(34.239.150.57) 您好!臺灣時間:2021/04/14 22:32
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:朱章勇
研究生(外文):Chang-Yung Chu
論文名稱:應用反應曲面法探討太陽電池模組封裝之層壓製程參數最佳化研究
論文名稱(外文):A Study of Optimal Parameters on Encapulation Process for Photovoltaic Module Using Response Surface Method
指導教授:艾和昌艾和昌引用關係
指導教授(外文):Herchang Ay
口試委員:王春和劉東官
口試委員(外文):Chung-Ho WangTung-Kuan Liu
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:模具工程系碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:97
中文關鍵詞:太陽電池模組層壓製程反應曲面剝離強度光線穿透率
外文關鍵詞:PV ModuleLaminated ProcessResponse Surface MethodPeel StrengthTransmittance
相關次數:
  • 被引用被引用:1
  • 點閱點閱:367
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:8
  • 收藏至我的研究室書目清單書目收藏:0
  近年來太陽光電產業技術已相當純熟,從矽晶圓到太陽電池模組,並實際運用於戶外的太陽能發電廠與各種商品。太陽光電產業製程包含太陽電池製作、模組化之焊接與層壓製程,以及太陽能發電廠之系統架構,皆需精進其相關技術,然而於商品運用上重要之關鍵技術則為模組製作過程,其涵蓋太陽電池切割、焊接製程、層壓製程與太陽電池模組品質檢測,為此本研究將探討太陽電池於層壓製程之參數最佳化。
  本研究採用二階反應曲面法針對太陽電池模組之填充材料乙烯-醋酸乙烯共聚物(Ethylene Vinyl Acetate, EVA)於層壓製程中,各項參數對EVA膠合與光學特性進行探討分析,以及將參數優化之結果實際運用於多晶矽太陽電池模組封裝上。填充材料EVA之品質特性,包含表層材料剝離強度、背板材料剝離強度與光線穿透率,而影響品質特性的品質因子有底板溫度、抽真空時間、交聯時間、保壓壓力與EVA種類,各因子採業界之水準條件由低水準至高水準取三個水準值,以中央合成設計(Central Composite Design, CCD)進行實驗設計規劃,就各疊層材料與EVA之剝離強度及光線穿透率做實驗量測以確認品質特性差異,並經由變異數分析其品質特性後,可獲得顯著影響之因子,且建立數學模型與回歸方程式。
  研究發現表層材料之剝離強度及光線穿透率影響因子為底板溫度與抽真空時間,背板材料之剝離強度影響因子為底板溫度與交聯時間,經由參數優化後最佳之表層材料剝離強度為9.544 N/cm,背板材料剝離強度為116.193 N/cm,光線穿透率為68.686 %(200~1100 nm全光譜範圍平均值),而為驗證分析預測值,本研究將優化結果之參數再次實驗,確認其可靠性,實驗結果差異值低於10 %。最後將參數優化之製程參數使用多晶矽太陽電池實際封裝成模組並量測其發電功率,研究結果顯示經層壓製程後太陽電池裸片功率由原功率3.877 W提升至4.013 W,其增益值達到3.51 %,故利用反應曲面法優化層壓製程確實能有效且快速地獲得最佳製程參數與品質特性。

  Photovoltaic(PV) industry like silicon wafer or PV module has been well developed recently and applied to many outdoor products and power plants. The fabrication of PV industry includes the solar cell production, soldering process, laminating process and system structure of solar power plant. To increase the efficiency and reliability of PV modules, the focus of this research is mainly on the optimal parameters on encapulation process of PV module.
  In this study, the second-order Response Surface Method(RSM) is used to analysis the quality factors of Ethylene Vinyl Acetate(EVA), i.e., filler material, during the encapulation process. Through systematic experimenting and regression analysis, the relationship between quality characteristics and quality factors is found in order to establish approximate responses. Looking at the encapulation process on the lamination machine, these quality factors(variables) are, heating conditions, vacuum time, cure time, hold pressure and the kind of EVA used. We set the level in each factor to reflect data from industries. The levels were chosen three standard values from low to high. In addition, the peel strength of the frontsheet/EVA, the peel strength of the EVA/backsheet and the transmittance of EVA are set up as quality characteristics (response). Then, through systematic experimenting and regression analysis, the relationship between response and variable is found in order to establish approximate responses by the Central Composite Design(CCD).
