跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/04 00:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:古堯中
研究生(外文):Yao-Zhong Gu
論文名稱:金屬基鑽石砂輪之線放電修整模組開發及加工性能探討
論文名稱(外文):Development and Investigation of Wire Electrical Discharge Dressing Module for Metal-Bond Diamond Wheel
指導教授:王珉玟洪榮洲
指導教授(外文):Min-Wen WangJung-Chou Hung
口試委員:王珉玟洪榮洲曾俊傑林明哲
口試委員(外文):Min-Wen WangJung-Chou HungChun-Chieh TsengMing-Jhe Lin
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:95
中文關鍵詞:金屬基鑽石砂輪整形修銳線放電加工陶瓷導輪田口實驗法
外文關鍵詞:Metal bonded diamond wheelsTuringDressingWEDMCeramic guide wheelTaguchi method
相關次數:
  • 被引用被引用:0
  • 點閱點閱:446
  • 評分評分:
  • 下載下載:29
  • 收藏至我的研究室書目清單書目收藏:0
本研究結合線放電研磨系統並開發快速及簡易拆卸之導線機構,可安裝在各種機種之磨床上;並藉由陶瓷導輪導引線電極,克服線振動、加工液噴射衝擊等問題。利用田口實驗法對兩種不同粒徑之鑽石砂輪以線放電修整找出最佳之放電參數,並對鑽石砂輪之材料移除率、表面粗糙度及磨粒突出量分析。但在高能量的放電過程中易使鑽石磨粒受損,最後以加工液添加鋁粉作分散放電修整實驗,來探討磨粒突出量,期望避免鑽石磨粒毀損和提升加工效率。
結果顯示導線機構如預期的可在磨床上對砂輪進行線放電修整,加工過程中基座不會產生偏移。在田口實驗中電流與脈衝時間的貢獻度最大,大粒徑砂輪最高移除率為11.78 mm3/min,而最高突出量僅33.12 μm,無法達到理論突出量。小粒徑砂輪最高移除率為2.14 mm3/min,而最高突出量為7.53 μm,有達到最佳突出量。添加鋁粉後由於導電率的提升,易產生架橋現象,放電間隙增加,使加工深度增加,所以材料移除率增加。對磨粒突出量而言有明顯的改善,最高突出量為89.87 μm,平均提升2倍,皆可達到最佳突出範圍。對磨粒突出量而言,大粒徑之砂輪適合添加鋁粉來進行修整,不僅可改善磨粒毀損的情況,也可達到最佳突出量。而小粒徑之砂輪則相反,由於需修整的深度較淺,添加鋁粉會增加加工深度會導致鑽石磨粒容易剝落。
Using wire electrical discharge dressing (WEDD), this study develops the wire mechanism allowed disassembling quickly and simply and arranging on gear grinders of any kinds of machines, and use ceramics guide wheel to avoid rectilinear vibration and impact of shooting dielectric fluid. The study concentrates on the diamond grinding wheel of two different particle diameter using wire electrical discharge dressing to optimize the process parameters and analyzes the material removal rate of diamond grinding wheel, surface roughness and grinding girt protrusion by Taguchi method. However, during high-energy electrical discharges, diamond grinding grit can be easily damaged. Therefore, the powder wire electrical discharge dressing adding aluminum powder into the dielectric fluid to explore grinding girt protrusion is also discussed and expected to avoid the damage of diamond grinding grit and improve the processing efficiency.
The results show that the steady mechanism can avoid severe vibration during the WEDD. In Taguchi method, parameters contribution of the greatest which are discharge current and pulse on time, the maximum material removal rate is 11.78 mm3/min and the maximum grinding grit protrusion is 33.12 μm in grit size of #100, which is not achieved the theoretical protrusion. The maximum material removal rate is 2.14 mm3/min and the maximum grinding grit protrusion is 7.53 μm which research the optional protrusion. After adding aluminum powder, the rise of electrical conductivity could easily cause bridging, which increases the discharge gap and processing depth, so the material removal rate increases. The result shows the obvious improvement of grinding grit protrusion and the maximum grinding grit protrusion is 89.87 μm, which is averagely two times the original one. Both of them can optimize protrusion. Regarding the grinding grit protrusion, the grinding wheel of big particle size is appropriate to add aluminum powder for refurbishment. It can not only improve the situation of damaging grit but also optimize protrusion. On the contrast, for the grinding wheel of small particle size, the diamond grinding grit could easily spall as the depth in need to fix is shallow.

