., 2010, 11, 255.

44.http://www.enedu.org.tw/technology/tech-3.php

45.http://www.nichicon.co.jp/english/lib/new117.html

46.M. S. Halper, J. C. Ellenbogen, Supercapacitors: a brief overview, Mitre Nanosystems Group, 2006, p.2.

47.F. F. Reuss, Imperiale Naturalistes de Moscow, Mem. Soc., 2, 327.

48.http://www.mtm.kuleuven.be/Onderzoek/Ceramics/EPD, Electrophoretic.com.

49.http://electrophoretic.com/site/index.php, University of Leuven – KU Leuven.

50.黃士瑋,使用電泳沉積研磨加工改善放電微孔精度之研究,中央大學機械工程研究所碩士論文,2003。

51.A. T. Kuhn, Industrial Electrochemical Processes. Elsevier Science Ltd, 1971.

52.林坤壕, 電泳動沉積氧化鎳複合電極及其電化學性質探討, 國立高雄應用科技大學化學工程與材料工程系碩士論文, 2009。

53.http://www.mtm.kuleuven.be/Onderzoek/Ceramics/EPD

54.D. C. Wang, W. B. Ni, H. Pang, Q. Y. Lu, Z. G. Huang, J. W. Zhao, Preparation of mesoporous NiO with a bimodal pore size distribution and application in electrochemical capacitors, Electrochim. Acta, 2010, 55, 6830.

55.F. Zhang, L. Hao, L. J. Zhang, X. G. Zhang, Solid-State thermolysis preparation of CO3O4 nano/micro superstructures form metal-organic framework for supercapacitors, Int. J. Electrochem. Sci., 2011, 6, 2943.

56.H. L. Wang, Q. M. Gao, J. Hu, Asymmetric capacitor based on superior porous Ni–Zn–Co oxide/hydroxide and carbon electrodes, J. Power Sources, 2010, 195, 3017.

57.黃俊賢, 模板法製備規則孔洞碳材料及其能源應用國立清華大學生醫工程與環境科學系博士論文, 2013。

58.H. L. Guo, J. Hu, H. L. Wang, Q. M. Gao, Porous carbons prepared by using metal–organic framework as the precursor for supercapacitor, Carbon, 2010, 48, 3599.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top