跳到主要內容

臺灣博碩士論文加值系統

(44.210.85.190) 您好!臺灣時間:2022/12/10 13:59
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃大勻
研究生(外文):Huang,Da-Yun
論文名稱:脈衝電流應用於鹼性電解法製作片狀鋅粉之研究
論文名稱(外文):The Study of the Zinc Flake Produced by Alkaline Electrolysis with Pulse
指導教授:許兆民許兆民引用關係
指導教授(外文):Hsu,Chao-Ming
口試委員:許兆民林阿德張健桂
口試委員(外文):Hsu,Chao-MingLin,Ah-DerChang,Chien-Kuei
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:機械與精密工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:79
中文關鍵詞:鹼性電解片狀鋅粉佔空比電解液
外文關鍵詞:Alkaline electrolysisZinc flakeDuty ratioElectrolyte
相關次數:
  • 被引用被引用:0
  • 點閱點閱:193
  • 評分評分:
  • 下載下載:9
  • 收藏至我的研究室書目清單書目收藏:0
本研究為利用濕式煉鋅中的鹼性電解法搭配脈衝電流製備超薄片狀鋅粉。實驗反應系統的設備為500ml的反應槽,其中經由前置實驗處理,選用陽極為不鏽鋼板,陰極為選用鎂板,為了準確性,陰陽極板皆經由研磨和拋光處理。實驗中以6M NaOH為電解液,經由改變頻率、佔空比、電壓、電解液6M NaOH中鋅濃度以實驗出能製備厚度0.1-0.3μm片狀鋅粉的參數。
在電流頻率變化,分別為50Hz、60Hz、70Hz、80Hz、90Hz、100Hz和250Hz,在頻率50~100Hz區間,頻率越低晶粒生長越慢,晶粒越小。頻率100Hz~250Hz區間,頻率越高晶粒生長快速,但易造成團聚且耗電量大;脈衝佔空比設置,分別為0.025、0.1、0.2、0.5和0.8,佔空比0.5為實驗數據中鋅粉團聚極少的參數。佔空比0.025~0.2區間,鋅粉表面孔隙越大;改變電壓,分別為100V、150V、200V、250V和300V,在電壓100~200V區間,電壓越低製鋅速度較慢,鋅粉晶粒較小,但因電阻關係造成團聚嚴重。電壓200~300V區間,電壓越高製鋅速度越快,鋅粉晶粒較厚;在電解液中鋅濃度,分別為4、6、8、12、18、24、30和36 g-Zn/L。鋅濃度介於12~36 g-Zn/L區間,鋅濃度越高,晶粒成長較大,厚度較厚。鋅濃度介於4~12 g-Zn/L區間,鋅濃度越低,晶粒成長緩慢、鋅粉晶粒小。當鋅濃度低於6 g-Zn/L以下時,由於鋅晶粒小鍵結力強,造成鋅粉團聚、厚度變厚。
從實驗和數據統計中可得知最佳參數條件為,電壓200V、佔空比0.5、頻率50Hz、陽極極板為不鏽鋼板、陰極極板為鎂板、極板間距90mm、電解液中鋅濃度為12 g-Zn/L、電解時間30min,所製得片狀鋅粉厚度為0.3μm。

In this research is to use alkaline electrolysis with the pulse current to produce zinc flake. Experimental reaction system equipment is 500ml, the processing via pre-experiment that choose the anode is stainless steel, the cathode is magnesium plate, the anode and cathode plates are processed through the grinding and polishing. In this experiment, 6M NaOH as the electrolyte, through to change frequency, duty ratio, voltage, zinc in the electrolyte concentration of 6M NaOH and cathode plate to experiment that which parameter can be produced zinc flake thickness from 0.1 to 0.3μm.
