跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 01:45
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許桓齊
研究生(外文):Huan-Chi Hsu
論文名稱:根據氣候模擬資料庫針對光伏-電解槽系統作數值估算研究
論文名稱(外文):Numerical estimates of photovoltaic-electrolyzer system on simulated weather database
指導教授:李順晴李順晴引用關係
指導教授(外文):Shun-Ching Lee
口試委員:李旺龍林銘哲
口試委員(外文):Wang-Long LiMing-Che Lin
口試日期:2014-07-03
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:65
中文關鍵詞:光伏-電解槽系統、太陽輻射、風速、環境溫度
外文關鍵詞:photovoltaic-electrolyzer system, wind speed, ambient temperature
相關次數:
  • 被引用被引用:1
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:13
  • 收藏至我的研究室書目清單書目收藏:0
本文主要研究為根據一個完整的氣候模擬資料庫,將資料庫內不同的參數代入光伏-電解槽系統數值估算模型作數值估算,並探討此光伏系統和電解槽分別在夏至、秋分、冬至時及在整年度裡的不同運作狀態。

首先本文選擇位於緯度22.65°的地方建立一個當地的氣候模擬資料庫,其中包含每日的太陽輻射值、風速值,以及環境溫度等概況。再者依據文獻內容,整理出光伏系統的特性方程和電解槽的I-V特性方程,經整合後,用Fortran程式語言利用數值方法找出光伏系統與電解槽之間可相配合的工作電壓,並建立出一個光伏-電解槽系統的數值估算模型。

一旦將氣候模擬資料庫參數代入光伏-電解槽系統數值估算模型,此數值估算模型便可以根據不同的氣候模擬參數估算出光伏系統的I-V、溫度變化情形,並預測出電解槽整體的產氫速率和產氫體積。

Based on the simulated weather database, this study predicts the behaviors of a photovoltaic-electrolyzer system on the days of summer solstice, autumn equinox, and winter solstice, and the results all year around are also considered.

Firstly, we choose a place located at latitude of 22.65° to create a local weather simulation database, which includes daily solar radiation, wind speed, and ambient temperature. Furthermore, find out the optimal configuration of the photovoltaic driving system combining electrolyzer and photovoltaic panel.

Once the database of weather conditions are substituted into the numerical estimates model of the photovoltaic-lectrolyzer system, the hydrogen generation rate and the hydrogen production volume under clear day and easily changeable weather are presented.

摘要....................................................................I
ABSTRACT..........................................................II
誌謝.......................................................................III
目錄.......................................................................IV
表目錄.................................................................VI
圖目錄..............................................................VII
符號說明...............................................................IX
第一章 緒論..............................................................1
1.1 前言.....................................................................1
1.2 文獻回顧.................................................................3
1.3 研究動機與目的.......................................................5
1.4 論文架構................................................................6
第二章 建立氣候模擬資料庫.................................................7
2.1 陽輻射常數..................................................7
2.2 大氣層外水平表面上太陽輻射的變化............................7
2.3 定義............................................................7
2.4 太陽光輻射的相關角度符號與名詞解釋.....................9
2.4.1 緯度與赤緯度...........................................9
2.4.2 太陽光輻射與太陽電池模板的各種角度關係.........10
2.5 在地球水平表面上太陽輻射量的估算............................15
2.6 風速值的估算.........................................................20
2.7 環境溫度的估算...............................................23
第三章 建立光伏-電解槽系統..............................................25
3.1 光伏系統.......................................................25
3.1.1 太陽電池模板.............................................25
3.1.2 太陽能電池工作原理......................................25
3.1.3 太陽電池模板的透射吸收率..............................26
3.1.4 空氣質量的表示............................................27
3.1.5 太陽電池模板有效吸收太陽輻射量估算.................28
3.1.6 太陽電池模板基本特性....................................29
3.2 電解槽之探討..................................................32
3.2.1 電解槽化學反應.............................................32
3.2.2 電解槽熱力學模型..........................................33
3.2.3 電解槽電化學模型….......................................34
3.2.4 電解槽法拉第定律及產氫方程式.........................34
3.3 光伏-電解槽系統..............................................36
第四章 數值方法....................................................38
4.1 牛頓法........................................................38
4.2 辛普森積分法........................................................39
第五章 結果與討論..........................................................41
5.1 模擬參數條件.........................................................41
5.2 案例一:夏至.............................................................42
5.2.1 太陽電池模板的溫度變化....................................42
5.2.2 太陽電池模板的電壓-電流變化...............................43
5.2.3 電解槽的產氫速率...............................................44
5.2.4 電解槽的產氫體積.............................................45
5.3 案例二:秋分.............................................................46
5.3.1 太陽電池模板的溫度變化....................................46
5.3.2 太陽電池模板的電壓-電流變化...............................47
5.3.3 電解槽的產氫速率...............................................48
5.3.4 電解槽的產氫體積...............................................49
5.4 案例三:冬至..........................................................50
5.4.1 太陽電池模板的溫度變化.....................................50
5.4.2 太陽電池模板的電壓-電流變化..............................51
5.4.3 電解槽的產氫速率.............................................52
5.4.4 電解槽的產氫體積.............................................53
5.5 案例四:全年度................................................ 54
5.5.1 晴朗天氣下太陽電池模板的溫度變化範圍...................54
5.5.2 亂數取樣下太陽電池模板的溫度變化範圍...................55
5.5.3 晴朗天氣下太陽電池模板的電壓運作範圍...................56
5.5.4 亂數取樣下太陽電池模板的電壓運作範圍...................57
5.5.5 晴朗天氣下太陽電池模板的電流運作範圍...................58
5.5.6 亂數取樣下太陽電池模板的電流運作範圍...................59
5.5.7 晴朗天氣下電解槽的產氫速率範圍...........................60
5.5.8 亂數取樣下電解槽的產氫速率範圍...........................61
5.5.9 晴朗天氣和亂數取樣下電解槽的產氫體積.................62
第六章 結論.............................................................63
參考文獻.................................................................64

