(3.238.118.78) 您好!臺灣時間:2021/04/15 23:29
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡志遠
研究生(外文):Jhih Yuan Hu
論文名稱:二維電場加速鋰離子傳輸技術實務應用
論文名稱(外文):The Practical Application of Two-Dimensional Electric Field Accelerated Lithium Migration Technique
指導教授:郭文田郭文田引用關係劉志堅劉志堅引用關係
指導教授(外文):Wen-Ten KuoChih-Chien Liu
口試委員:潘煌鍟劉志堅郭文田王金鐘
口試委員(外文):Huang Hsing PANChih-Chien LiuWen-Ten KuoWang Chin-Chung
口試日期:2014-05-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:土木工程與防災科技研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:145
中文關鍵詞:加速鋰離子傳輸技術鹼–矽反應電極
外文關鍵詞:Accelerated Lithium Migration Techniquealkali-silica reactionelectrode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:122
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討二維電場加速鋰離子傳輸技術(ALMT)實務模擬,及不同電極配置形式的ASR抑制成效。模擬實務通電時3種最常使用的電極形式:面對面、面對線及線對線電極模組,混凝土含鹼量以NaOH調整至1.25% Na2Oeq,角柱試體於室溫養護1個月後,進行60 V定電壓的ALMT試驗為期一個月,陽極電解液分別使用LiNO3及LiOH.H2O溶液,使用0.5 N及1.0 N二種濃度,通電後的試體置於ASTM C1293試驗環境(38℃、100% R.H.),監測膨脹量變化。結果顯示,3種模組的初始電流較大,隨通電時間增加電流逐漸降低,以面對線電極模組的折減量最低。線對線陰極陽極電解槽容積小,電解液易蒸發及電滲因素而減少,會影響施加電壓的通電效能。施加的總電量愈高,對平均移出混凝土內的鹼質含量及送入鋰離子有利。面對面及面對線電極模組對離子的傳輸較均勻,線對線電極模組會造成局部區域的離子傳輸無效區。3種電極模組平均殘留的游離態含鹼量由低至高為:面對線、面對面、線對線,效果面對線最佳。平均游離態Li/(Na+K)莫耳比由高至低為: 面對線、線對線、面對面,面對線最佳。以膨脹量觀察,面對線最低,線對線最高。通電過程中陽極使用較高濃度的鋰溶液,對鹼質移出混凝土不利,但對送入鋰離子有利。
This research discusses the practical application simulation of 2-D Accelerated Lithium Migration Technique (ALMT), and the inhibited performance of ASR for different electrode design. To simulate three types of electrode module using in practical application: face-face, face-line, and line-line. To adjust the alkali content of concrete using NaOH to 1.25% Na2Oeq. After one month curing at room temperature, then proceed the 60 V constant voltage ALMT test for one month. LiNO3 and LiOH.H2O solutions are used as anolyte, and using two kinds of concentration: 0.5 N and 1.0 N. After ALMT testing, the specimens are placed in the environment of ASTM C1293 (38℃, 100% R.H.) and to monitor the variation of expansion. The results show that the initial current of three types of module is high, and then reducing gradually. Face-line module had the lowest reducing rate. The electrolyte volume of line-line module is small, the electrolyte is easy reduce for the reason such as evaporation and electroosmosis, so lowing the performance of electrifying. The higher charge is helpful for removing the alkali out of concrete and driving lithium into concrete. The ion migration is uniform for Face-face and face-line modules, line-line module has some invalid area of ion migration. The average residual amount of alkali for three modules from low to high is face-line, face-face, and line-line, the performance of face-line is best. The average free Li/(Na+K) molar ratio for three modules from high to low is face-line, line-line, and face-face, the performance of face-line is best. From the observing of the expansion amount of specimen, face-line module is lowest and line-line is highest. The higher concentration of anolyte is good for removing alkali out of concrete, but is not good for driving lithium into concrete.
