(3.238.118.78) 您好!臺灣時間:2021/04/15 23:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:柳奎光
研究生(外文):Kuei-Kuang Liu
論文名稱:應用基因演算法估算搭接型摩擦攪拌銲接之熱輸入強度
論文名稱(外文):Application of a Genetic Algorithm to Estimate the Heat Input Intensity in Friction Stir Lap Welding
指導教授:楊慶煜楊慶煜引用關係
指導教授(外文):Ching-Yu Yang
口試委員:鍾豐洸郭俊賢
口試委員(外文):Feng-Kuang ChungChun-Hsien Kuo
口試日期:2014-06-12
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:43
中文關鍵詞:摩擦攪拌搭接銲接基因演算
外文關鍵詞:Friction Stir Lap WeldingGenetic Algorithm
相關次數:
  • 被引用被引用:0
  • 點閱點閱:157
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:1
重疊搭接型拌摩擦銲接是一種方法應用於熔接固態材料,其作用為摩擦材料表面使其產生熱能並且呈現半熔融狀態,再施加以軸向壓力於兩搭接工件上,使兩搭接零件之金屬可緊密搭接成一金屬成品。傳統的摩擦銲接加工過程中,材料的加工溫度為幾近但未達熔點,本研究嘗試將材料溫度提高至材料熔點,增加材料的加工性。研究中使用基因演算法與數值耦合分析軟體結合,藉由基因演算法運算,計算出加工過程中之實際熱源強度參數並繪製加工溫度分佈圖,最後由等溫線圖得知凸銷(pin)在前進的瞬間其被加工材料持續處於熔化狀態,所以估算的熱輸入量足以進行攪拌摩擦搭接。
Friction stir lap welding is a method to fuse two solid materials and the working status is to join two parts by the energy input. It causes the part turn into melt situation, and then some pressure is pushed on normal axis direction leads to the two parts combine into one part. Conventional friction stir welding process, the material is not reach the melting temperature of the material. The present study attempts to raise the temperature to the melt the material, and it increases the workability of the material. In this study, the coupled of genetic algorithms and numerical analysis is used to calculate the actual processing parameters. The numerical results show the isotherm surface of the pin at the moment ahead of its material to be processed in a molten state. Therefore, the estimated heat input is appropriated in friction stir lap welding.
摘要 i
ABSTRACT ii
目錄 iii
圖目錄 vi
表目錄 vii
符號說明 viii
第一章 序論 1
1.1 前言 1
1.2 文獻回顧 4
1.3 研究目的 7
1.4 論文架構 8
第二章 摩擦攪拌銲接介紹 9
2.1 摩擦攪拌銲接簡介 9
2.2摩擦攪拌銲接原理 10
2.3 摩擦攪拌銲接之製程參數 12
2.4摩擦攪拌銲接之數學模式 13
第三章 基礎理論 15
3.1 基因演算法 15
3.1.1 基因演算法理論 15
3.1.2基因演算法之演算程序 16
3.1.3 基因(Gene) 17
2.1.4 染色體(Chromosome) 17
3.1.5族群(Population) 17
3.1.6編碼(Coding) 18
3.1.7 解碼(Decoding) 20
3.1.8 適應函數 (Fitness Function) 20
3.1.9 選擇(Selection)與複製(Reproduction) 21
3.1.10 交配(Crossover) 22
3.1.11 突變(Mutation) 24
第四章 摩擦攪拌銲接之熱源強度估算與模擬分析 25
4.1 數值模擬 25
4.1.1 建立幾何模型 25
4.1.2 模擬設定 26
4.2 基因演算法於銲接加工之熱源強度估算 30
4.2.1 目標函數 30
4.2.2 基因演算法之參數設定 31
4.2.3 停止條件 33
第五章 結果與討論 34
第六章 結論 36
參考文獻 40

[1]D. Fersini and A. Pirondi, Fatigue behaviour of Al2024-T3 friction stir welded lap joints, Engineering Fracture Mechanics, Vol.74 (2007) pp.468-480.
[2]R.S. Mishra and Z.Y. Ma, Friction stir welding and processing, Materials Science and Engineering R, Vol.50 (2005) pp.1-78.
[3]WM. Thomas, ED. Nicholas, JC. Needham, MG. Murch, P. Templesmith, CJ. Dawes, GB Patent Application No 9125978.8,U.S.Patent No.5360317,Oct. (1995)
[4]M. Guerraa,C. Schmidta,J.C. McClurea,L.E. Murra,A.C. Nunesb,"Flowpatterns during Friction stir welding",Materials Characterization, Vol.49 (2002) pp.95-101.
[5]C. J. Dawes, W M. Thomas, "Friction stir pocess welds aluminum alloys", Wlding Journal, Vol. 75, Issue 3, (1996) pp.41-45.
[6]Hou, Kuang-Hua, Su, Meng-Bang and Chung, Jun-Wei, “Feasibility Study of Stir-Friction Welding of Dissimilar Aluminum Welds “, TIWC’98, September 7-9, (1998) TAIPEI, TAIWAN, pp.473-478.
