跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/25 16:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蔡孟勳
研究生(外文):Meng-Hsun Tsai
論文名稱:真空輔助毛細力成型製程研究應用於大面積微透鏡光學元件之製作
論文名稱(外文):Study on vacuum assisted capillary forming process for fabrication of large-area micro-Optical device.
指導教授:張致遠張致遠引用關係
指導教授(外文):Chih¬-Yuan Chang
口試委員:粘世智林俊宏
口試委員(外文):Shih-Chih NianJun-Hong Lin
口試日期:2014-07-01
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:107
中文關鍵詞:微結構UV壓印毛細力
外文關鍵詞:MicrostructureUV ImprintCapillary Force
相關次數:
  • 被引用被引用:3
  • 點閱點閱:315
  • 評分評分:
  • 下載下載:14
  • 收藏至我的研究室書目清單書目收藏:0
微結構陣列元件是應用於微機電系統、光學擴散膜產品與生醫感測器的關鍵零組件,而目前主要的製造技術包括微射出成型、微熱壓成型與UV壓印成型等,這些技術大部分都牽涉高溫與高壓的複雜製造程序,唯有UV壓印成型技術同時兼具製程簡易、快速與低溫、低壓的優勢,但是傳統UV壓印所使用的透明石英模具昂貴,還有壓印壓力分佈不均的問題。因此本研究整合真空輔助毛細力成型與UV固化技術來製作微結構陣列元件,此法不僅具備UV快速成型與成本低廉的優勢,更具備真空壓力均勻的特點,可以製造出品質均勻性佳的微結構陣列元件。
首先,本研究利用微機電製程與PDMS矽膠鑄造技術,製作出具備微陣列圖案與模穴的透明軟模具,並且將PDMS軟模具、UV固化材料、塑膠基板,進行堆疊與組合,將之置入本研究自行研發的真空輔助成型設備中。在適當的真空製程情況下,UV固化材料會因為毛細現象與表面張力的作用,而填滿微結構模穴,最後在適量的UV光曝照下固化成型,經過脫模後即可獲得大面積(20X10 cm)且均勻的塑膠微透鏡陣列元件。
最後,本研究將自行設計之真空輔助毛細力成型設備,進行深入研究,針對各項製程參數對於微結構成型的品質進行詳細的探究與研討,實驗結果顯示,此製程方法具備品質均勻與可量產之潛力,有機會成為未來製作塑膠微結構光學元件之優良技術。

Microstructure device has been widely used in various applications such as optical communication, optoelectronics, flat panel display and bio-technology.
Micro-injection molding, micro-casting and micro-hot embossing are regarded as the best mass-production methods to replicate microstructures and micro-parts. However, the processes involve high temperature, high pressure and require expensive facilities. They are complicated, time-consuming batch-wise processes. From this perspective, an innovative vacuum assisted capillary molding technology for rapid fabricating microstructure devices has been proposed and developed. During the capillary forming operation, the UV curable resin is coated on the substrate. The stack of PDMS mold with microstructure and the substrate coated with UV-curable resin is then placed in the vacuum assisted capillary molding facility. The UV curable resin is filling in the microstructure of the PDMS mold due to the capillary phenomenon and surface tension. After curing, the PDMS mold is removed from the substrate, and the substrate with microstructure device on its surface can be obtained.
Finally, the vacuum assisted capillary molding facility with UV exposure capacity is designed, constructed and tested. The effects of processing conditions on the shape and quality of formed microstructure devices are investigated and researched. These experimental results show the potential of the vacuum assisted capillary molding process for mass production of microstructure devices with high productivity and low cost.

