跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/04 09:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:王晨羽
研究生(外文):Chin-Yu Wang
論文名稱:聚酯/海藻複合材之製備、特性及生物相容性研究
論文名稱(外文):Preparation, Characterization and biocompatibility of Polyester/Marine-Algae Composites
指導教授:顏福杉
指導教授(外文):Fu-San Yen
口試委員:徐怡強何宗漢吳進三
口試委員(外文):Yi-Chiang HsuTsung-Han HoChin-San Wu
口試日期:2014-07-15
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系博碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:87
中文關鍵詞:聚羥基脂肪酸酯海藻化學改質複合材料細胞生物相容性
外文關鍵詞:poly(hydroxyalkanoate)marine algaechemical modificationcompatibilitycompositescellbiocompatibility
相關次數:
  • 被引用被引用:0
  • 點閱點閱:428
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本研究係以生物可分解聚羥基脂肪酸酯(PHA)及天然海藻粉末(MAP)進行複合材之製備並探討化學改質對其性質的影響,以研究其應於生醫材料上的可行性。研究中所採用之化學改質技術,係以丙烯酸(AA)接枝於聚羥基脂肪酸酯(PHA)而得丙烯酸接枝聚羥基脂肪酸酯(PHA-g-AA),並利用耦合劑處理海藻而得耦合劑處理海藻合膠(TMAP),再分別將以上二種高分子及海藻經由混摻方式製備聚酯/海藻複合材群,首先以FTIR和13C NMR進行化學特性鑑定,再進行該群複合材之機械性質、表面型態、吸水性及生物相容性的分析。實驗結果發現:複合材群中之PHA-g-AA/海藻合膠複合材具有較佳之界面相容性與接著性,同時其在機械性質上有較顯著之提昇;並由含水率試驗結果發現,PHA/海藻複合材之含水率稍高於PHA-g-AA /海藻合膠複合材約2-6 wt %左右,但差異並不明顯;而生物相容性試驗結果顯示,接種於各複合材薄膜上的人類的真皮層纖維母細胞其細胞膠原蛋白質與表面型態貼附的含量隨時間增加而增生,且PHA/海藻複合材系列的細胞增生率優於PHA-g-AA /海藻合膠複合材系列;另外,由細胞週期與凋亡結果發現,細胞並末因為受到不同材料影響而造成DNA含量嚴重受損而無法分裂,同時細胞亦末產生快速凋亡或壞死現象。依此,由本研究所開發的PHA-g-AA/海藻合膠複合材具有可應於生醫材料上的潛力。
Biodegradable composites, based on PHA (poly(hydroxyalkanoate)) and MAP (marine algae powder) and their chemically-modified correspondences (PHA-g-AA and TMAP), were prepared and characterized to evaluate the possibility for biomedical application in this study. The acrylic acid (AA)-grafted PHA (PHA-g-AA) was obtained by chemically-grafting AA onto the PHA, while the coupling agent treated marine algae (TMAP) was obtained by mixing MAP with TEOS-based sol, which was acting as a compatiblizer, and dried. These composites were prepared by a blending process mixing the polymer (PHA or PHA-g-AA) and the reinforcement (MAP or TMAP) in a Brabender blender in a various ratios. NMR and IR were used to characterize the composite formation. After chemical characterization, the composites were subjected to several kinds of tests to evaluate their physical properties including mechanical property, surface morphology, water absorption, and biocompatibility. The experimental results showed: PHA-g-AA/TMAP composites had noticeably superior phase interface and envelopment, mechanical property and more homogeneous dispersion of TMAP in the PHA-g-AA matrix thereof when compared with those of PHA/MAP composites, because of possible ester linkage formation between the carboxyl group of PHA-g-AA polymer and the hydroxyl group of the reinforcement TMAP. The water resistance of PHA-g-AA/TMAP was higher than that of PHA/MAP about 2-6 wt%. To assess biocompatibility of these composites, normal human skin fibroblasts were seeded onto each of the composites. FB proliferation, collagen production, and cytotoxicity assays indicated that biocompatibility on the PHA/MAP composites were greater than on the PHA-g-AA/TMAP composites. Cell cycle and apoptosis revealed that DNAs of the cell were not seriously damaged, and deduced that cells were not affected by the composites and therefore appeared non-notable apoptosis and necrosis. Accordingly, these composites, PHA/MAP and PHA-g-AA/ TMAP, have a significant potential for the biomaterials application.
