跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳雅萍
研究生(外文):Ya-Ping Chen
論文名稱:利用十六烷基三甲基溴化銨修飾二氧化鈦薄膜及其特性與光電化學性質之研究
論文名稱(外文):Characterizations and Photoelectrochemical Properties of Titanium Dioxide Film Modifies by Cetyl Trimethyl Ammonium Bromide
指導教授:高立衡高立衡引用關係
指導教授(外文):Li-Heng Kao
口試委員:林鉉凱 博士楊凱勛 博士
口試委員(外文):Xuan-Kai LinKe-Xun Yang
口試日期:2014-07-06
學位類別:碩士
校院名稱:國立高雄應用科技大學
系所名稱:化學工程與材料工程系碩士在職專班
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:113
中文關鍵詞:二氧化鈦十六烷基三甲基溴化銨薄膜光陽極
外文關鍵詞:titanium dioxidecetyl trimethyl ammonium bromideCTABfilmphotoanode
相關次數:
  • 被引用被引用:0
  • 點閱點閱:220
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
本研究於合成二氧化鈦過程中添加陽離子界面活性劑CTAB,進而觀察CTAB對製備二氧化鈦薄膜的影響,並藉由XRD鑑定高溫煅燒後二氧化鈦的晶相以及計算晶粒大小,以FE-SEM與AFM觀察薄膜表面型態以及粗糙度,利用FTIR判定產物的官能基並使用UV-Vis.光譜儀確認薄膜穿透度和估算能隙值,利用PL分析材料缺陷並測試薄膜之親水特性,再藉由光電流測定和光降解亞甲基藍測試所製備的二氧化鈦光陽極之效能。
研究結果發現在相同的煅燒溫度下,CTAB添加量的增加會促使金紅石晶相的產生而使晶粒成長,藉由調整CTAB的濃度可以控制薄膜的形貌並提升表面粗糙度,進而有效提升薄膜親水性、光電流響應能力以及光降解效能。本研究製備之二氧化鈦薄膜作為電極使用時,其光電流可高達35.52 mA/cm2,照射6 W紫外光七小時可降解90%以上的亞甲基藍,照射450 W可見光七小時可降解約50%左右。
In this study, we investigated the effects in the process of preparing titanium dioxide film by adding the cationic surfactant CTAB. The crystalline size and phase composition after calcine process were identified by XRD. The surface morphology and average roughness were observing via FE-SEM and AFM. The film transmission and energy gap were revealed by UV-Vis. spectrometer. PL could analyze the defect of the material. Then, we examined the performance of the titanium dioxide photoanode via the process of photocurrent-response and degraded methylene blue.
The results show that the increase of CTAB promoted the generation of rutile phase and lead to crystalline growth. Also, we can control the morphology by adjusting the concentration of CTAB to promote the surface roughness. Therefore, it is effectively enhanced the hydrophilicity, photocurrent-response and photo-degradation performance. In the application of photoelectrode, the photocurrent density can be up to 35.52 mA/cm2. The degradation efficiency of methylene blue under illumination of 6 W UV and 450 W visible light sources are more than 90% and 50%, respectively.