目錄
摘要 i
ABSTRACT ii
致謝 iv
目錄 v
圖目錄 vii
表目錄 x
一、緒論 1
1.1 研究背景 1
1.2研究動機與目的 1
1.3基本研究原理 2
1.3.1放電加工 2
1.3.2線放電加工 3
1.3.3放電加工材料移除原理 4
1.3.4放電加工參數 5
1.3.5放電加工特性 7
1.3.6電介質液 8
1.4論文架構 8
二、文獻回顧 9
2.1砂輪研磨技術 9
2.2砂輪修銳與整形技術 9
2.3放電加工修整技術 14
2.4線上整形與修整技術 19
三、實驗規劃 21
3.1實驗設備 22
3.1.1高精密平面磨床 23
3.1.2收線機構 24
3.1.3 XY-Table 25
3.1.4放電電源 26
3.1.5量測設備 27
3.2實驗材料 30
3.2.1金屬基鑽石砂輪 30
3.2.2線電極 31
3.2.3加工液 31
3.2.4導電粉末 31
3.3實驗設計 32
3.3.1導線機構設計 32
3.3.2田口實驗設計 35
3.3.3粉末線放電修整 45
四、結果與討論 46
4.1大粒徑鑽石砂輪修整量測 46
4.1.1田口實驗量測 46
4.1.2因子回應 49
4.1.3變異數分析 51
4.1.4確認實驗 53
4.1.5田口分析結論 54
4.1.6粉末線放電修整量測 55
4.2小粒徑鑽石砂輪修整量測 57
4.2.1田口實驗量測 57
4.2.2因子回應 60
4.2.3變異數分析 62
4.2.4確認實驗 64
4.2.5田口分析結論 65
4.2.6粉末線放電修整量測 65
4.3、參數綜合探討 68
4.3.1放電電流對砂輪修整之影響 68
4.3.2脈衝時間對砂輪修整之影響 70
4.3.3進給速度對砂輪修整之影響 72
4.3.4線張力對砂輪修整之影響 74
4.3.5加工液流速對砂輪修整之影響 76
4.3.6加工液添加鋁粉對砂輪修整之影響 78
五、結論與未來展望 80
參考文獻 81


[1].鄭元傑,2008,鈦化鎢電及微放電加工特性之研究,國立高雄應用科技大學模具工程系碩士論文。
[2].台灣師範大學機械工程系放電加工教材,取自http://elearning.ice.ntnu.edu.tw/km/Data/Teacher/22575/Data/教材/7213/1.ppt
[3].林楠盛,1981,“放電加工技術之應用理論與實務”,機械工業雜誌,pp. 257-274,10月。
[4].董光雄,2002,放電加工,七版,復文書局,中華民國。
[5].汪師弘,2010,“認識傳統砂輪規格”,行政院勞工委員會職業訓練局,北區職業訓練中心。
[6].Srivastava, U. Mayank, 2013, “Review of Dressing and Truing Operations for Grinding Wheels,” International Journal of Engineering Science, Vol. 5, No. 1, ISSN:0975-5462.
[7].Mustafizur, Rahman, A. Senthil Kumar and I. Biswas, 2009, “A Review of Electrolytic In-Process Dressing (ELID) Grinding,” Key Engineering Materials, Vol. 404, pp. 45-59.
[8].R. Murata, K. Okano and C. Tsutsumi, 1985, “Grinding of structural ceramics,” Milton C Shaw Grinding Symposium PED, Vol. 16, No. 1, pp.261-272.
[9].大森整、黒沢伸和中川威雄,1988,鋳鉄ファイバポンド砥石によるガラス系材料の鏡面研削加工,昭和63年度精密工学会秋季大会学術講演会講演論文集,頁355-358,日本。
[10].K. Suzuki, T. Uematsu, T. Yanase, M. Honma, S. Asano and T. Matsuo, 1991, “Development of a simplified electrochemical dressing method with twin electrodes,” CIRP Annals-Manufacturing Technology, Vol. 40, Issue 1, pp. 363-366.
