王詩惠 (2013)。飼料玉米價格之預測—單變量與多變量時間數列模型之比較分析。國立台北大學統計學系研究所碩士論文。呂文正 (1998)。股票報酬率的波動性研究-ARCH-family、SWARCH模型之應用。台灣大學經濟研究所碩士論文。
李命志、洪瑞成、劉洪鈞 (2007)。厚尾GARCH模型之波動性預測能力比較。輔仁管理評論,14(2),47-71。
周佑霖 (2014)。GARCH模型評估風險值的表現-以臺灣證劵市場為例。國立中正大學國際經濟研究所碩士論文。邱建良、林卓民、洪瑞成 (2003)。風險值的探討-外匯投資組合之應用。朝陽商管評論,2(2),75-102。施柔榆 (2012)。美元兌新台幣匯率與台灣加權股價指數外溢效果。國立彰化師範大學企業管理學系國際企業經營管理研究所碩士論文。柯博倫 (2010)。風險值之估計-GARCH模型之應用。淡江大學財務金融研究所碩士論文。洪儒瑤、古永嘉、康健廷 (2006)。ARMA-GARCH風險值模型預測績效實證。中華技術學院學報,34,13-35。
許紹偉 (2012)。台灣外匯市場報酬風險抵換關係。國立政治大學經濟學系研究所碩士論文。陳旭昇 (2007)。時間序列分析-總體經濟與財務金融之應用。台北市:台灣東華書局。
陳柏芳 (2012)。黃金與股、匯市、利率及油價報酬率與波動性之關聯性。輔仁大學金融與國際企業學系金融研究所碩士論文。黃幼雯 (2011)。隱含波動率指數的實證模型之分析。國立中正大學財務金融研究所碩士論文。黃博怡、林卓民、洪瑞成、鄭婉秀 (2004)。外匯投資組合不同風險值模型之比較。華岡經濟論叢,4(1),1-25。楊亦農 (2005)。時間序列分析-經濟與財務金融上之應用。台北市:雙葉書廊出版社。
劉洪鈞、李彥賢、洪瑞成 (2007)。厚尾分配之風險值估計-以股價指數為例。中原企管評論,6(1),75-97。劉祥熹、黃日鉦 (2010)。財務時間序列模型-GARCH模型專論。台北市:東華書局股份有限公司。
蔡宜晏 (2011)。風險值估計期間之績效探討。淡江大學財務金融研究所碩士論文。戴衣男 (2011)。匯率與股價關聯性之研究。世新大學財務金融研究所碩士論文。Akgiray, V.(1989). Conditional Heteroscedasticity in Time Series of Stock Return:Evidence and Forecasts. Journal of Business, 62, 55-80.
Alexander, C.O. and Leigh, C.T. (1997). On the covariance models used in value at risk models. Journal of Derivatives, 4, 50–62.
Andersen, T. G. and Bollerslev, T.(1998). Answering the Skeptics:Yes, Standard Volatility Models do Provide Accurate Forecasts. International Econometric Review, 39, 885-905.
Angelidis, T., Benos, A. and Degiannakis, S. (2004). The use of GARCH models in VaR estimation. Statistical Methodology, 1(2), 105–128.
Angelidis, T., Benos, A. and Degiannakis, S. (2007). A robust VaR model under different time periods and weighting schemes. Review of Quantitative Finance and Accounting, 28(2), 187–201.
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1997). Thinking coherently. Risk, 10, 68–71.
Artzner, P., Delbaen, F., Eber, J.-M. and Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9, 203–228.
Basak, S. and Shapiro, A. (2001). Value-at-risk based risk management: Optimal policies and asset prices. Review of Financial Studies, 14(2), 371–405.
Berkowitz, J. (2001). Testing density forecasts, with applications to risk management. Journal of Business and Economic Statistics, 19, 465–474.
Bollerslev, T.(1987). A Conditional Heteroscedastic Time Series Model for Speculative Prices and Rates of Return. Review of Economics and Statistics, 69, 542-547.
Bollerslev, T., Chou, R. Y., and Kroner, K. F.(1992). ARCH Modeling in Finance: A Review of the Theory and Empirical Evidence. Journal of Econometrics, 52, 5-59.
Cassuto, Alexander E (1995). Non-normal error patterns: How to handle them. Journal of Business Forecasting Methods & Systems, 14(2), 15-16.
Christoffersen, P. (1998). Evaluating interval forecasts. International Economic Review, 39,841–862.
Christoffersen, P. (2003). Elements of Financial Risk Management. New York: Academic Press.
Cowles, A. and Jones, H. (1937). Some a posteriori probabilities in stock market action. Econometrica, 5, 280–294.
Delbaen, F. (2002). Coherent risk measures on general probability spaces. In K. Sandmann and P.J. Sch€onbucher (eds). Advances in Finance and Stochastics: Essays in Honour of Dieter Sondermann, 1–38.