摘 要 I
ABSTRACT II
誌 謝 III
總目錄 IV
表目錄 VII
圖目錄 VIII
第一章 緒論 1
1.1 前言 1
1.2 研究動機 2
第二章 基本原理與文獻回顧 3
2.1 光觸媒 3
2.1.1 光觸媒簡介 3
2.1.2 光觸媒之光催化原理 6
2.1.3 光催化之反應動力學 9
2.1.4 光觸媒的應用 11
2.2 二氧化鈦 18
2.2.1 二氧化鈦的基本性質 18
2.2.2 二氧化鈦的合成製備 22
2.2.3 二氧化鈦的塗佈方法 26
2.3 界面活性劑 29
2.3.1 界面活性劑的種類 29
2.3.2 界面活性劑的原理 31
2.3.3 界面活性劑的應用 33
第三章 實驗部份 37
3.1 實驗藥品 37
3.2 實驗儀器 38
3.3 實驗方法 40
3.3.1 二氧化鈦薄膜的製備 40
3.3.2 二氧化鈦光電流測量 42
3.3.3 亞甲基藍光降解實驗 43
3.4 儀器分析與原理 45
3.4.1 X光繞射儀(XRD) 45
3.4.2 傅立葉轉換紅外線光譜儀(FTIR) 47
3.4.3 掃描式電子顯微鏡(SEM) 49
3.4.4 原子力顯微鏡(AFM) 51
3.4.5 紫外光-可見光光譜儀(UV-Vis Spectrometer) 52
3.4.6 光激發螢光光譜儀(PL) 54
3.4.7 接觸角量測分析儀(Contact Angle Analysis System) 55
第四章 結果與討論 57
4.1 二氧化鈦薄膜製備條件設定 57
4.1.1 前驅物溶液 57
4.1.2 旋轉塗佈 59
4.1.3 TGA前驅物溶液組成分析 60
4.2 二氧化鈦材料性質分析 61
4.2.1 XRD結晶型態鑑定與分析 61
4.2.2 FTIR材料官能基鑑定 64
4.2.3 FE-SEM薄膜表面型態與EDS元素分析 66
4.2.4 AFM薄膜粗糙度分析 77
4.2.5 UV-Vis.分析薄膜穿透度與能隙計算 80
4.2.6 PL材料缺陷分析 84
4.3 二氧化鈦薄膜親水性之測量 87
4.4 二氧化鈦薄膜光電性質分析 91
4.4.1 光電流測定 91
4.4.2 光降解亞甲基藍效率之測試 95
第五章 結論 102
第六章 未來研究 104
參考文獻 105
附錄 113
附錄A 二氧化鈦粉末Degussa P25規格 113


【1】A. Fujishima, K. Honda, Nature, 1972, 238(5358), 37-38.
【2】X. Chen, S. S. Mao, Chem. Rev., 2007, 107(7), 2891-2959.
【3】M. Gratzel, Nature, 2001, 414, 338-344.
【4】L. Kavan, M. Gratzel, J. Rathousky, A. Zukal, J. Am. Chem. Soc., 1996, 118(28), 6716-6723.
【5】J. L. Ferry, W. H. Glaze, Langmuir, 1998, 14(13), 3551-3555.
【6】U. Bach, D. Lupo, J. E. Moser, F. Weissortel, J. Salbeck, H. Spreitzer, M. Gratzel, Nature, 1998, 395, 583-585.
【7】K. Hashimoto, H. Irie, A. Fujishima, AAPPS Bulletin, 2007, 17(6), 12-28.
【8】F. Gracia, J. Holgado, A. G. Elipe, Langmuir, 2004, 20(5), 1688-1697.
【9】T. Berger, T. L. Villarreal, D. M. Satoca, R. Gomez, Electrochem. Commun., 2006, 8(11), 1713-1718.
【10】F. F. Santiago, I. M. Sero, G. G. Belmonte, J. Bisquert, J. Phys. Chem., B, 2003, 107(3), 758-768.
【11】M. Li, H. Schnablegger, S. Mann, Nature, 1999, 402, 393-395.
【12】D. C. Crans, B. Baruah, A. Ross, N. E. Levinger, Coord. Chem. Rev., 2009, 253(17-18), 2178-2185.
【13】V. Uskokovic, M. Drofenik, Adv. Colloid Interface Sci., 2007, 133(1), 23-34.
【14】V. Uskokovic, M. Drofenik, Surf. Rev. Lett., 2005, 12(2), 239-277.
【15】A. Fujishima, T. N. Rao, D. A. Tryk, Photochem. Photobiol., C, 2000, 1(1), 1-21.
【16】A. Kudo, Y. Miseki, Chem. Soc. Rev., 2009, 38(1), 253-278.
【17】S. N. Frank, A. J. Bard, J. Phys. Chem., 1997, 81, 1481-1488.