Changing in the current frequency are respectively 50Hz, 60Hz, 70Hz, 80Hz, 90Hz, 100Hz and 250Hz. The frequency range from 50Hz to 100Hz is the lower of the frequency that the zinc grow slower of grain growth and smaller particle. The frequency range from 100Hz to 250Hz are the higher of the frequency that the zinc rapid grow grain growth, but easily to reunite and large power; The duty ratio of pulse setting are respectively 0.025, 0.1, 0.2, 0.5, 0.8, the duty ratio in 0.5 is the best in another parameters, because of less reunite. The duty ratio range from 0.025 to 0.2 has the larger of the zinc surface pores. Changing in the voltage are respectively 100V, 150V, 200V, 250V and 300V, the voltage range from 100V to 200V is the lower of the voltage that produce zinc slowly and small of the particle, but reunion caused from resistance. the voltage range from 200V to 300V is the higher of the voltage that produce zinc fast and thick of the particle; Zinc in the electrolyte concentration are respectively 4, 6, 8, 12, 18, 24, 30 and 36 g-Zn/L. Zinc concentration range from 12 to 36 g-Zn/L are the higher of the zinc concentration that the zinc grains grew larger and thick; Zinc concentration range from 4 to 12 g-Zn/L are the lower of the zinc concentration that the zinc grains grew small. When the zinc concentration below 6 g-Zn/L or less, due to the small grains of zinc binding ability, resulting in agglomeration and thick.
Conditions for the optimal parameters can be learned from the experimental and data statistics, voltage is 200V, the duty ratio is 0.5, frequency is 50Hz, anode plate is stainless steel, cathode plate is magnesium plate, plates spacing are 90mm, zinc in the electrolyte concentration is 4 g-Zn/L, electrolysis time is 30min, producing zinc flake thickness is 0.3μm.

中文摘要 ---------------------------------------------------------------------------------- i
英文摘要 ---------------------------------------------------------------------------------- iii
誌謝 ---------------------------------------------------------------------------------- v
目錄 ---------------------------------------------------------------------------------- vi
圖目錄 ---------------------------------------------------------------------------------- viii
表目錄 ---------------------------------------------------------------------------------- x
第一章 緒論------------------------------------------------------------------------------- 1
1-1 前言----------------------------------------------------------------------- 1
1-2 鋅冶煉技術------------------------------------------------------------------ 3
1-2-1 乾式冶鋅-------------------------------------------------------------------- 3
1-2-2 濕式冶鋅-------------------------------------------------------------------- 4
1-3 金屬粉末製備----------------------------------------------------------------- 6
1-3-1 物理化學法------------------------------------------------------------------- 8
1-3-2 機械法---------------------------------------------------------------------- 8
1-4 研究動機與目的---------------------------------------------------------------- 9
1-5 文獻回顧--------------------------------------------------------------------- 9
1-6 文章架構--------------------------------------------------------------------- 10
第二章 實驗方法與流程------------------------------------------------------------------------ 11
2-1 實驗藥品--------------------------------------------------------------------- 11
2-2 儀器設備簡介----------------------------------------------------------------- 15
2-2-1 實驗儀器--------------------------------------------------------------------- 17
2-2-2 電流供應器------------------------------------------------------------------- 17
2-2-3 脈衝產生器------------------------------------------------------------------- 19
2-2-4 電解實驗用具------------------------------------------------------------------ 21
2-2-5 磁石攪拌器------------------------------------------------------------------- 23
2-2-6 烘烤爐----------------------------------------------------------------------- 25
2-3 實驗方法---------------------------------------------------------------------- 27
2-3-1 電解液之配置------------------------------------------------------------------ 27
2-3-2 儀器參數之設定---------------------------------------------------------------- 27
2-3-3 實驗流程---------------------------------------------------------------------- 28
第三章 結果與討論---------------------------------------------------------------------------- 30
3-1 不同陰極極板所製得的鋅粉分析----------------------------------------------------- 30
3-2 改變電解液6M NaOH中鋅濃度所製得的鋅粉分析----------------------------------------- 36
3-3 經由不同頻率所製得的鋅粉分析----------------------------------------------------- 47
3-4 經由不同佔空比所製得的鋅粉分析--------------------------------------------------- 57
3-5 經由不同電壓所製得的鋅粉分析----------------------------------------------------- 65
第四章 結論--------------------------------------------------------------------------------- 73
4-1 未來展望---------------------------------------------------------------------- 73
參考文獻 ------------------------------------------------------------------------------------ 74

[1]黃清連, 吳裕慶, 2009, “鋅之冶煉法與資源再生”, 中國礦冶工程學會, pp. 27-37。
[2]Zhi-Min Qu, Jin-Lin Huang, 2005, “Production Technology and Application of Zinc Flake”, Nonferrous Metals Processing, Vol. 34, No. 2。
[3]Xue-Yi Guo, Qing-Hua Tian, Ning Li, Hai-Han Liu, Gang Xu, 2012, “Preparation of dendritic zinc powder by Electrodeposition in the system of Zn2+-NH4+-SO42--H2O”, Sciencepaper Online, School of Metallurgical Science & Engineering , Central South University, Changsha, China. '
[4]Arnold R. Marder, 2000, “The metallurgy of zinc coated steel”, Progress in Materials Science , Vol. 45, pp. 191-271.