[11].H. Ohmori, and T. Nakagawa, 1990, “Mirror surface grinding of silicon wafers with electrolytic in-process dressing,” CIRP Annals-Manufacturing Technology, Vol. 39, Issue 1, pp. 329-332.
[12].H. Ohmori and T. Nakagawa, 1995, “Analysis of mirror surface generation of hard and brittle materials by ELID (Electronic In-Process Dressing) grinding with superfine grain metallic bond wheels,” CIRP Annals-Manufacturing Technology, Vol. 44, Issue 1, pp. 287-290.
[13].H. Ohmori, Y. Dai, W. Lin, T. Suzuki, K. Katahira, N. Itoh, A. Makinouchi and H. Tashiro, 2002, “Force characteristics and deformation behaviors of sintered SiC during an ELID grinding process,” Advances in Abrasive Technology, Vol.238-239, Issue 5, pp. 65-70.
[14].H. Ohmori, K. Katahira, W. Lin, Y. Dai, T. Suzuki and N. Itoh, 2002, “Nano-precision Surface Machining for Ceramics by Ultraprecision ELID-Grinding,” CERAMICS JAPAN, Vol. 37, Issue 10, pp. 799-802.
[15].D. Kramer, F. Rehsteiner and B. Schumacher, 1999, “ECD (electrochemical in-process controlled dressing), a new method for grinding of modern high-performance cutting materials to highest quality,” CIRP Annals-Manufacturing Technology, Vol. 48, Issue 1, pp. 265-268.
[16].M. Schöpf, I. Beltrami, M. Boccadoro, D. Kramer and B. Schumacher, 2001, “ECDM (electro chemical discharge machining), a new method for trueing and dressing of metal bonded diamond grinding tools,” CIRP Annals-Manufacturing Technology, Vol. 50, Issue 1, pp. 125-128.
[17].D.T. Curtis, S.L. Soo, D.K. Aspinwall, and C. Sage, 2009, “Electrochemical superabrasive machining of a nickel-based aeroengine alloy using mounted grinding points,” CIRP Annals-Manufacturing Technology, Vol. 58, Issue 1, pp. 173-176.
[18].C. Zhang and Y.C. Shin, 2002, “A novel laser-assisted truing and dressing technique for vitrified CBN wheels," International Journal of Machine Tools and Manufacture, Vol. 42, Issue 7, pp. 825-835.
[19].A. Hosokawa, T. Ueda and T. Yunoki, 2006, “Laser dressing of metal bonded diamond wheel,” CIRP Annals-Manufacturing Technology, Vol. 55, Issue 1, pp. 329-332.
[20].K. Suzuki, T. Uematsu and T. Nakagawa, 1987, “On-machine trueing/dressing of metal bond grinding wheels by electro-discharge machining,” CIRP Annals-Manufacturing Technology, Vol. 36, Issue 1, pp. 115-118.
[21].X. Wang, B. Ying and W. Liu, 1996, “EDM dressing of fine grain super abrasive grinding wheel,” Journal of materials processing technology, Vol. 62, Issue 4, pp. 299-302.
[22].N. Ortega, J. A. Sanchez, J. Aranceta, J. A. Maranon and X. Maidagan, 2004, “Optimisation of grit protrusion in the electro-discharge dressing process of large grit size CBN grinding wheels,” Journal of materials processing technology, Vol. 149, Issue 1, pp. 524-529.
[23].H. K. Tonshoff and T. Friemuth, 2000, “In-process dressing of fine diamond wheels for tool grinding,” Precision engineering, Vol. 24 Issue 1, pp. 58-61.
[24].Y. Wang, , X. J. Zhou and D. J. Hu, 2006, “An experimental investigation of dry- electrical discharge assisted truing and dressing of metal bonded diamond wheel,” International Journal of Machine Tools and Manufacture, Vol. 46, Issue 3, pp. 333-342.