【18】S. N. Frank, A. J. Bard, J. Am. Chem. Soc., 1977, 99(111), 303-304.
【19】R. Vogel, P. Hoyer, H. Weller, J. Phys. Chem., 1994, 98(12), 3183-3188.
【20】W. Choi, A. Termin, M. R. Hoffmann, J. Phys. Chem., 1994, 98(51), 13669-13679.
【21】A. Kuto, Catalysis Surveys from Asia, 2003, 7(1), 31-38.
【22】L. Q. Jing, X. J. Sun, J. Shang, W. M. Cai, Z. L. Xu, Y. G. Du, H. G. Fu, Sol. Energy Mater. Sol. Cells, 2003, 79(2), 133-151.
【23】F. A. Harraz, O. E. Abdel-Salam, A. A. Mostafa, R. M. Mohamed, M. Hanafy, J. Alloys Compd., 2013, 551, 1-7.
【24】A. L. Linsebigler, G. Q. Lu, J. T. Yates, Chem. Rev., 1995, 95, 735-758.
【25】M. A. Fox, M. T. Dulay, Chem. Rev., 1993, 93(1), 341-357.
【26】J. M. Herrmann, Catal. Today, 1995, 24(1-2), 157-164.
【27】J. M. Herrmann, Catal. Today, 1999, 53(1), 115-129.
【28】K. Nakata, A. Fujishima, J. Photochem. Photobiol., C, 2012, 13(3), 169-189.
【29】K. Maeda, J. Photochem. Photobiol., C, 2011, 12(4), 237-268.
【30】R. Abe, J. Photochem. Photobiol,. C, 2010, 11(4), 179-209.
【31】T. Inoue, A. Fujishima, S. Konishi, K. Honda, Nature, 1979, 277(5698), 637-638.
【32】C. McCullagh, J. M. C. Robertson, D. W. Bahnemann, P. K. J. Robertson, Res. Chem. Intermed., 2007, 33(3-5), 359-375.
【33】J. R. Peller, R. L. Whitman, S. Griffith, P. Harris, C. Peller, J. Scalzitti, J. Photochem. Photobiol., A, 2007, 186(2-3), 212-217.
【34】L. Caballero, K. A. Whitehead, N. S. Allen, J. Verran, J. Photochem. Photobiol., A, 2009, 202(2-3), 92-98.
【35】K. Sunada, T. Watanabe, K. Hashimoto, J. Photochem. Photobiol., A, 2003, 156(1), 227-233.
【36】K. Nakata, B. Liu, Y. Ishikawa, M. Sakai, H. Saito, T. Ochiai, H. Sakai, T. Murakami, M. Abe, K. Takagi, A. Fujishima, Chem. Lett., 2011, 40(10), 1107-1109.
【37】K. Nakata, B. Liu, Y. Goto, T. Ochiai, M. Sakai, H. Sakai, T. Murakami, M. Abe, A. Fujishima, Chem. Lett., 2011, 40(10), 1161-1162.
【38】Y. Nosaka, S. Komori, K. Yawata, T. Hirakawa, A. Y. Nosaka, PCCP, 2003, 5(20), 4731-4735.
【39】A. Jańczyk, E. Krakowska, G. Stochel, W. Macyk, J. Am. Chem. Soc., 2006, 128(49), 15574-15575.
【40】Y. Nosaka, M. Nakamura, T. Hirakawa, PCCP, 2002, 4(6), 1088-1092.
【41】A. Fujishima, X. Zhang, D. A. Tryk, Int. J. Hydrogen Energy, 2007, 32(14), 2664-2672.
【42】R. Wang, K. Hashimoto, A. Fujishima, M. Chikuni, E. Kojima, A. Kitamura, M. Shimohigoshi, T. Watanabe, Nature, 1997, 388, 431-432.
【43】A. Fujishima, X. Zhang, C. R. Chimie, 2006, 9(5-6), 750-760.
【44】X. Chen, S. S. Mao, J. Nanosci. Nanotechnol., 2006, 6(4), 906-925.