[5]JP. Wiaux, John P. Waefler, 1995, “Recycling zinc batteries : an economical challenge in consumer waste management”, Journal of Powder Sources , Vol. 57, pp. 61-65.
[6]De-Ling Ding, Jia-Xiang Liu, Yue-Xin Han, 2007, “Zinc Powders Preparation by Alkal ine Electrowinning from Hot Galvanizing Slag”, Nonferrous Metals, Vol.59, No. 2, pp. 43-45。
[7]Le-Sheng Xu, Wei-Dong Li, 2004, “Technique of DACROMET and Application”, Shangdong Machinery.
[8]Man Jiang, Wei-Bin Bi, Gang-Hong Mao, Li-Juan Wan, Mao-Sheng Zheng, 2010, “New non-chromate dacromet anti-corrosion materials”, Journal of North west University (Natural Science Edition), Vol. 40, No. 2, pp. 215-218.
[9]Jie-Ming Gao, Xiao-Yun Zhu, Zhong-Cheng Guo, Bu-Ming Chen, Ai-Hua Du, 2008, “Selection of Raw Materials and Technology of Dacromet Coatings”, Paint & Coating Industry, Vol. 38, No. 3, pp. 54-60.
[10]Guo-Dong Zhao, Qing Liu, You-Cai Zhao, 2010, “Effect of Impurities Ions on Zinc Electrowinning Process in Alkaline Leaching”, Journal of University of South China( Science and Technology), Vol. 24, No. 2, pp. 24-28.
[11]Xin-Gang Hou, Sheng Wang, Yu-Mian Wang, 2004, “Preparation and Characterization of Nanometer ZnO Powder”, Powder Metallurgy Industry, Vol. 14, No. 1, pp. 10-13.
[12]Chang-Xiang Xia, Hong-Ping Liu, Zheng Xu, 2013, “Lian-Xin Shiea”, Metallurgical Industry Press.
[13]曲選輝, 2013, “粉末冶金原理與工藝”, 冶金工業出版社。
[14]雷霆,陳利生,余宇楠, 2013, “鋅冶金”, 冶金工業出版社。
[15]Xiang-Yi, Lan Xiang, Yong Jin, 2002, “Advances on Synthesis of Nano-Powders by Liquid Chemical Methods”, Modern Chemical Industry, Vol. 22, No. 1, pp. 19-21.
[16]Pierre Millet, Sergey Grigoriev, 2013, “Renewable Hydrogen Technologies”, Production, Purification, Storage, Applications and Safety, pp. 19-41.
[17]Toth-Kadar Enik, Bakonyi Imre, Pogany Lajos, Cziraki Agnes, 1996, “Microstructure and Electrical Transport Properties of Pulse-Plated Nanocrystalline Nickel Electrodeposits”, Surface and Coatings Technology, Vol. 88, pp.57-65.
[18]St-Pierre Jean, Dominique L. Piron, 1986, “Electrowinning of zinc from alkaline solution”, Journal of Electroanalytical Chemistry, Vol. 16, pp. 447-456.
[19]S.Gurmen, M. Emre, 2003, “A laboratory-scale investigation of alkaline zinc electrowinning”, Minerals Engineering, Vol. 16, pp.559-562.
[20]M.V. Simicic, K.I. Popov, N.V. Krstajic, 2000, “An experimental study of zinc morphology in alkaline electrolyte at low direct and pulsating overpotentials”, Journal of Electroanalytical Chemistry, Vol. 484, pp. 18-23.
[21]Mehdi Zareie, Abed Gholami, Mohammad Bahrami, Amir Hossein Rezaei, 2012, “A Simple Method for Preparation of Micro-Sized ZnO Flakes”, Materials Letters, Vol. 91, pp. 255-257.
[22]A.E. Saba, A.E. Elsherief, 1999, “Continuous Electrowinning of Zinc”, Hydrometallurgy, Vol. 54, pp. 91-106.