中文摘要 I
ABSTRACT Ⅱ
目 錄 V
表 目 錄 VIII
圖 目 錄 IX
流 程 目 錄 XI
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 3
第二章 文獻回顧 4
2-1 生物可分解聚酯材料發展 4
2-2 聚羥基脂肪酸酯(Polyhydroxyalkonates, PHAs)簡介 10
2-2-1 PHAs 合成 10
2-2-2 PHAs 應用 13
2-3 海藻(Marine-algae, MA)簡介 14
2-3-1 海藻應用 16
2-4 複合材相容性改質 17
第三章 實驗設備與研究方法 19
3-1 實驗藥品 19
3-2 實驗儀器與設備 23
3-3 整體實驗流程 27
3-4 複合材生物相容性試驗流程 28
3-5 材料製備 29
3-5-1 海藻處理過程 29
3-5-2製備PHA接枝丙烯酸共聚物 29
3-5-3 滴定法測定PHA接枝丙烯酸共聚物接枝率 31
3-5-4 矽膠(耦合劑)改質海藻(TMAP)製備 31
3-5-5 PHA接枝丙烯酸/海藻合膠複合材之製備 32
3-5-6 複合材物性試片製備 34
3-5-7 複合材在生醫材料檢測試片製備 35
3-6 細胞測試 36
3-6-1 細胞來源及培養條件 36
3-6-2 細胞繼代培養 36
3-6-3細胞培養基配製 37
3-7 生物相容性試驗方法 37
第四章 結果與討論 44
4-1 PHA複合材之製備 44
4-1-1 PHA複合材之FTIR鑑定 44
4-1-2 PHA複合材之固態13C NMR鑑定 46
4-2 PHA複合材表面型態分析 49
4-3 PHAs複合材機械性質分析 51
4-4 PHAs複合材料吸水性分析 53
4-5 PHAs複合材之細胞存活率測試 55
4-6 PHAs複合材料之細胞膠原蛋白定量測試 57
4-7 PHAs複合材之細胞膠原蛋白表面貼附 59
4-8 PHAs複合材之細胞週期檢測 61
4-9 PHAs複合材之細胞凋亡試驗 63
第五章 結論 65
參考文獻 66

【1】蔡潔娃,2010,生醫材料之發展與應用(上),IT IS計畫成果,12月。
【2】趙月秀,台灣生醫材料產業現況,生技/醫藥速報半月刊,生物技術開發中心ITIS計畫,第119期,。
【3】黃世偉,2010,高分子材料與醫療器材,科學發展,455期,14-19,11月。
【4】宋信文,陳松青,生醫材料簡介,1-12。
【5】林兆旋,黃進光,2009,生醫複材之混練與骨釘製作,龍華科技大學學報,27期,53-62,6月。
【6】楊政典,2009,新穎性生物可吸收性聚酯材料發展與醫學應用,工業材料雜誌,275期,11月,。
【7】BCC Research, 2011, Advanced Orthopedic Technologies, Implants and Regenerative Products.
【8】王雲平、王金煌、陳志成,2008,生物分解性塑膠的世界市場展望,綠色生物產業專輯,4期,11-15,8月。
【9】彭德昌,2003,生物可分解資材在農業生產上之應用,花蓮區農業專訊, 44期,21-23,6月。
【10】E. Psomiadou, I. Arvanitoyannis, C. G. Biliaderis, H. Ogawa, N. Kawasak 1997, Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2, Carbohydrate Polymer, 227-242.
