跳到主要內容

臺灣博碩士論文加值系統

(44.201.99.222) 您好!臺灣時間:2022/12/05 23:14
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李明澤
研究生(外文):Mine-Tse Lee
論文名稱:以PVDF系列高分子為基材之離子式高分子致動器之製作與性能檢測
論文名稱(外文):The Fabrication and Characterization of PVDF-based Ionic Conductive Polymer Actuators
指導教授:林俊宏林俊宏引用關係
指導教授(外文):Jun-Hong Lin
口試委員:謝宗翰李原吉
口試日期:2014-07-25
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:73
中文關鍵詞:電致動聚合物離子式電致動高分子致動器離子液體
外文關鍵詞:Electrically actuated polymersIonic Electroactive Polymer ActuatorsIonic Liquids
相關次數:
  • 被引用被引用:0
  • 點閱點閱:264
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們研究了一系列以PVDF之高分子共聚物為基材之離子式高分子致動器,其中包含了PVDF-HFP 與 PVDF-CTFE等。我們將這些高分子共聚物混合不同配比之參考電解液(EMITFSI/PC),探討在 1、1.5與 3倍的電解液含量下,對致動器中的離子傳輸動力行為、形變量與形變速度之影響。一般常用的交流阻抗只能提供離子導電度的資訊,因此無法一窺離子動力行為全貌。在此研究中我們採用我們基於Poisson-Nernst -Planck 關係式所開發出的時間域離子測量法,來量化致動器薄膜之導電性,離子遷移率,自由離子濃度,電雙層厚度與電雙層時間等重要參數。在形變的測量法,一般採用雷射測距的方式以量測彎曲薄膜的尖點位移來推估形變,但隨著形變量的增加誤差也隨之增加。在此文中我們將採用我們新開發的圖像曲率量測技術,以圖像處理技術來彌補傳統位移測量法在大彎曲形變下不易測量之侷限。研究結果發現,離子傳輸行為在1V以下,隨電壓並無明顯的變化,但在大於1V以上,離子導電性隨電壓之增加而增加,此現象極可能為離子液體在高電壓下自由離子解離率提高使濃度增加而造成。而在形變的測量上,我們發現在一倍的參考濃度下,離子薄膜致動器的曲率最大,曲率增加速度最大,致動器的形變量並隨電解液的含量增加而減少變慢。這一現象很可能與高分子基材的微觀結構有關,當電解液含量愈高,高分子基材本身的結構可能更鬆弛,對於離子在其中的傳遞所導致的形變反應有可能會降低。這些重要發現將有助於高性能離子式電致動高分子致動器之開發。
In this thesis, we developed a series of pvdf based copolymer actuators including pvdf-hfp and pvdf-ctfe with different uptakes (1,1.5,3 times of reference electrolyte, 3mole of EMI-TFSI/PC) of ionic liquids (EMIT-FSI) and aim to investigate the charge dynamics of ionic liquids in these actuators and strain behavior of these actuators. Compared to the traditional AC impedance characterization approach which can only reveal the conductivity of the membrane, our newly developed time domain charge dynamic characterization method based on Poisson-Nernst -Planck relation can quantify a series of charge transport properties including conductivity, mobility , mobile ion concentration Debye length and double layer constant which are important for the analysis . Besides, to measure the strain more precisely, we developed a measurement system base on the curvature for the membrane actuators which more suitable for large strain bending actuators. The result shows that the substantial strain of these actuator occurs at the time scale larger than ten seconds while the double layer time constant for all the samples is less than min seconds. This result indicate that the double layer charges may not be the major factor for the bending actuation of the actuators. On the other hand, we found that though the mobility of the ions increase with increasing uptake of the electrolyte, the strain and strain speed decrease with increased uptake. This implies that there might be an optima uptake of electrolyte for the actuator with best strain response. These finds could leads to a better design of high performance ionic polymer bending actuators.
目錄
摘要 III
ABSTRACT IV
致謝 V
目錄 VI
表目錄 VII
圖目錄 VIII
一、序論 11
1.1 前言 11
1.2 文獻回顧 12
1.3 研究目的 19
二、基礎理論 20
2.1 離子動力行為分析 20
2.1.1 交流阻抗分析法 20
2.1.2 時間域的離子動力行為測量 26
2.2 以曲率半徑方式量測形變 28
三、實驗方法 29
3.1 實驗材料 29
3.2 儀器設備 30
3.3 實驗步驟 38
3.3.1 高分子離子傳遞層之製備 38
3.3.2 電特性量測 40
3.3.3 電解液的製備和組裝 40
3.3.4 形變量測 41
3.3.5 Photoshop進行圖像處理 42
四、結果與討論 44
4.1 時間域離子動力行為 44
4.2交流阻抗分析法 55
4.3形變量測 58
五、結論 66
六、未來展望 68
參考文獻 69


[1]Kawai, H. (1969). The piezoelectricity of poly (vinylidene fluoride). Japanese Journal of Applied Physics, 8(7), 975.