【45】J. S. Chen, C. Chen, J. Liu, R. Xu, S. Z. Qiao, X. W. Lou, Chem. Commun., 2011, 47(9), 2631-2633.
【46】H. Li, Z. Bian, J. Zhu, D. Zhang, G. Li, Y. Huo, H. Li, Y. Lu, J. Am. Chem. Soc., 2007, 129(27), 8406-8407.
【47】H. J. Yun, H. Lee, J. B. Joo, W. Kim, J. Yi, J. Phys. Chem., C, 2009, 113(8), 3050-3055.
【48】P. D. Cozzoli, A. Kornowski, H. Weller, J. Am. Chem. Soc., 2003, 125(47), 14539-14548.
【49】Y. Cheng, W. Huang, Y. Zhang, L. Zhu, Y. Liu, X. Fan, X. Cao, Cryst. Eng. Comm., 2010, 12(7), 2256-2260.
【50】S. Chuangchote, J. Jitputti, T. Sagawa, S. Yoshikawa, ACS Appl. Mater. Interfaces, 2009, 1(5), 1140-1143.
【51】S. P. Albu, A. Ghicov, J. M. Macak, R. Hahn, P. Schmuki, Nano Lett., 2007, 7(5), 1286-1289.
【52】J. Yu, G. Dai, B. Cheng, J. Phys. Chem., C, 2010, 114(45), 19378-19385.
【53】Y. Aoyama, Y. Oaki, R. Ise, H. Imai, Cryst. Eng. Comm., 2012, 14(4), 1405-1411.
【54】G. Xiang, T. Li, J. Zhuang, X. Wang, Chem. Commun., 2010, 46(36), 6801-6803.
【55】S. H. Ahn, J. H. Koh, J. A. Seo, J. H. Kim, Chem. Commun., 2010, 46(11), 1935-1937.
【56】W. G. Yang, F. R. Wan, Q. W. Chen, J. J. Li, D. S. Xu, J. Mater. Chem., 2010, 20(1), 2870-2876.
【57】S. J. Ding, J. S. Chen, Z. Y. Wang, Y. L. Cheah, S. Madhavi, X. Hu, X. W. Lou, J. Mater. Chem., 2011, 21(1), 1677-1680.
【58】J. M. Szeifert, J. M. Feckl, D. Fattakhova-Rohlfing, Y. Liu, V. Kalousek, J. Rathousky, T. Bein, J. Am. Chem. Soc., 2010, 132(36), 12605-12611.
【59】P. Periyat, N. Leyland, D. E. McCormack, J. Colreavy, D. Corr, S. C. Pillai, J. Mater. Chem., 2010, 20(1), 3650-3655.
【60】K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, D. R. Lee, Polymer, 2003, 44(4), 1287-1294.
【61】R. Austin, S. f. Lim, PNAS, 2008, 105(45), 17217-17221.
【62】S. M. Woodley, C. R. A. Catlow, Comput. Mater. Sci., 2009, 45(1), 84-95.
【63】E. M. Levin, 1975, Phase Diagrams for Ceramists, American Ceramic Society, Westerville.
【64】U. Diebold, Surf. Sci. Rep., 2003, 48(5-8), 53-229.
【65】A. Fujishima, K. Hashimoto, T. Watanabe, 1999, TiO2 photocatalysis : fundamentals and applications, BKC, Tokyo.
【66】R. Mechiakh, N. B. Sedrine, J. B. Naceur, R. Chtourou, 2011, 206(2-3), 243-249.
【67】S. Prakash, T. Chakrabarty, A. K. Singh, V. K. Shahi, Biosens. Bioelectron., 2013, 41, 43-53.
【68】C. Sanchez, J. Livage, M. Henry, F. Babonneau, J. Non-Cryst. Solids, 1988, 100(1-3), 65-76.
【69】J. D. Mackenzie, D. R. Ulrich, 1988, Ultrastructure Processing of Advanced Ceramics, Wiley-Interscience, New York.