【11】D. Bikiaris, J. Prinos, C. Perrier, C. Panayiotu, 1997, Thermoanalytical study of the effect of EAA and starch on the thermo-oxidative degradation of LDPE, Polymer Degradation and Stability, 57, 313-324.
【12】E. Psomiadou, I. Arvanitoyannis, C. G. Biliaderis, H. Ogawa, N. Kawasak, 1997, Biodegradable films made from low density polyethylene (LDPE), wheat starch and soluble starch for food packaging applications. Part 2, Carbohydr Polym, 33, 227-242.
【13】D. Bikiaris, J. Prinos, C. Perrier, C. Panayiotu 1997, Thermoanalytical study of the effect of EAA and starch on the thermo-oxidative degradation of LDPE, Polym Degrad Stab, 57, 313-324.
【14】鍾曜竹、廖聖茹,2011,生質合膠於綠色電子產業的應用現況,熱塑生質複材技術專題,工業材料雜誌,300期。
【15】陳子房,2011,生物塑膠全球新焦點 增強橡塑膠機發展力,國際商情雙周刊,311期,2月。
【16】赖承钺,郑宽,赫丽萍,李辉章,杨科珂,李方,2010,高分子材料生物降解性能的分析研究进展,化学研究与应用,1期,1-7,1月。
【17】张龙彬,王金花,朱晃阴,时刻,宋斐,2005,可完全生物降解高分子材料的研究进展,塑料工业,20-33,5月。
【18】王琳霞,2002,生物降解高分子材料,塑料科技,37-41,1月。
【19】楊斌,2009,PLA 聚乳酸環保塑膠,五南出版社,7月。
【20】林瀚淵、林金雀、姚元婕,2007,第四章分解性塑膠技術發展趨勢,綠色高分子材料產業技術發展策略透視,1-22,1月。
【21】J. W. Lee, H. U. Kim, S. Choi, J. Yi, S. Y. Lee, 2011, Microbial production of building block chemicals and polymers, Current Opinion in Biotechnology, 22, 758-767.
【22】C. L. Dong, S. Y. Li, Y. Wang, Y. Dong, J. Z. Tang, J. C. Chen, G. Q. Chen, The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide, Biomaterials, 2012, 33, 2593-2599.
【23】G. T. Köse, F. Korkusuz, A. Özkul, , Y. Soysal, T. Özdemir, C. Yildiz, V. Hasirci, 2005, Tissue engineered cartilage on collagen and PHBV matrices, Biomaterials, 26, 5187-5197.
【24】H. Akiyama, H. Okuhata, T. Onizuka, S. Kanai, M. Hirano, S. Tanaka, K. Sasaki, H. Miyasaka, 2011, Antibiotics-free stable polyhydroxyalkanoate (PHA) production from carbon dioxide by recombinant cyanobacteria, Bioresource Technology, 102, 11039-11042.
【25】G. Rohman, J. J. Pettit, F. Isaure, N. R. Cameron, J. Southgate. 2007, Influence of the physical properties of two-dimensional polyester substrates on the growth of normal human urothelial and urinary smooth muscle cells in vitro, Biomaterials, 28, 2264-2274.
【26】J. M. Raquez, R. Narayan, P. Dubois 2008, Recent Advances in Reactive Extrusion Processing of Biodegradable Polymer-Based Compositions,Macromolecular Materials and Engineering, 293, 447-470.
【27】苑仁旭,徐依斌,麦堪成,2012,生物降解PBAT的合成与表征,化工新型材料,12期,85-87,12月。
【28】陈静,周艺峰,武锦,聂王焰,2007,生物可降解聚丁二酸丁二醇酯的合成及两亲性改性研究,功能材料科,38卷,1184-1187,3月。
【29】G. B. Gaceva, M. Avella, M. Malinconico, A. Buzarovska, A. Grozdanov, G. Gentile, M. E. Errico. 2007, Natural fiber eco-composites, Polymer Composites, 28, 98-107.