摘 要 I
ABSTRACT II
致謝 III
目錄 1
表目錄 5
圖目錄 6
第一章緒論 13
1.1 研究動機 13
1.2 研究目的 14
第二章文獻回顧 15
2.1 鹼質與粒料反應 15
2.1.1 型態 15
2.1.2 鹼-矽反應之機理 17
2.2 抑制混凝土鹼-矽反應的方法 20
2.2.1 新拌混凝土 20
2.2.2 硬固混凝土結構物 21
2.3 加速鋰離子傳輸技術(ALMT)簡介 23
2.3.1 加速鋰離子傳輸技術的名稱由來 23
2.3.2 ALMT抑制阻抗上升的通電模組設計 24
2.4 國內外電化學技術研究概要 25
2.5 線對線二維的加速鋰離子傳輸技術研究成果 28
2.6 等電位線及模擬電場線繪製方法介紹 29
2.7 等電位線及電場線之關係 29
第三章試驗計畫 31
3.1 研究流程及實驗步驟 31
3.2 ALMT實務應用前導材料測試 34
3.2.1 適合ALMT實務電極之電解液吸收材料 34
3.2.2 適合ALMT實務電極之線型電極孔直徑 36
3.2.3 填補孔洞材料選擇 37
3.2.4 作為活性細粒料的選用結果 39
3.2.5 ALMT實務應用研究的混凝土通電設計 42
3.3 試驗材料 45
3.3.1 粒料 45
3.3.2 水 45
3.3.3 水泥 45
3.3.4 化學藥劑 47
3.4 配比設計 48
3.5 試體製作及養護 50
3.5.1 試體製作程序 50
3.5.2 不同型式電極模組設置方法 51
3.5.3 完成的試驗設計示意圖及說明 55
3.5.4 試體養護 57
3.6 電源供應器 60
3.6.1 數據擷取器 61
3.7 試體切割方法 61
3.8 試體內的水溶性離子分析方法介紹 64
3.9 試驗使用的主要設備介紹 64
3.9.1 離子層析儀 64
3.10 其他設備 65
第四章 試驗結果與討論 66
4.1 二維電場ALMT試驗過程之電流及電量分析 69
4.1.1 0.5 N 面對面電極模組 69
4.1.2 0.5 N面對線電極模組 71
4.1.3 0.5N線對線電極模組 73
4.1.4 1.0 N電極模組 75
4.1.5 小結 79
4.2 使用0.5 N含鋰陽極電解液試驗後試體內離子含量分布 80
4.2.1 面對面電極模組陽極電解液的試驗結果(0.5 N) 80
4.2.2 面對線電極模組陽極電解液的試驗結果(0.5 N) 84
4.2.3 線對線電極模組陽極電解液的試驗結果(0.5 N) 89
4.3 使用1.0 N含鋰陽極電解液試驗後試體內離子含量分布 94
4.3.1 面對面電極模組陽極電解液的試驗結果(1.0 N) 94
4.3.2 面對線電極模組陽極電解液的試驗結果(1.0 N) 98
4.3.3 線對線電極模組陽極電解液的試驗結果(1.0 N) 102
4.4 膨脹量 105
4.4.1 使用0.5 N陽極電解液試體的膨脹量 105
4.4.2 使用0.5 N陽極電解液試體的膨脹量 106
4.4.3 使用1.0 N陽極電解液試體的膨脹量 109
4.5 試驗試體的裂縫觀察 113
4.6 綜合討論 116
4.6.1 施加總電量與移除混凝土內鹼質含量之關聯性 116
4.6.2 游離態含鹼量與膨脹量關係圖 118
4.6.3 電解液種類對離子傳輸影響 119
4.6.4 陽極電解液含鋰濃度對離子傳輸影響 120
第五章結論與建議 122
5.1 結論 122
5.2 建議 123
參考文獻 124
附錄 129

[1] Gillott, J.E., 1975, “Alkali-aggregate reaction in concrete,” Engineering Geology, Vol. 9, pp. 303-326.
[2] Stanton, T.E., 1940, “Influence of Cement and Aggregate on Concrete Expansion,” Engineering News-Record, Vol. 124, pp. 59-61.
[3] 王韡蒨,2010,「單維電化學技術維修受ASR影響混凝土之模型研究」,國立中央大學土木工程研究所,博士論文,中壢。
[4] 劉志堅,2003,「台灣地區粒料活性探討暨鹼質與粒料反應電化學維修策略研究」,國立中央大學土木工程研究所,博士論文,中壢。
[5] Benoit Fournier, Jason H. Ideker, Kevin J. Folliard, Michael D.A. Thomas, Pierre-Claver Nkinamubanzi, and Ray Chevrier, 2009, “Effect of environmental conditions on expansion in concrete due to alkali-silica reaction (ASR),” Materials Characterization, Vol. 60, pp. 669-679.