  The results are shown that the impact factors of the peel strength of the frontsheet/EVA and the transmittance of EVA are heating conditions and vacuum time; while the impact factors of the peel strength of the EVA/backsheet are heating conditions and cure time. Through the optimization of RSM, the peel strength of the frontsheet/EVA is up to 9.544 N/cm and the peel strength of EVA/backsheet is up to 116.193 N/cm. The transmittance of EVA is 68.686 % under average range of the spectral between 200 to 1100 nm. The optimization results have been tested again to verify the reliability. The uncertainty analysis of these experiments is less than 10%. The result of the study shows that the conversed power of the solar cells can be increased from 3.877 W to 4.013 W, which has a 3.51% power enhancement! Therefore, the RSM for the optimization of encapulation parameters can improve the quality of encapulation process efficiently.

摘要 i
ABSTRACT ii
致謝 iv
目錄 v
表目錄 vii
圖目錄 viii
符號說明 x
第一章 緒論 1
1.1 研究背景與動機 1
1.2.1 EVA發展現況 2
1.2.2反應曲面法之產業最佳化應用 3
1.2.3國內外層壓製程之參數探討 4
1.3研究目的 7
1.4本文架構 7
第二章 基礎理論 14
2.1太陽電池基礎理論 14
2.1.1太陽電池結構 14
2.1.2太陽電池工作原理 15
2.1.3太陽電池光電轉換效率 15
2.2高分子聚合物 16
2.2.1熱塑性聚合物 17
2.2.2熱固性聚合物 18
2.3反應曲面法 20
2.3.1 設計程序 20
2.3.2 實驗設計 22
2.3.3 迴歸模型建構 22
2.3.4 迴歸模型之檢定 23
2.3.5 迴歸模型之診斷 25
2.3.6參數優化 25
第三章 實驗流程與設備 31
3.1實驗流程 31
3.2實驗之品質因子與品質特性 31
3.2.1實驗之品質因子與其水準設定 31
3.2.2實驗之品質特性與測試條件 32
3.3.3太陽電池功率量測 33
3.3實驗設備 33
3.3.1真空熱壓機 33
3.3.2太陽電池熱風點焊機 34
3.3.3模組檢測機 34
3.3.4拉力試驗機 34
3.3.5分光光譜儀 35
3.4實驗材料 35
3.4.1封裝材料 35
3.4.2實驗測試件製作 36
第四章 結果與討論 53
4.1表層材料與EVA之剝離強度 54
4.2背板材料與EVA之剝離強度 55
4.3層壓製程對EVA光線穿透率之影響 57
4.4參數優化與驗證 58
4.5太陽電池模組效率 59
第五章 結論 79
5.1結論 79
5.2未來工作 80
參考文獻 81
個人簡歷 85

[1]孫芸,二零零八油價巨幅漲跌的背後,新紀元周刊,96期,2008。
[2]經濟部能源局,油價資訊管理與分析:http://www.moeaboe.gov.tw/oil102/
[3]M. J. Nowlan, J. M. Murach and T. W. McCormick, "Post-lamination manufacturing process automation for photovoltaic modules," National Renewable Energy Laboratory, 1999.
[4]N. Park and C. Han, " Effect of moisture condensation on long-term reliability of crystalline silicon photovoltaic modules, " Microelectronics Reliability, Vol. 53, pp. 1922-1926, 2013.
[5]K. Agroui and N. Benrekaa, "Characterisation of etylene vinyl acetate for photovoltaic application, " International Conference on Microelectronics, pp. 271- 274, Nov. 22-24, Kuwait, 1999.
[6]G. J. Jorgensen, K. M. Terwilliger and J. A. Delcueto, "Moisture transport, adhesion, and corrosion protection of PV module packaging materials," Solar Energy Materials and Solar Cells, Vol. 90, pp. 2739-2775, 2006.