【30】A. Zhu, , M. Zhang, J. Wu, J. Shen, 2002, Covalent immobilization of chitosan/heparin complex with a photosensitive hetero-bifunctional crosslinking reagent on PLA surface, Biomaterials, 23, 4657-4665.
【31】X. Y. Wang, Y. Y. Luo, B. Zhang, J. Xin, D. Zheng, 2011, Molecular biocompatibility evaluation of poly(d,l-lactic acid)-modified biomaterials based on long serial analysis of gene expression, Colloids and Surfaces B: Biointerfaces, 85, 248-261.
【32】N. Alemdar, A. T. Erciyes, N. Bicak, 2010, Preparation of unsaturated polyesters using boric acid as mild catalyst and their sulfonated derivatives as new family of degradable polymer surfactants,polymer, 51, 5044-5050.
【33】尤浚達,2004年,限用塑膠政策對生物可分解性塑膠產品發展之影響,經濟部技術處ITIS計畫,2月。
【34】陳志成,2009,不同碳源前驅物培養嗜鹽菌生產不同化學結構聚羥基烷酯之研究,大同大學生物工程研究所,碩士論文。
【35】M. Lemoigne. 1926, Products of polymerization of β-hydroxybutyric acid, Bull Soc Chem Biol, 8, 770-782.
【36】吴琼,孙素琴,余海虎,陈新滋,陈国强,2000,聚羟基脂肪酸酯细菌合成的生长环境依赖性,高分子学报,6期,751-756,12月。
【37】陳碧苓,2007,活性污泥PHA 生成菌多樣性之研究,中 原 大 學,碩士論文。
【38】陈国强,张 广,赵 锴,田 格,陈金春,吴 琼,2002,聚羟基脂肪酸酯的微生物合成、性质和应用,无锡轻工大学学报,2期,197-204,3月。
【39】苏郁洁,2013,生物基材料专辑,科学研究动态监测快报,4期,中国科学院青岛生物能源与过程研究所出版,山东省。
【40】N. Jacquel, C. W. Lo, H. S. Wu, Y. H. Wei, S. S. Wang, 2007, Solubility of polyhydroxyalkanoates by experiment and thermodynamic correlations, AIChE Journal, 53, 2704–2714.
【41】陳國強,羅容聰,徐軍,吳琼,2008,聚烴基脂肪酸酯生態產業鍵-生產與應用技術指南,化學工業出版社,北京
【42】S. Mohsin, I. N. Muhammad, H. C. Mun, O. K. Myeong, C. Y. Sung, 2010, Amphiphilic PHA–mPEG copolymeric nanocontainers for drug delivery: Preparation, characterization and in vitro evaluation, International Journal of Pharmaceutics, 400, 165–175.
【43】J. F. María, L. R. Amparo, J. M. Lagaron, 2014, On the use of different hydrocolloids as electrospun adhesive interlayers to enhance the barrier properties of polyhydroxyalkanoates of interest in fully renewable food packaging concepts, Food Hydrocolloids, 39, 77-84.
【44】焦宁宁,2003,聚羟基脂肪酸酯的合成和应用,化工新型材料,31卷,10期,10月。
【45】魏志勇,刘炼,齐民,2008,生物可降解血管内支架研究进展,生物医学工程学杂志,25卷,5期,10月。
【46】张翼,周平,潘銮凤,谢尚喆,孙敏,李文婷,2007,丝素蛋白修饰改性的聚羟基脂肪酸酯支架上人体平滑肌细胞的生长,化学学报,65卷,24期,2935~2940
【47】G. Q. Chen, Q. Wu, 2005, The application of polyhydroxyalkanoates as tissue engineering materials, Biomaterials, 26, 6565–6578.