[23]Yang Liu, Jian-er Zhou, Andre Larbot, Michel Persin, 2007, “Preparation and Characterization of Nano-Zinc Oxide”, Journal of Materials Processing Technology, Vol. 189, pp.379-383.
[24]M. Sadegh Safarzadeh, M.S. Bafghi, D. Moradkhani, M. Ojaghi Ilkhchi, 2007, “A Review on Hydrometallurgical Extraction and Recovery of Cadmium from Various Resources”, Minerals Engineering, Vol. 20, pp. 211-220.
[25]R.E.F. Einerhand, W. H. M. Visscher, E.Barendrecht, 1988, “Hyfrogen Production during Zinc Deposition from Alkaline Zincate Solutions”, Journal of Applied Electrochemistry, Vol. 18, pp. 799-806.
[26]Zhao Youcai, Li Qiang, Zhang Chenglong, Jiang Jiachao, 2013, “Production of Ultrafine Zinc Powder from Wastes Containing Zinc by Electrowinning in Alkaline Solution”, Brazilian Journal of Chemical Engineering, Vol. 30, No. 04, pp. 857-864.
[27]Y. Ueda, N. Hataya, H. Zaman, 1996, Journal of Magnetism and Magnetic Materials, Vol. 156, pp. 350.
[28]M. Alper, K. Attenborough, R. Hart, S.J. Lance, D.S. Lashmore, C.Younes, W. Schwarzacher, 1993, Applied Physics Letter, Vol. 63, pp. 2144.
[29]Krit Ngamlerdpokin, Nisit Tantavichet, 2013, “Electrodeposition of Nickel-Copper Alloys to Use as a Cathode for Hydrogen Evolution in an Alkaline Media”, International Journal of Hydrogen Energy, Vol. 39, pp. 2505-2515.
[30]A. Gomes, M.I. da Silva Pereira, 2006, “Pulsed electrodeposition of Zn in the presence of surfactants”, Electrochimica Acta, Vol. 51, pp. 1342-1350.
[31]St-Pierre Jean, Dominique L. Piron, 1990, “Electrowinning of zinc from alkaline solutions at high current densities”, Journal of Applied Electrochemistry, vol. 20, pp. 163–165.
[32]Miulovic SM, Maslovara SLj, Seovic MM, Radak BB, Marceta, Kaninski MP, 2012, “Energy saving in electrolytic hydrogen production using Co–Cr activation – Part I”, International Journal of Hydrogen Energy, vol. 37, no. 22, pp. 16770-16775.
[33]Aparajith.B, Ashish Kumar, Duncan Hodder, M.L. Gupta, 2010, “Recovery of cadmium from hydrometallurgical zinc smelter by selective leaching”, Hydrometallurgy, vol. 102, pp. 31-36.
[34]M.S. Chandrasekar, Malathy Pushpavanam, 2008, “Pulse and pulse reverse plating - Conceptual advantages and applications”, Electrochimica Acta, vol.53, pp. 3313-3322.
[35]Youcai Zhao, Robert Stanforth, 2000, “Production of Zn powder by alkaline treatment of smithsonite Zn–Pb ores”, Hydrometallurgy, vol. 56, pp. 237-249.
[36]Tomas Havlik, Bruna Vidor e Souza, Andrea Moura Bernardes, Ivo Andre Homrich Schneider, Andrea Miskufova, 2006, “Hydrometallurgical processing of carbon steel EAF dust”, Journal of Hazardous Materials, vol. B135, pp. 311-318.
[37]A.M. Alfantazi, D.B. Dreisinger, 2003, “Foaming behavior of surfactants for acid mist control in zinc electrolysis processes”, Hydrometallurgy, vol. 69, pp.57-72.
[38]Chonglun Fan, D.L. Piron, 1995, “Electrodeposition as a means of producing large-surface electrodes required in water electrolysis”, Surface and Coatings Technology, vol. 73, pp. 91-97.
[39]T. P. DIRKSE, 1971, “Voltage decay at passivated zinc anodes”, Journal of Applied Electrochemistry, vol. 1, pp. 27-33.
[40]C.J. BUSHROD, N.A. HAMPSON, 1971, “The anodic behaviour of zinc in KOH solution. V: Galvanostatic polarization with an interruption”, Journal of Applied Electrochemistry, vol. 1, pp. 99-101.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top