[7]T. Kojima and T. Yanagisawa, "Ultraviolet-ray irradiation and degradation evaluation of the sealing agent EVA film for solar cells under high temperature and humidity," Solar Energy Materials and Solar Cells, Vol. 85, pp. 63-72, 2005.
[8]E. Klampaftis, D. Ross and S. Seyrling, "Increase in short-wavelength response of encapsulated CIGS devices by doping the encapsulation layer with luminescent material, " Solar Energy Materials and Solar Cells, Vol. 101, pp. 62-67, 2012.
[9]J. S. Cho, S. Baek and J. C. Lee, "Surface texturing of sputtered ZnO:Al/Ag back reflectors for flexible silicon thin-film solar cells," Solar Energy Materials and Solar Cells, Vol. 95, pp. 1852-1858, 2011.
[10]M. O. Reese, S. A. Gevorgyan and M. Jørgensen, "Consensus stability testing protocols for organic photovoltaic materials and devices, " Solar Energy Materials and Solar Cells, Vol. 95, pp. 1253-1267, 2011.
[11]C. D. Zomer, M. R. Costa and A. Nobre, "Performance compromises of building-integrated and building-applied photovoltaics (BIPV and BAPV) in Brazilian airports, " Energy and Buildings, Vol. 66, pp. 607-615, 2013.
[12]P. Klemchuk, M. Ezrina and G. Lavignea, "Investigation of the degradation and stabilization of EVA-based encapsulant in field-aged solar energy modules, " Polymer Degradation and Stability, Vol. 55, pp. 347-365, 1997.
[13]P. W. Willis, Final Report, Jet Propulsion Laboratory, JPL Contract, 1986.
[14]A. C. Goodrich and T. Buonassisi, "Assessing the drivers of regional trends in solar photovoltaic manufacturing " Energy and Environmental Science, Vol. 10, pp. 2811-2821, 2013.
[15]劉佳怡,太陽光電產業製程與技術發展趨勢,工研院產業特輯,2007。
[16]工研院材化所,太陽電池封裝材料市場現況,材料最前線專欄,2011。
[17]http://www.moneydj.com/HotProduct/HTML/PA97-2.html
[18]船木知子,田村一雄,高機能薄膜市場之展望及戰略,日本矢野經濟研究所,2009。
[19]臺灣電力公司,我國再生能源發電概況,2013。
[20]K. Agroui, A. Maallemi and M. Boumaour, "Thermal stability of slow and fast cure EVA encapsulant material for photovoltaic module manufacturing process," Solar Energy Materials and Solar Cells, Vol. 90, pp. 2509-2514, 2006.
[21]W. H. Holley, S. C. Agro and J. P. Galica, , "UV stability and module testing of nonbrowning experimental PV encapsulants," Photovoltaic Specialists Conference, pp. 1259-1262, May 13-17, Washington, D.C., 1996.
[22]M. M. Hackmanna, T. L. Botsa, and K.M. Broek, "Technical feasibility study on polycarbonate solar panels," Solar Energy Materials and Solar Cells, Vol. 84, pp. 105-115, 2004.
[23]T. Trupke, M. A. Green and P. Wurfel, "Improving solar cell efficiencies by down-conversion of high-energy photons," Journal of Applied Physics, Vol. 92, pp. 1668-1674, 2002.
[24]G. Oreski and G. M. Wallner, "Delamination behaviour of multi-layer films for PV encapsulation," Solar Energy Materials and Solar Cells, Vol. 89, pp. 139-151, 2005.
[25]E. Vazsonyi, K. D. Clercq and R. Einhaus, "Improved anisotropic etching process for industrial texturing of silicon solar cells," Solar Energy Materials and Solar Cells, Vol. 57, pp. 179-188, 1999.
[26]W. Liou and H. Ay, "A study for c-Si photovoltaic cells fill factor effect by laser grooving manufacturing, " National Conference on Combustion Science and Technology, March 20, Taiwan, 2010.