【48】X. Wei, Y. J. Hu, W. P. Xie, R. L. Lin, G. Q. Chen, 2009, Influence of poly (3-hydroxybutyrate -co-4-hydroxybutyrateco- 3- hydroxyhexanoate ) on growth and osteogenic differentiation of human bone marrow-derived mesenchymal stem cells, Journal of Biomedical Materials Research Part A, 894–905.
【49】C. G. Jeong, S. J. Hollister, 2010, A comparison of the influence of material on in vitro cartilage tissue engineering with PCL, PGS, and POC 3D scaffold architecture seeded with chondrocytes, Biomaterials, 31, 4304-4312.
【50】R. Rai , T. Keshavarz, J. A. Roether, A. R. Boccaccini, I. Roy, 2011, Medium chain length polyhydroxyalkanoates, promising new biomedical materials for the future, Materials Science and Engineering R, 72, 29–47.
【51】C. Zhijiang, H. Chengwei, Y. Guang, 2012, Poly (3-hydroxubutyrate -co-4-hydroxubutyrate)/bacterial cellulose composite porous scaffold: Preparation, characterization and biocompatibility evaluation, Carbohydrate Polymers, 87, 1073– 1080.
【52】裴冠婷,2010,綠藻發酵水解物之活性胜肽的生產與純化,國立臺灣海洋大學食品科學系,碩士。
【53】黃淑芳,臺灣海藻資源及生物多樣性,「海洋生物多樣性教育講習會-基礎班」研習手冊,180-185。
【54】陳怡君,2010,海藻酸鈉包覆薰衣草精油微膠囊的製備及其制放性之研究,嘉南藥理科技大學化粧品科技研究所,碩士。
【55】何淑兰,尹玉姬,张敏,姚康德,2004,组织工程用海藻酸盐水凝胶的研究进展,化工进展, 23卷,11期,1174-1178。
【56】廖婉茹,黃穰,2003,海藻,來自海洋的保健藥草,科學發展,364期,30-37。
【57】蘇惠美,黃俊翰,蔡健偉,陳紫女英,2009,海藻的利用與養殖,生質能源,科學發展, 433 期,12-19。
【58】黃培安,吳純衡,2006,海藻在保健食品、化妝品之開發,藻類研發專題,農業生技產業季刊,7期,21-25。
【59】Ahmad E.E.M., Luyt A.S. Polymer Composites 2012, 33, 1025.
【60】Cai G., Wang J., Nie Y., Tian X., Zhu X., Zhou X. Polymer Composites 2011, 32, 1945.
【61】R. R. Devi, T. K. Maji, 2008, Chemical modification of rubber wood with styrene and glycidyl methacrylate, Polymer Composites, 29, 1258-1262.
【62】S. Keshk, 2006, Physical properties of bacterial cellulose sheets produced in presence of lignosulfonate, Enzyme and Microbial Technology, 40, 9-12.
【63】S. K. Su, C. S. Wu, 2010, Polyester biocomposites from recycled natural fibers: Characterization and biodegradability, Journal of Applied Polymer Science, 119, 1211-1219.
【64】S. H. Lee, S. Wang, 2006, Biodegradable polymers/bamboo fiber biocomposite with bio-based coupling, Composites Part A: Applied Science and Manufacturing, 37, 80-91.
【65】C. S. Wu, H. T. L, 2008, Modification of biodegradable polylactide by silica and wood flour through a sol–gel process, Journal of Applied Polymer Science, 109, 2128-2138.
【66】C. S. Wu, 2005, Improving Polylactide/Starch Biocomposites by Grafting Polylactide with Acrylic Acid – Characterization and Biodegradability Assessment, Macromolecular Bioscience, 5, 352-361.
【67】Y. Xie, C. A.S. Hill, Z. Xiao, H. Militz, C. Mai, 2010, Silane coupling agents used for natural fiber/polymer composites: A review, Composites: Part A, 41, 806-819.
【68】D. B. Dittenber, H. V. S. GangaRao, 2012, Critical review of recent publications on use of natural composites in infrastructure, Composites Part A: Applied Science and Manufacturing, 43, 1419-1429.