[6] Hassan Ghanem, Dan Zollinger, and Robert Lytton, 2010, “Predicting ASR aggregate reactivity in terms of its activation energy,” Construction and Building Materials, Vol. 24, pp. 1101-1108.
[7] Hadley, D. W., 1964, “Alkali reactivity of dolomitic carbonate rocks,” Highway Research Board, Record, Vol. 45, pp. 1-20.
[8] Ludmila, D. M., 1983, “Handbook of concrete aggregates,” Noyes Publications, Park Ridge, New Jersey, U.S.A.
[9] Dent Glasser, L.S. and Kataoka, N.,1981, “The chemistry of alkali-aggregate reaction”, Cement and Concrete Research,” Vol. 11, pp. 1-9.
[10] 李 釗、許書王、陳桂清,1996,「由破裂之消波塊探討鹼骨材反應」,台灣省政府交通處港灣技術研究所港灣報導。
[11] Baxter, A.Z., Stokes, D.B., and Manissero, C.E., 2000, “A lithium-based pozzolan for ASR control,” Proceeding of the 11th International Conference on Alkali Aggregate Reaction, Quebec, Canada, pp. 693-702.
[12] Stoke, D.B., Manissero, C.E., Roy, D.M., and Malek, R.I., 2000, “Portland cement manufacture containing lithium for ASR control,” Proceeding of the 11th International Conference on Alkali-Aggregate Reaction, Quebec, Canada, pp.773-781.
[13] Touma, W.E., Fowler, D.W., and Carrasquillo, R.L., 2001, “Alkali-silica reaction in Portland cement concrete: testing methods and mitigation alternatives,” Research Report, International Conference on Alkali Aggregate Reaction 301-1F.
[14] Bakker, J.D., 2008, “Control of ASR related risks in the Netherlands,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in Concrete, Trondheim, Norway, pp. 22-31.
[15] Shrimer, F., Briggs, A., and Hudson,,B.,2008, “Alkali-aggregate reaction in western Canda:review of current trends,” Proceedings of the 13th International Conference on Alkali-Aggregate Reaction in concrete,Trondheim,Norway,pp. 32-41.
[16] Halit Yazici, 2012, “The effect of steel micro-fibers on ASR expansion and mechanical properties of mortars,” Construction and Building Materials, Vol.30, pp.607-615.
[17] Esteves,T.C.,Rajamma,R., Soares, D., Silva,A.S., Ferreira ,V.M.,and Labrincha,J.A., 2012, “Use of biomass fly ash for mitigation of alkali-silica reaction of cement mortars,” Construction and Building Materials, Vol. 26, pp. 687-693.
[18] Lindgard, Jan., Andic-Cakir, Ozge., Fernandes,Isabel., Ronning,Terje F., Thomas Michael, D.A., 2012, “Alkali-silica reactions (ASR): Literature review on parameters influencing laboratory performance testing,” Cement and Concrete Research, Vol. 42, pp. 223-243.
[19] Hobbs, D.W., 1984, “Expansion of concrete due to alkali-silica reaction,” The Structural Engineer, Cement, Concrete, and Aggregate, England.
[20] Thomas Michael,D.A.,Benoit F., Kevin J. F., Jason H. I., and Yadhira,R., 2007, “The use of lithium to prevent or mitigate alkali-silica reaction in concrete pavements and structures,” Federal Highway Administration, U.S. Department Transportation, FHWA-HRT-06-133, pp. 29-31.
[21] Hichard, H., Stark, D., and Diamond, S., 1993, “Alkali-silica reactivity: an overview of research,” SHRP-C-343, Strategic Highway Research Program, National Research Council, Washington, D.C.
[22] Feng, X., Thomas,M.D.A., Bremner,T.W. , Folliard,K.J., Fournier,B. , 2010, “New observations on the mechanism of lithium nitrate against alkali silica reaction (ASR),” Cement and Concrete Research, Vol. 40, pp. 94-101.