[7]Glenn Campbell,Tim Stotler, "Friction Stir Welding of Armor Grade Aluminum" Welding Journal, (December 1999) pp.45.
[8]Y. S. Sato and H. Hokawa, "Distribution of tensileproperty and microstructure in friction stir weld of 6063 aluminum" , Metallurgical and Materials Transaction, Vol. 32A, (2001) pp.3023-3031.
[9]K.Kimapong and T. Watanabe , "Lap joint of A5083 Aluminum alloy and SS400 steel by friction stir welding", Materials Transactions,vol.46,No. 4( 2005) pp.835-841.
[10]G.M.D. Cantin, S.A. David, W.M. Thomas, E. Lara-Curzio, S.S. Babu Sci. "Friction Skew-stir welding of lap joints in 5083–0 aluminium" Technol. Weld. Join., 10 (2005)pp.268–280.
[11]M.K. Kulekci , A. sik & E. Kaluc, "Effects of tool rotation and pin diameter on fatigue properties of friction stir welded lap joints", Int J Adv Manuf Technol (2008) pp.877–882.
[12]Y.C. Chen, K. Nakata "Friction stir lap joining aluminum and magnesium alloys" Scripta Mater, 58 (6) (2008) pp.433–436.
[13]L. Dubourg, A. Merati, M. Jahazi "Process optimisation and mechanical properties of friction stir lap welds of 7075–T6 stringers on 2024–T3 skin" Mater Design, 31 (7) (2010) pp.3324–3330.
[14]Y.C. Chen, K. Nakata, "Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel" Materials and Design 30 (2009) pp.3913-3919.
[15]T. Saeid, A. Abdollah-zadeh, B. Sazgari "Weldability and mechanical properties of dissimilar aluminum–copper lap joints made by friction stir welding" J Alloy Compd, 490 (1–2) (2010) pp.652–655.
[16]A. Abdollah-Zadeh, T. Saeid, B. Sazgari "Microstructural and mechanical properties of friction stir welded aluminum/copper lap joints" J Alloy Compd, 460 (1–2) (2008) pp.535–538.
[17]Y.C. Chen, K. Nakata "Microstructural characterization and mechanical properties in friction stir welding of aluminum and titanium dissimilar alloys" Mater Design, 30 (3) (2009) pp.469–474.
[18]J. Liao, N. Yamamoto, H. Liu, and K. Nakata, "Microstructure at Friction Stir Lap Joint Interface of Pure Titanium and Steel" Materials Letters, Vol. 64, (2010) pp.2317-2320.
[19]M. Ghosh, K. Kumar, and R. S. Mishra, "Friction Stir Lap WeldedAdvanced High Strength Steels: Microstructure and mechanical properties" Materials Science and Engineering A, Vol. 528, (2011) pp.8111-8119.
[20]J. Gandra, R.M. Miranda and P. Vilaca," Effect of overlapping direction in multipass friction stir processing" Materials Science and Engineering A, Vol.528 (2011) pp.5592-5599.
[21]W. M. Thomas, E. D. Nicholas, J. C. Needham, M. G. Murch, P. Templesmith, C. J. Drawes, “Friction Stir Butt Welding”, G B Patent Application No. 9125978.8, Dec. 1991; S.S. Patent No. 5460317, Oct., 1995.
[22]W. M Thomas, E. D. Nicholas, R. E. Dolby, C. J. Jones, R. H. Lilley, “Friction Plug Extrusion”, International Patent PCT/GB92/01540.21.8.92.
[23]H. Jin, S. Saimoto, M. Ball, P.L. Threadgill,“Characterisation ofmicrostructure and texture in Friction Stir Welding joints of 5754 and 5182aluminum alloy sheets”, Materials Science and Technology, Vol. 17 (2001) pp.1605-1614.
[24]Adaptation in natural and artificial systems: An introductory analysis with applications to biology, control, and artificial intelligence. Holland, John H.[Book]Oxford, England: U Michigan Press. (1975).viii pp.183.
[25]D. E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning:Addison-Wesley, (1989)
[26]黃耀輝, 2008, 基因演算法於沛電系統之複雜工作停電牌成之應用, 國立高雄應用科技大學電機工程研究所, 碩士論文
[27]蔡志緯, 2008, 應用基因演算法於考慮時間電價之焚化廠燃燒排程研究, 國立高雄應用科技大學電機工程研究所, 碩士論文
[28]T. S. Ghoshray and K. K. Yen,“More efficient genetic algorithm for solving Optimization problems,” IEEE International Conference on Systems, Man and Cybernetics, Vol. 5, (1995) pp.4515-4520.
[29]M. Song and R. Kovacevic, International Journal of Machine Tools & Manufacture, vol. 43, (2003) pp.605–615.
[30]T. Back, Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York (1996).
[31]P. Colegrove, M. Painter, D. Graham, T. Miller, 3-Dimensional flow and thermal
modelling of the friction stir welding process, in: Proceedings of the 2nd
International Symposium on Friction Stir Welding, Gothenburg, (2000).

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