摘要..................................................i
Abstract..............................................ii
誌謝..................................................iii
目錄..................................................iv
表目錄.................................................vii
圖目錄.................................................viii
第一章 緒論.............................................1
1-1前言...............................................1
1-2 真空輔助毛細力成型簡介............................2
1.真空度(Vacuum degree).............................3
2.毛細力(Capillary force)..........................3
3.表面張力............................................4
4.真空輔助毛細力成型優點.............................6
5.真空輔助毛細力成型常遭遇問題與限制.....................7
6.真空輔助毛細力成型之製程參數與相關設計...................8
1-3 研究動機與目標......................................9
1-4 研究方向...........................................10
1-5 論文架構...........................................11
第二章 文獻回顧..........................................12
2-1 熱壓成型奈米轉印技術.................................12
2-2 UV光固化成型奈米轉印技術.............................16
2-3 滾壓式UV光固化奈米轉印技術............................19
2-4微接觸式微影技術......................................23
2-5 毛細力成型技術.......................................25
第三章 實驗設備與材料介紹.................................31
3-1 真空腔體設備之設計簡介...............................31
3-1-1真空幫浦單元......................................33
3-1-2 真空腔體單元....................................35
3-1-3真空感測器.......................................36
3-2 實驗設備介紹.......................................37
手提式UV燈............................................37
HP-303D 數字型加熱板....................................39
熱壓成型機..............................................39
3-3 量測儀器介紹........................................41
新表面粗度儀(New Alpha-Step Profilometer; New α-step)..41
掃描式電子顯微鏡........................................43
光學顯微鏡.............................................44
UV照度計...............................................45
動態接觸角量測儀........................................47
雷射聚焦光學檢測儀器......................................48
3-4 實驗材料介紹.........................................49
不鏽鋼微結構模具.........................................49
PDMS....................................................53
UV固化高分子材料(UV-curable resin).......................54
基板(substrate)..........................................55
第四章 實驗方法與流程.....................................57
4-1 模具製作..............................................58
4-2 實驗規劃..............................................61
4-2-1 UV固化高分子劑量控制................................61
4-2-2 UV照度量測實驗...................................61
4-2-3 單一參數實驗法....................................62
4-3 真空輔助毛細力成型實驗流程................................63
4-4 統計分析............................................65
4-4-1 標準偏差(Standard Deviation).......................65
4-4-2常態分佈(Normal distribution):....................66
第五章 結果與討論..........................................68
5-1 UV固化高分子劑量對於元件成型品質的影響...................68
5-2 單一參數實驗結果......................................70
5-2-1 真空度與不同微結構孔徑對成型高度的影響.................70
5-2-2 UV曝照時間對成型性的影響............................75
5-2-3 真空度與不同基板對成型性的影響.........................79
5-2-4 不同的基板與微結構孔徑大小對成型性的影響.................83
5-3 統計分析..............................................87
5-3-1 標準偏差............................................87
5-3-2 常態分佈...........................................91
5-4 光學量測..............................................95
5-4-1 微透鏡陣列元件聚焦特性分析............................95
5-4-2 微透鏡陣列元件的光學穿透特性分析........................97
第六章 結論與未來研究發展方向..................................98
6-1 結論..................................................98
6-2 未來應用與研究方向......................................100
參考文獻..................................................102
作者簡介....................................................107


[1] Stephen Y. Chou, Peter R. Krauss, Preston J. Renstrom, 1996,
“Nanaimprint lithography” , American Vacuum Society , Vol. 14, No. 6, Nov/Dec.
[2] Stephen Y. Chou, Peter R. Krauss, 1997 “Imprint lithography with
sub-10nm feature size and high throughput” ,Microelectronic
Engineering ,35 237-240.
[3]Chao Wang, Stephen Y. Chou, 2011 “Integration of metallic
nanostructures In fluidic channels for fluorescence and Raman
enhancement by Nanoimprint lithography and lift-off on compositional
resist stack” , Microelectronic Engineering ,98, 693-697, Oct 1.
[4] Hua Tan , Andrew Gilbertson, Stephen Y Chou,1998, roller
nanoimprint lithography” American Vacuum Society , J. Vac. Sci.
Technol. B 16„6…, Nov/Dec
[5] Y.J. JUANG, L. J. LEE, K. W. KOELLING, 2002“Hot Embossing
in Microfabrication Part I: Experimental” , Polymer Engineer and
Science, Vol 42, pp.539-550.