[2]Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K., & Heeger, A. J. (1977). Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene,(CH) x. J. Chem. Soc., Chem. Commun., (16), 578-580.

[3]Segalman, D. J., Witkowski, W. R., Adolf, D. B., & Shahinpoor, M. (1992). Theory and application of electrically controlled polymeric gels. Smart Materials and Structures, 1(1), 95.
[4]Asaka, K., Oguro, K., Nishimura, Y., Mizuhata, M., & Takenaka, H. (1995). Bending of polyelectrolyte membrane–platinum composites by electric stimuli I. Response characteristics to various waveforms. Polymer Journal, 27(4), 436-440.
[5]Shahinpoor, M., Bar-Cohen, Y., Simpson, J. O., & Smith, J. (1998). Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles-a review. Smart materials and structures, 7(6), R15.

[6]Fukushima, T., Asaka, K., Kosaka, A., & Aida, T. (2005). Fully Plastic Actuator through Layer‐by‐Layer Casting with Ionic‐Liquid‐Based Bucky Gel. Angewandte Chemie International Edition, 44(16), 2410-2413.

[7]Mukai, K., Asaka, K., Kiyohara, K., Sugino, T., Takeuchi, I., Fukushima, T., & Aida, T. (2008). High performance fully plastic actuator based on ionic-liquid-based bucky gel. Electrochimica Acta, 53(17), 5555-5562.

[8]Takeuchi, I., Asaka, K., Kiyohara, K., Sugino, T., Terasawa, N., Mukai, K., ... & Aida, T. (2009). Electromechanical behavior of fully plastic actuators based on bucky gel containing various internal ionic liquids. Electrochimica Acta, 54(6), 1762-1768.

[9]Takeuchi, I., Asaka, K., Kiyohara, K., Sugino, T., Terasawa, N., Mukai, K., & Shiraishi, S. (2009). Electromechanical behavior of a fully plastic actuator based on dispersed nano-carbon/ionic-liquid-gel electrodes. Carbon, 47(5), 1373-1380.

[10]Terasawa, N., Takeuchi, I., & Matsumoto, H. (2009). Electrochemical properties and actuation mechanisms of actuators using carbon nanotube-ionic liquid gel.Sensors and Actuators B: Chemical, 139(2), 624-630.

[11]Biso, M., & Ricci, D. (2009, July). Fully plastic actuator based on multi-walled carbon nanotubes bucky gel. In Nanotechnology, 2009. IEEE-NANO 2009. 9th IEEE Conference on (pp. 481-484). IEEE.

[12]Liu, S., Liu, W., Liu, Y., Lin, J. H., Zhou, X., Janik, M. J., ... & Zhang, Q. (2010). Influence of imidazolium‐based ionic liquids on the performance of ionic polymer conductor network composite actuators. Polymer International, 59(3), 321-328.

[13]Liu, S., Liu, Y., Cebeci, H., de Villoria, R. G., Lin, J. H., Wardle, B. L., & Zhang, Q. M. (2010). High Electromechanical Response of Ionic Polymer Actuators with Controlled‐Morphology Aligned Carbon Nanotube/Nafion Nanocomposite Electrodes. Advanced functional materials, 20(19), 3266-3271.

[14]Lin, J., Liu, Y., & Zhang, Q. M. (2011). Charge dynamics and bending actuation in Aquivion membrane swelled with ionic liquids. Polymer, 52(2), 540-546.

[15]Terasawa, N., Ono, N., Mukai, K., Koga, T., Higashi, N., & Asaka, K. (2012). A multi-walled carbon nanotube/polymer actuator that surpasses the performance of a single-walled carbon nanotube/polymer actuator. Carbon, 50(1), 311-320.

[16]A. J. Bard, (2001)"ELECTROCHEMICAL METHODS - Fundamentals and Applications 2nd EDITION," JOHN WILEY & SONS , INC.,.

[17] 王凱平. (2005). 奈米孔洞碳電極之孔洞結構與電化學電容之相關性研究. 成功大學化學工程學系學位論文, 1-105.

[18] Lin, J. H., Liu, Y., & Zhang, Q. M. (2012). Influence of the electrolyte film thickness on charge dynamics of ionic liquids in ionic electroactive devices.Macromolecules, 45(4), 2050-2056.

[19]Stenger-Smith, J. D., & Irvin, J. A. (2009). Ionic liquids for energy storage applications. Alternative Energy Photovoltaics, Ionic Liquids, and MOFs, 102.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top