[25].J.A. Sanchez, I. Pombo, I. Cabanes, R. Ortiz and L.N. Lopez de Lacalle, 2008, “Electrical discharge truing of metal-bonded CBN wheels using single-point electrode,” International Journal of Machine Tools and Manufacture, Vol. 48, Issue 3, pp. 362-370.
[26].J. Xie, H.F. Xie, M.J. Luo, T.W. Tan, and P. Li, 2012, “Dry electro-contact discharge mutual-wear truing of micro diamond wheel V-tip for precision micro-grinding,” International Journal of Machine Tools and Manufacture, Vol. 60, pp. 44-51.
[27].D.F. Dauw and I. Beltrami, 1994, “High-precision wire-EDM by online wire positioning control,” CIRP Annals-Manufacturing Technology, Vol. 43, Issue 1, pp. 193-197.
[28].B.K. Rhoney, A.J. Shih, R.O. Scattergood, J.L. Akemon, D.J. Gust and M.B. Grant, 2002, “Wire electrical discharge machining of metal bond diamond wheels for ceramic grinding,” International Journal of Machine Tools and Manufacture, Vol. 42, Issue 12, pp. 1355-1362.
[29].B.K. Rhoney, A.J. Shih, R.O. Scattergood, R. Ott and S.B. McSpadden, 2002, “Wear mechanism of metal bond diamond wheels trued by wire electrical discharge machining,” Wear, Vol. 252, Issue 7, pp. 644-653.
[30].E. Weingärtner, S. Jaumann, F. Kuster and K. Wegener, 2010, “On-machine wire electrical discharge dressing (WEDD) of metal-bonded grinding wheels,” The International Journal of Advanced Manufacturing Technology, Vol. 49, Issue 9-12, pp. 1001-1007.
[31].E. Weingärtner, S. Jaumann, F. Kuster, and M. Boccadoro, 2010, “Special wire guide for on-machine wire electrical discharge dressing of metal bonded grinding wheels,” CIRP Annals-Manufacturing Technology, Vol. 59, Issue 1, pp. 227-230.
[32].J. D. Kim, E. S. Lee and C. Y. Lee, 1995, “Crack generation and the effect of in-process electro-discharge dressing in grinding single crystal MgO,” International journal of mechanical sciences, Vol. 37, Issue 6, pp. 569-583.
[33].T. S. Kwak, Y. C. Lee, G. N. Kim, D. B. Choi, M. Yamanoi and H. Ohmori, 2009, “Nano-precision combined process of electrolytic in-process dressing grinding and magnetic assisted polishing on optics glass material,” Transactions of Nonferrous Metals Society of China, Vol. 19, pp. s301-s306.
[34].M. H. Raffles, D. J. Stephenson, P. Shore and T. Jin, 2011, “Electrolytic In-Process Dressing Superfinishing of Spherical Bearings Using Metal—Resin Bond Ultra-Fine CBN Wheels,” Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture, Vol. 225, Issue 1, pp. 112-122.
[35].A. M. Shanawaz, S. Sundaram, U. T. S. Pillai, andP. B. Aurtherson, 2011, “Grinding of aluminium silicon carbide metal matrix composite materials by electrolytic in-process dressing grinding,” The International Journal of Advanced Manufacturing Technology, Vol. 57, Issue 1-4, pp. 143-150.
[36].J. Xie and J. Tamaki, 2006, “In-process evaluation of grit protrusion feature for fine diamond grinding wheel by means of electro-contact discharge dressing,” Journal of materials processing technology, Vol. 180, Issue 1, pp. 83-90.
[37].A. Sudiarso and J. Atkinson, 2008, “In-Process Electrical Dressing of Metal-Bonded Diamond Grinding Wheels,” Engineering Letters, Vol. 16, Issue 3, pp. 308-310.
[38].K. Wegener, E. Weingärtner and M. Blaser, 2013, “In-process wire electrical discharge dressing (IWEDD) of metal bonded diamond wheels,” CIRP Annals-Manufacturing Technology, Vol. 62, Issue 1, pp. 339-342.
[39].D. F. Dauw, H. Sthioul, R. Delpretti, & C. Tricarico, 1989, “Wire analysis and control for precision EDM cutting,” CIRP Annals-Manufacturing Technology, Vol. 38, Issue 1, pp. 191-194.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top