[1] 經濟部能源局http://web3.moeaboe.gov.tw/ECW/populace/home/Home.aspx
[2] Bendford, F., Book, J. E., 1939, “A time analysis of Sunshine”, Trans. of American Illumination Engineering Society, vol.34, pp.200.
[3] Hottel, H. C., Woertz, B. B., 1942, “Performance of Flat-plate Solar Heat Collectors”, Trans. ASME, vol.64, pp.91.
[4] Liu, B. Y. H.,Jordan, R. C., 1960, “The Relationship and Characteristics Distribution of Direct Diffuse and Total Radiation”, Solar Energy, vol.4, 3, pp.1-19.
[5] Liu, B. Y. H.,Jordan, R. C., 1963, “The Long-term Average Performance of Flat Solar-energy Collectes”, Solar Energy, vol.7, pp.53.
[6] Cooper, P. I., 1969, “The Absorption of Radiation in Solar Stills”, Solar Energy, vol.12, 3, pp.333-346.
[7] Spencer, J. W., 1971, “Fourier Series Representation of the Position of the Sun”, Search, vol.2, pp.172.
[8] Iqbal, M., 1983, An Introduction to Solar Radiation, Academic Press, Toronto.
[9] Hottel, H. C., 1976, “A Simple Model for Estimating the Transmittance of Direct Solar Radiation Througt Clear Atmospheres”, Solar Energy, vol.18, pp129-134.
[10] Orgill, J. F., Hollands, K. G.,1977, “Correlation Equation for Hourly Diffuse Radiation on A Horizontal Surface”, Solar Energy, vol.19,4, pp.357-359.
[11] Erbs, D. G.,Klein, S. A.,Duffie,J. A.,1982, “Estimation of the Diffuse Radiation Fraction for Hourly, Daily and Monthly-average Global Radiation”, Solar Energy,vol.28, 4, pp.293-302.
[12] Reindl, D.T., Beckman, W. A.,Duffie, J. A., 1990, “Diffuse Fraction Correlations”, Solar Energy, vol.45,1, pp.1-7.
[13] Hay,J. E., Davies, J. A.,1980, “Calculation of the Solar Radiation Incident on An Inclined Surface”, Proceedings of Fist Canadian Solar Radiation Data Workshop, pp.59-72.
[14] Klucher, T.M., 1979. Evaluating models to predict insolation on tilted surfaces. Solar Energy 23, 111–114.
[15] Siegel, R., Howell, J. R., 2002, Thermal Radiation Heat Transfer, 4nd ed, Taylor & Francis, New York.
[16] Duffie, J. A., Beckman, W. A.,2006, Solar Engineering of Thermal Processes, 3rd ed, John Wiley and Sons, New York.
[17] Lee, S. C.,2012, “Numerical estimation model of energy conversion for small hybrid solar-wind system”, Solar Energy, vol.86, pp.3125-3136.
[18] Ø. Ulleberg, “Modeling of advanced alkaline electrolyzers: a system simulation approach,” International Journal of Hydrogen Energy, Vol. 28, pp. 21-33, 2003
[19] 江琮晧,2013,高雄地區獨立型太陽能與風能複合發電系統之分析。
[20] Brandemuehl, M.J., Beckman, W.A., 1980. Transmission of diffuse radiation through CPC and flat-plate collector glazings. Solar Energy 24, 511–513.
[21] King, D.L., Boyson, W.E., Kratochvil, J.E., 2004. Photovoltaic Array Performance Model. Sandia National Laboratories Report, SAND 2004-3535.
[22] Fanney, A.H., Dougherty, B.P., Davis, M.W., 2002. Evaluating building integrated photovoltaic performance models. In: Proceeding of 29th IEEE Photovoltaic Specialists Conference (PVSC), New Orleans, LA.
[23] Kasten, F., Young, A., 1989. Revised optical air mass tables and approximation formula. Applied Optics 28, 4735–4738.
[24] Reindl, D.T., 1988. Estimating Diffuse Radiation on Horizontal Surfaces and Total Radiation on Tilted Surfaces. M.S. Thesis, University of Wisconsin-Madison.
[25] Wolfe, W.L., Zissis, G.J., 1989. The Infrared Handbook. In: Office of Naval Research. Department of the Navy, Washington, DC.
[26] W. Kreuter and H. Hofmann, “Electrolysis: The Important Energy Transformer in a World of Sustainable Energy,” Int. J. Hydrogen Energy, Vol. 23, No.8, pp. 661-666,1998.
[27] C.,Hoeller, S.,Kueter, U. Voigt , Fuel Cell Technology for Classroom Instruction: Basic Principles, Experiments, 1st. Luebeck, Germany : h-tec, 2005.
[28] 廖思善,1999,基本數值計算技巧,滄海書局。
[29] 譯者:鄭子韋、林余昭、史青林,2013,微積分精華版第九版,歐亞書局。

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top