【69】Y. Xie, C. A. S.Hill, Z. Xiao, H. Militz, C. Mai, 2010, Silane coupling agents used for natural fiber/polymer composites: A review, Composites Part A: Applied Science and Manufacturing, 41, 806-826.
【70】張永承,2010,聚己內酯混掺幾丁聚醣微粒對複合膜物性影響,東海大學化學工程與材料工程研究所,碩士。
【71】M. S. Divyashree,T. R. Shamala, 2009, Effect of gamma irradiation on cell lysis and polyhydroxyalkanoate produced by Bacillus flexus, Radiation PhysicsandChemistry, 78, 47–152.
【72】C. T. Nomura, T. Tanaka, T. E. Eguen, A. S. Appah, K. Matsumoto, S. Taguchi, C. L. Ortiz, Y. Doi, 2008, FabG Mediates Polyhydroxyalkanoate Production from Both Related and Nonrelated Carbon Sources in Recombinant Escherichia coli LS5218, Biotechnol Prog, 24, 342-351.
【73】J. I. Hedges, J. A. Baldock, Y. Ge´linas, C. Lee, M. L. Peterson, S. G. Wakeham, 2002, The biochemical and elemental compositions of marine plankton: A NMR perspective, Marine Chemistry, 78, 47– 63.
【74】J. E. Jenkins, M. E. Seitz, C. F. Buitrago, K. I. Winey, K. L. Opper, T. W. Baughman, K. B. Wagener, T. M. Alam, 2012, The impact of zinc neutralization on the structure and dynamics of precise polyethylene acrylic acid ionomers: A solid-state 13C NMR study, Polymer, 53, 3917-3927.
【75】C. Gro¨ger, M. Sumper, E. Brunner, 2008, Silicon uptake and metabolism of the marine diatom Thalassiosira pseudonana: Solid-state 29Si NMR and fluorescence microscopic studies, Journal of Structural Biology, 161, 55–63.
【76】L.Q.N. Tran, C.A. Fuentes, C. D. Gillain, A.W. V. Vuure, I. Verpoest, 2013, Understanding the interfacial compatibility and adhesion of natural coir fibre thermoplastic composites, Composites Science and Technology, 80, 23–30.
【77】黃穎斐,2004,生醫敷料及人工皮膚,科學發展年, 380期,25-29,8月。
【78】J. B. Kim, K. W. Chun, S. K. Han, W. K. Kim, 2010, Effect of human bone marrow stromal cell allograft on proliferation and collagen synthesis of diabetic fibroblasts in vitro, Journal of Plastic, Reconstructive & Aesthetic Surgery, 63, 1030-1035.
【79】R. A. A. Muzzarelli, F. Greco, A. Busilacchia, 2012, Vincenzo Sollazzo, Antonio Gigante, Chitosan, hyaluronan and chondroitin sulfate in tissue engineering for cartilage regeneration: A review, Carbohydrate Polymers, 89, 723– 739.
【80】R. Nunez, 2001, DNA Measurement and Cell Cycle Analysis by Flow Cytometry, Caister Academic Press, 3, 3, 67-70.
【81】M. G. Ormerod, 2002, Investigating the relationship between the cell cycle and apoptosis using flow cytometry, Journal of Immunological Methods, 265, 73– 80.
【82】Y. S. Lin, L. F. Wang, Y. C. Hsu, 2009, Curcuminoids Suppress the Growth of Pharynx and Nasopharyngeal Carcinoma Cells through Induced Apoptosis, J. Agric. Food Chem, 57, 3765–3770.
【83】G. Faria, C. R. B. Cardoso, R. E. Larson, J. S. Silva, M. A. Rossi, 2009, Chlorhexidine-induced apoptosis or necrosis in L929 fibroblasts: A role for endoplasmic reticulum stress, Toxicology and Applied Pharmacology, 234, 256–265.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top