Dowd, K. (2005). Measuring Market Risk, 2nd edition. Chichester: John Wiley & Sons Ltd.
Engle, R.(1982). Autoregressive Conditional Heteroscedasticity with Estimates of Variance of UK Inflation. Econometrica, 50, 987-1008.
Engle, R.F. (2004). Risk and volatility: Econometric models and financial practice. American Economic Review, 94(3), 405–420.
Evdokia Xekalaki and Stavros Degiannakis (2009). ARCH Models for Financial Applications. New York: WILEY.
Glosten, L. M., Jagannathan, R. and Runkle, D. E.(1993). On the Relation between the Expected Value and the Volatility on the Nominal Excess Returns on Stocks. Journal of Finance, 48, 1779-1801.
Granger, C.W.J. and Newbold, P. (1973). Some comments on the evaluation of economic forecasts. Applied Economics, 5, 35–47.
Guermat, C. and Harris, R.D.F. (2002). Forecasting value at risk allowing for time variation in the variance and kurtosis of portfolio returns. International Journal of Forecasting, 18, 409–419.
Hansen, P.R. and Lunde, A. (2005).Aforecast comparison of volatility models: Does anything beat a GARCH(1,1)? . Journal of Applied Econometrics, 20(7), 873–889.
Heynen, R. C. and Kat, H. M. (1994). Volatility Prediction: A Comparison of the Stochastic Volatility, GARCH (1,1) and EGARCH (1,1) Models. Journal of Derivatives, 2, 50-65.
Hoppe, R. (1998). VAR and the unreal world. Risk, 11, 45–50.
Hoppe, R. (1999). Finance is not physics. Risk Professional, 1(7).
Huang, Y.C. and Lin, B.-J. (2004). Value-at-risk analysis for Taiwan stock index futures: Fat tails and conditional asymmetries in return innovations. Review of Quantitative Finance and Accounting, 22, 79–95.
Kupiec, P.H. (1995). Techniques for verifying the accuracy of risk measurement models. Journal of Derivatives, 3, 73–84.
Ljung, G.M. and Box, G.E.P. (1978). On a measure of lack of fit in time series models. Biometrica, 65, 297–303.
Lopez, J.A. (1999). Methods for evaluating value-at-risk estimates. Economic Policy Review, Federal Reserve Bank of New York, 2, 3–17.
Marimoutou,V., Raggad, B., &Trabelsi, F.(2009). Extreme value theory and value at risk:Application to oil market. Energy Economics, 31, 519-530.
Markowitz, H.(1952). Portfolio Selection. Journal of Finance, 7, 77-91.
Marshall, C. and Siegel, M. (1997). Value at risk: Implementing a risk measurement standard. Journal of Derivatives, 4(3), 91–110.
McNeil, A.J. and Frey,R. (2000). Estimation of tail-related risk measures for heteroskedasticity financial time series: An extreme value approach. Journal of Empirical Finance, 7, 271–300.
Mittnik, S. and Paolella, M.S. (2000). Conditional density and value-at-risk prediction of Asian currency exchange rates. Journal of Forecasting, 19, 313–333.
Mittnik, S., Paolella, M.S. and Rachev, S.T. (2000). Diagnosing and treating the fat tails in financial return data. Journal of Empirical Finance, 7, 389–416.
Mood, A. (1940). The distribution theory of runs. Annals of Mathematical Statistics, 11, 367–392.
Politis, N. D.(2004). A Heavy-Tailed Distribution for ARCH Residuals with Application to Volatility Prediction. Annals of Economics and Finance, 5, 283-298.
Sadorsky, P.(2006). Modeling and Forecasting Petroleum Futures Volatility. Energy Economics, 28, 467-488.
Sarma, M., Thomas, S. and Shah, A. (2003). Selection of VaR models. Journal of Forecasting, 22(4), 337–358.
Sarma, M., Thomas, S. and Shah, A. (2003). Selection of VaR models. Journal of Forecasting, 22(4), 337–358.
So, M.K.P. and Yu, P.L.H. (2006). Empirical analysis of GARCH models in value at risk estimation. Journal of International Markets. Institutions and Money, 16(2), 180–197.
Taleb, N. (1997a). The world according to Nassim Taleb. Derivatives Strategy, December/January.
Taleb, N. (1997b). Against VaR. Derivatives Strategy, April.
Tse,Y.K. (1998). The conditional heteroskedasticity of the yen-dollar exchange rate. Journal of Applied Econometrics, 193, 49–55.
Van Den Goorbergh, R. W. J. and P. J. G. Vlaar, 1999. Value-at-Risk Analysis of Stock Returns:Historical Simulation, Variance Techniques or Tail Index Estimation?. De Nederlandse Bank-Staff Reports, 40, 1-37.
Yamai, Y. and Yoshiba, T. (2005). Value-at-risk versus expected shortfall: A practical perspective. Journal of Banking and Finance, 29(4), 997–1015.