[27]W.C. Yang and H. Ay, "A study of optimal soldering parameters for lead-free on the c-Si photovoltaic cells by hot-air manufacturing, " International Symposium on Transport Phenomena, November 8-11, Netherlands, 2011.
[28]邱浩煒,太陽能模組層壓製程參數最佳化-以w公司為例,國立交通大學,碩士論文,2012。
[29]艾和昌,可撓式基材封裝研究,國立高雄應用科技大學,2011。
[30]B. K. Chiou, H. Ay and Y. S. Lin, "Laminated encapsulation with transfer printing of micro-lens array integrated in photovoltaic module, " International Symposium on Transport Phenomena, November 19-22, New Zealand, 2012.
[31]M. D. Kempe, G.. J. Jorgensen and K. M. Terwilliger, "Acetic acid production and glass transition concerns with ethylene-vinyl acetate used in photovoltaic devices, " Solar Energy Materials and Solar Cells, Vol. 91, pp. 315-329, 2007.
[32]陳建儒,太陽能模組封裝材料EVA及模組缺陷性質之研究,元智大學,碩士論文,2012。
[33]F. M. Lange, Y. Luo and R. Polo, "The lamination of (multi)crystalline and thin film based photovoltaic modules," Progress in Photovoltaics: Research and Applications, Vol. 19, pp. 127-133, 2011.
[34]C. Hirschl, G. Oreski and G. Eder, "Determining the degree of crosslinking of ethylene vinyl acetate photovoltaic module encapsulants—A comparative study," Solar Energy Materials and Solar Cells, Vol. 116, pp. 203-218, 2013.
[35]張俊男,輕型太陽光電模組封裝技術與耐候性測試,南台科技大學,碩士論文,2007。
[36]黃雄聖,太陽光電模組封裝技術與檢測技術之探討,南台科技大學,碩士論文,2006。
[37]張耀升,太陽光電模組封裝材料EVA交聯度測試,太陽能及新能源學刊,15卷,2期,頁19-22,2013。
[38]Bridgestone: http://www.bridgestone.com.tw/motion.asp?siteid=100407
[39]STR: http://www.strsolar.com/
[40]Mitsui Chemicals: http://gb.mitsuichem.com/index.htm
[41]綠能趨勢網: http://pv.energytrend.com.tw/
[42]蔡進譯,超高效率太陽電池-從愛因斯坦的光電效應談起,物理雙月刊,27卷,5期,頁701-719,2005。
[43]D. M. Bagnall and M. Boreland, “Photovoltaic Technologies”, Energy Policy, Vol. 36, pp. 4390-4396, 2008.
[44]M.A. Green, "Solar Cells Operating Principles, Technology and System Applications, " Prentice-Hall, Inc., 1982.
[45]楊素華、蔡泰成,太陽能電池,科學發展月刊,390期,頁51-55,2005。
[46]陳麒麟,矽薄膜太陽電池的挑戰與契機,工業材料雜誌,253期,2008。
[47]徐武軍,高分子材料導論,五南圖書出版股份有限公司,2012。
[48]楊榮顯,工程材料學,全華圖書股份有限公司,2011。
[49]李文興、林啟瑞、張俊賢、蔡希杰,工程材料,俊傑書局股份有限公司,2002。
[50]陳文照、曾春風、游信和,工程材料-材料科學基礎篇,高立圖書有限公司,2008。
[51]葉怡成,實驗計劃法-製程與產品最佳化,五南書局出版,2005。
[52]葉怡成,高等實驗計劃法,五南書局出版,2009。
[53]A. I. Khuri and S. Mukhopadhyay, " A new generalized p-value for ANOVA under heteroscedasticity," Statistics & Probability Letters, Vol. 78, pp. 963-969, 2008.
[54]L. W. Xu and S. G. Wang, "Response surface methodology," Wiley Interdisciplinary Reviews: Computational Statistics, Vol. 2, pp. 128-149, 2010.
[55]DuPontTM Tefzel 200: http://www2.dupont.com/Cabling_Solutions/en_US/assets/downloads/h95627
[56]台虹科技: http://www.taiflex.com.tw/product_list.asp?ID=97

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