[23] Bulteel,D., Garcia-Diaz,E., Degrugilliers,P., 2010, “Influence of lithium hydroxide on alkali-silica reaction,” Cement and Concrete Research, Vol. 40, pp. 526-530.
[24] Daidai, T., and Torii, K., 2008, “A proposal for rehabilitation of ASR-affected bridge piers with fractured steel bars,” Proceeding of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, pp. 42-49.
[25] Folliard, K.J., Thomas, M.D.A. Ideker, J.H., East, B., and Fournier, B., 2008, “Case studies of treating ASR-affected structures with lithium nitrate,” Proceeding of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, pp. 90-99.
[26] Thomas Michael,D.A.,Benoit F., Kevin J. F., Jason H. I., and Yadhira,R., 2008, “The use of lithium to prevent or mitigate Alkali -Silica reaction in concrete pavements and Structures” ” Federal Highway Administration, U.S. Department Transportation, FHWA–HRT -06-133, pp. 29–32.
[27] Era, K, Mihara, T., Kaneyoshi, A., and Miyagawa, T., 2008, “Controlling effect of lithium nitrite on alkali-aggregate reaction,” Proceeding of the 13th International Conference on Alkali-Aggregate Reaction, Trondheim, Norway, pp. 70-79.
[28] 陳登義,1999,「以電化學技術抑制鹼質與粒料反應之基礎研究」,碩士論文,國立中央大學土木工程研究所,中壢。
[29] Lindgard, Jan., Andic-Cakir, Ozge., Fernandes,Isabel., Ronning,Terje F., Thomas Michael, D.A., 2012, “Alkali-silica reactions (ASR) : Literature review on parameters influencing laboratory performance testing,” Cement and Concrete Research,Vol.42, pp.223-243.
[30] 蘇銘鴻,2002,「電滲法運用於抑制鹼質與粒料反應之基礎研究」,國立中央大學土木工程研究所,碩士論文,中壢。
[31] 黎俊傑,2008,「浸透連通界面過渡區對水泥基質材料鋰離子傳輸的影響研究」,國立高雄應用科技大學土木工程研究所,碩士論文,高雄。
[32] 薛靜芳,2009,「改變砂漿水灰比對鋰離子傳輸行為影響」,國立高雄應用科技大學土木工程研究所,碩士論文,高雄。
[33] 許家瑛,2009,「粒料含量對鋰離子在砂漿內傳輸行為影響」,國立高雄應用科技大學土木工程研究所,碩士論文,高雄。
[34] Whitmore, D., and Abbott, S., 1992, “Use of an applied electric field to drive lithium ions into alkali-silica reactive structures,”11th International Conference on Alkali-Aggregate Reaction, Quebec, pp.1089-1098.
[35] 林明鋒,2003,「利用電化學方法抑制AAR對鋼筋混凝土材料特性影響之研究」,國立中央大學土木工程研究所,碩士論文,中壢。
[36] Kevin J. F., Thomas Michael D.A., Benoit, F., Kimberly E.K., and Jason H. I., 2006, “Interim recommendations for the use of lithium to mitigate or prevent alkali-silica reaction (ASR) ,” Federal Highway Administration, U.S. Department Transportation, FHWA-HRT-06-073, pp.64,71–74.
[37] 廖偉榕,2008,「具AAR活性砂漿試體在不同單維電場強度作用下之離子傳輸行為研究」,國立中央大學土木工程研究所,碩士論文,中壢。
[38] 劉慧如, 2009,「活性砂漿試體受單維電場作用下陽離子傳輸行為之研究」, 國立中央大學土木工程研究所,碩士論文,中壢。
[39] 吳尚謙,2010,「加速鋰離子傳輸技術對鋼筋和混凝土性質影響及工程應用初探」,國立中央大學土木工程研究所,碩士論文,中壢。
[40]黃俊堯, 2012,「電場線用於分析二維電場ALMT離子傳輸型為的可行性研究」,碩士論文,國立高雄應用科技大學土木工程系暨土木工程科技研究所,高雄。
[41] Andrade, C., 1993, “Calculation fo chloride diffusion coefficients in concrete from ionic migration measurements,” Cement and Concret Research, Vol. 23, pp.724-742.
[42] http://www.cwb.gov.tw/V7/index.htm,2014,中央氣象局網站。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