[6]林明俊,2009,高分子微流道熱壓成型模擬與實驗驗證之研究,中原
大學,博士論文。
[7] N. S. Ong, Y. H. Koh and Y. Q. Fu, 2002 “Microlens array produced
using hot embossing process”, Microelectronic Engineering , Vol.60, pp.365-379, 2002.
[8] K.-B. Yoon, C.-G. Choi and S.-P. Han, 2004 “Fabrication of Multimode Polymeric Waveguides by Hot Embossing Lithography”, Japanese Journal of Applied Physics, Part 1, Vol.43, pp.3450-3451.
[9] L. J. Kricka, P. Fortina, N. J. Panaro, P. Wilding, G. A. Amigo and
H. Becker, 2002 “Fabrication of plastic microchips by hot embossing”, The Royal Society of Chemistry, Vol.2, pp.1-4.
[10] L. Klintberg, M. Svedberg, F. Nikolajeff and G. Thornell, 2003 “Fabrication of a paraffin actuator using hot embossing of polycarbonate”, Sensors and Actuators, A: Physical, Vol.103, pp.307-316.
[11] M. Colburn, S. Johnson, M. Stewart, S. Damle, T. Bailey, B. Choi, M. Wedlake,T. Michaelson, S.V. Sreenivasan, J. Ekerdt, C.G.Wilson,1999 “StepFlash Imprint Lithography: A New Approach to High Resolution Patterning”, Emerging Lithographic Technologies III, 379 , June.
[12]B.J.Choi, S.V. Sreenivasan, S.Johnson, M. Colburn, C.G.Wilson, 2001 “Design of orientation stages for step and flash imprint lithography” , Precision Engineering , 25, 192–199, December.
[13]T.C. Bailey , S.C. Johnson , J.G. Ekerdt, C.G.Wilson, D.J. Resnick, 2002
“Step and Flash Imprint Lithography: An Efficient Nanoscale Printing
Technology”, submitted to Journal of Photopolymer Science and
Technology .
[14] Michael D. Stewart , Stephen C. Johnson , S. V. Sreenivasan , Douglas J.
Resnick , C. G. Willson, 2005 “Nanofabrication with Step & flash
imprint lithography”, Journal of Micro/Nanolithography, MEMS, and
MOEMS ,vol4, issue 1, March 01.
[15]Byeong-Ju Bae, Sung-Hoon Hong, Eun-Ju Hong, Heon Lee, and
Gun-young Jung, 2008, “Fabrication of Moth-Eye Structure on Glass
by Ultraviolet Imprinting Process with Polymer Template” , Japanese
Journal of Applied Physics , vol 48 ,010207, January.
[16] Andreas Finn, Rene Hensel, Falk Hagemann, Robert Kirchner, Andreas Jahn, 2011, “Geometrical properties of multilayer nanoimprint lithography molds for optical applications”, Microelectronic Engineering , vol 98, 284-287, October.
[17]M. Wissen, H. Schulz, N. Bogdanski, and H.-C. Scheer, 2004, “Impact of
residual layer uniformity on UV stabilization after embossing” , American Vacuum Society , vol 22, No.6, Nov/Dec.
[18] Sung-Won Youn , Akihisa Ueno, Masaharu Takahashi, Ryutaro Maeda, 2008, “Microstructuring of SU-8 photoresist by UV-assisted thermal imprinting with non-transparent mold” , Microelectronic Engineering , vol 85, Issue9, pp1924-1931, September.
[19] CY Chang, S.Y.Yang, J.L.Sheh, 2006, “A roller embossing process for rapid fabrication of microlens arrays on glass substrates” , Microsystem Technologies , vol 12, Issue 8, pp754-759, July.
[20] Jauh-Jung Yang , Yunn-Shiuan Liao and Chi-Feng Chen, 2006, “Fabrication of long hexagonal micro-lens array by applying gray-scale lithography in micro-replication process,” Optics Communcations , vol 270, Issue2, pp433-440, February.