【70】K. P. Kumar, J. Kumar, K. Keizer, J. Am. Ceram. Soc., 1994, 77(5), 1396-1400.
【71】D. R. Uhlmann, D. R. Ulrich, 1992, Ultrastructure Processing of Advanced Materials, Wiley-VCH, New York.
【72】S. Akama, M. Yamamura, T. Kigawa, Biophys. J ., 2012, 102(2), 221-230.
【73】J. H. Lee, Y. S. Yang, J. Eur. Ceram. Soc., 2005, 25(16), 3573-3578.
【74】A. Gaber, A. Y. Abdel-Latief, M. A. Abdel-Rahim, M. N. Abdel-Salam, Mater. Sci. Semicond. Process., 2013, 16(6), 1784-1790.
【75】H. K. Park, D. K. Kim, C. H. Kim, J. Am. Ceram. Soc., 1997, 80(3), 743-749.
【76】S. Baroutian, M. Robinson, A. M. Smit, S. Wijeyekoon, D. Gapes, Bioresour. Technol., 2013, 146, 294-300.
【77】H. Cheng, J. Ma, Z. Zhao, L. Qi, Chem. Mater., 1995, 7(4), 663-671.
【78】D. J. Shaw, 1992, Introduction to colloid and surface chemistry (4th ed.), Butterworth-Heinemann, UK.
【79】R. Zhang, L. Gao, Mater. Res. Bull., 2002, 37(9), 1659-1666.
【80】M. N. Rahaman, 2006, Ceramic Processing, CRC Press, UK.
【81】L. C. Klein, 1989, Sol-Gel Technology for Thin Films, Fibers, Preforms, Electronics and Specialty Shapes, William Andrew, New York.
【82】C. J. R. Gonzalez-Oliver, J. Non-Cryst. Solids, 1986, 82(1-3), 400-410.
【83】M. A. Aegerter, A. Reich, D. Ganz, G. Gasparro, J. Pütz, T. Krajewski, J. Non-Cryst. Solids, 1997, 218, 123-128.
【84】G. Gasparro, J. Pütz, D. Ganz, M. A. Aegerter, Sol. Energy Mater. Sol. Cells, 1988, 54(1-4), 287-296.
【85】D. E. Bornside, C. W. Macosko, L. E. Scriven, J. Imaging Sci. Technol., 1987, 13(4), 122-130.
【86】Y. J. Lin, C. J. Wu, Surf. Coat. Technol., 1996, 88, 239-247.
【87】A. M. Schwartz, J. W. Perry, J. Berch, 1958, Surface Active Agents and Detergents Vol. II, R. E. Krieger Publishing Company, New York.
【88】M. J. Schick, 1967, Nonionic Surfactants (Surfactant Science Series, Volume 1), Marcel Dekker Inc., New York.
【89】E. Jungermann, 1970, Cationic Surfactants (Surfactant Science Series, Volume 4), Marcel Dekker Inc., New York.
【90】W. M. Linfield, 1976, Anionic Surfactants (Surfactant Science Series, Volume 7), Marcel Dekker Inc., New York.
【91】M. Pasquali, Nature, 2010, 9(5), 381-382.
【92】G. S. Hartley, 1936, Aqueous solutions of paraffin-chain salts : a study in Micelle formation, Hermann, Paris.
【93】C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature, 1992, 359, 710-712.
【94】J. S. Beck, J. C. VartUli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, C. T. W. Chu, D. H. Olson, E. W. Sheppard, J. Am. Chem. Soc., 1992, 114(27), 10834-10843.
【95】I. M. Hung, Y. Wang, C. F. Huang, Y. S. Fan, Y. J. Han, H. W. Peng, J. Eur. Ceram. Soc., 2010, 30(10), 2065-2072.
【96】Y. J. Wang, S. H. Zhang, K. Wei, N. Zhao, J. D. Chen, X. D. Wang, Mater. Lett., 2006, 60(12), 1484-1487.
【97】H. S. Lee, W. H. Kim, J. H. Lee, D. J. Choi, Y. K. Jeong, J. H. Chang, J. Solid State Chem., 2012, 185, 89-94.
【98】D. S. Fu, Y. L. Su, B. Q. Xie, G. M. Liu, Z. B. Li, K. Jiang, D. J. Wang, Colloids Surf., A, 2011, 384(1-3), 219-227.
【99】S. K. Das, M. K. Bhunia, A. Bhaumik, Dalton Trans., 2010, 39(18), 4382-4390.
【100】Y. Zhang, Z. B. Xie, J. Wang, Nanotechnology, 2009, 20(50), 505-602.
【101】B. D. C. Deceased, S. R. Stock, 2001, Elements of X-Ray Diffraction (3rd ed.), Prentice Hall, US.
【102】W. W. Wendlandt, H. G. Hecht, 1966, Reflectance spectroscopy, Interscience Publishers, New York.
【103】P. W. Atkins, L. Jones, 2007, Chemical Principles:The Quest for Insight(4th ed.), W. H. Freeman, New York.
【104】R. A. Spurr, H. Myers, Anal. Chem., 1957, 29(5), 760-762.
【105】A. Biswas, A. Corani, A. Kathiravan, Y. Infahsaeng, A. Yartsev, V. Sundstrom, S. De, Nanotechnology, 2013, 24(19), 1-14.
【106】G. Q. Liu, Z. G. Jin, X. X. Liu, T. Wang, Z. F. Liu, J. Sol-Gel Sci. Technol., 2007, 41(1), 49-55.
【107】R. Rahimi, E. H. Fard, S. Saadati, M. Rabbani, J. Sol-Gel Sci. Technol., 2012, 62, 351-357.
【108】C. C. Li, S. J. Chang, M. Y. Tai, J. Am. Ceram. Soc., 2010, 93(12), 4008-4010.
【109】D. U. Lee, S. R. Jang, R. Vittal, J. Lee, K. J. Kim, Sol. Energy Mater. Sol. Cells, 2008, 82(11), 1042-1048.
【110】F. Czerwinski, 2012, Heat Treatment-Conventional and Novel Applications, InTech Open Access, Canada.
【111】P. B. Nair, V. B. Justinvictor, G. P. Daniel, K. Joy, V. Ramakrishnan, D. D. Kumar, P. V. Thomas, Thin Solid Films, 2014, 550, 121-127.
【112】H. Y. Byun, R. Vittal, D. Y. Kim, K. J. Kim, Langmuir, 2004, 20(16), 6853-6857.
【113】G. Li, L. Chen, M. E. Graham, K. A. Gray, J. Mol. Catal., A: Chem., 2007, 275(1-2), 30-35.
【114】D. L. Liao, B. Q. Liao, J. Photochem. Photobiol., A: Chem., 2007, 187(2-3), 363-369.
【115】P. M. Kumar, S. Badrinarayanan, M. Sastry, Thin Solid Films, 2000, 358(1-2), 122-130.
【116】D. E. Skinner , D. P. Colombo Jr., J. J. Cavaleri , R. M. Bowman, J. Phys. Chem., 1995, 99(20), 7853-7856.
【117】Y. H. Chang, C. M. Liu, C. Chen, H. E. Cheng, J. Electrochem. Soc., 2012, 159 (7), D401-D405.
【118】H. W. Kim, H. S. Kim, H. G. Na, J. C. Yang, D. Y. Kim, J. Alloys Compd., 2010, 504(1), 217-223.
【119】J. Yu , B. Wang , Appl. Catal., B: Environ., 2010, 94(3-4), 295-302.
【120】S. Kment, H. Kmentova, P. Kluson, J. Krysa, Z. Hubicka, V. Cirkva, I. Gregora, O. Solcova, L. Jastrabik, J. Colloid Interface Sci., 2010, 348(1), 198-205.
【121】J. Ge, J. Qu, J. Hazard. Mater., B, 2003, 100(1-3), 197-207.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