[21] Fantao Meng, Gang Luo, Ivan Maximov, Lars Montelius, Jinkui Chu, Hongqi Xu, 2007, “Fabrication and characterization Bilayer metal wire-grid polarizer fabricated by roll-to-roll nanoimprint lithography on flexible plastic substrate” , Microelectronic Engineering , vol 88, Issue 10, pp3108-3112, October.
[22] Min-WenWang, Wei-Chuang Lin, Ming-Hsiao Lee, 2013, “Fabrication
of flexible microlens array film using roll-to-roll process” , Institution
of Mechnical Engineers , 227(4), pp543-550, January.
[23]Younan Xia and George M. Whitesides, 1998, “SOFT LITHOGRAPHY” ,
Angewandte Chemie International Edition, vol 37, Issue 5, pp550-575,
March.
[24]Christian Marzolin, Andreas Terfort, Joe Tien, G. M Whitesides, 1998,
“Patterning of a polysiloxane precursor to silicate glasses by microcontact printing”, Elsevier Science , Thin Solid Films 315, 9–12, July.
[25]Xiao-Mei Zhao, Younan Xia, Olivier J.A. Schueller, Dong Qin, George M Whitesides,1998, “Fabrication of microstructures using shrinkable polystyrene films”, Sensors and Actuators A: Physical , Vol 65, Issue 2-3, pp209-217, March.
[26]Junmin Hu, Tao Deng, R.G Beck, R.M Westervelt, George M. Whitesides, 1999, “Fabrication of arrays of Schottky diodes using microtransfer molding” , Elsevier Science Sensors and Actuators, 75 , 65–69, January.
[27]Olivier J.A Schueller, Scott T Brittain, George M. Whitesides, 1999, “Fabrication of glassy carbon microstructures by soft lithography”, Elsevier Science Sensors and Actuators , A72 , 125–139, August.
[28]Andrew J Black, Paul F Nealey, Joseph H Thywissen, Mandar Deshpande, Nada El-Zein, George N Maracas, Mara Prentiss,George M Whitesides, 2000, “Microfabrication of two layer structures of electrically isolated wires using self-assembly to guide the deposition of insulating organic polymer” , Elsevier Science Sensors and Actuators , 86, 96–102, February.
[29] A. Beduer, F. Seichepine, E. Flahaut, C. Vieu, 2012, “A simple and
Versatile micro contact printing method for generating carbon nanotubes
patterns on various substrates”, Microelectronic Engineering , 97,
301-305, April.
[30] Enoch Kim, Younan Xia, and George M. Whitesides, 1996, “Micromolding in Capillaries:Applications in Materials Science”, American Chemical Society, vol 118, No.24, pp5722-5731, January.
[31] Younan Xia, Xiao-Mei Zhao, George M. Whitesides, 1996, “Pattern
transfer: Self-assembled monolayers as ultrathin resists”,
Microelectronic Engineering , vol 32, Issues 1-4, pp255-268, September.
[32] J.A Rogers, Z Bao, M Meier, A Dodabalapur, O.J.A Schueller, G.M
Whitesides, 2000, “Printing molding and near-field photolithographic
Methods for patterning organic lasers, smart pixels and simple
circuits”, Synthetic Metals , vol 115, Issues1-3, pp5-11, November.
[33] Douglas B Weibel, George M Whitesides, 2006, “Applications of
microfluidics in chemical biology”, Current Opinion in Chemical
Biology , vol 10, Issue 6, pp584-591, December.
[34]Xinhong Yu, Zhe Wang, Rubo Xing, Shifang Luan, Yanchun Han, 2005, “Solvent assisted capillary force lithography”, Polymer , vol 46, Issue 24, pp11099-11103, November.
[35] Hoon Eui Jeong , Moon Kyu Kwak , Chan Ick Park , Kahp Yang Suh, 2009, “Wettability of nanoengineered dual-roughness surfaces fabricated by UV-assisted capillary force lithography” , Journal of Colloid and Interface Science , 339, 202-207, July.
[36] Kim Yong-Hoona, Tsuneo Urisub, 2011, “Casting mold patterning for lateral capillary force migration on PDMS microchannel” , Applied Surface Science , 257, 9314-9317, June.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top