(34.204.185.54) 您好!臺灣時間:2021/04/16 18:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:胡懷宙
研究生(外文):Huai-Chou Hu
論文名稱:製備鈦酸鋰陽極複合材料應用於鋰離子電池
論文名稱(外文):Preparation Li4Ti5O12 anode composite material for lithium ion battery applications
指導教授:楊純誠楊純誠引用關係
指導教授(外文):Chun-Chen Yang
口試委員:黃炳照簡文鎮
口試委員(外文):Bing-Joe HwangWen-Chen Chien
口試日期:2014-06-24
學位類別:碩士
校院名稱:明志科技大學
系所名稱:化學工程系碩士班
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:178
中文關鍵詞:鈦酸鋰呋喃樹脂摻合噴霧乾燥法鋰離子電池
外文關鍵詞:Li4Ti5O12Furan resinDopingSpray dryLi-ion bettery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:402
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本論文以固相法製備尖晶石結構之Li4Ti5O12(簡稱LTO)陽極材料,利用三種改質方式提升LTO的電化學性能:(1)、在合成階段添加有機碳源,經過高溫燒結後,即可在LTO表面包覆一層導電碳膜即LTO/C複合材料,實驗結果發現使用呋喃樹脂(Furan resin)對材料的包覆性相當好,由micro-Raman光譜分析結果發現R值(R=ID/IG)為1.05,此說明包覆殘碳材料的石墨化程度相當高;(2)、在材料晶格內摻合其他過渡金屬元素,本研究使用V2O5氧化物,材料本質的電子導電度(σe-)及離子擴散系(DLi+)數提升至 5.44×10-6 S cm-1和2.84×10-11 cm2 s-1,可降低充放電時阻抗;(3)、為改善固相法材料粒徑大小不均問題,使用噴霧乾燥法二次改質材料的形貌,從SEM分析發現材料聚集成球狀的二次粒子結構。另外由XRD繞射圖譜分析結果發現摻合V元素量越多時,在(111)特徵峰位置有向高角度偏移的現象,此表示V元素已經進入於LTO材料晶格體內,且在全角度X光螢光分析儀(TXRF)分析釩摻合值x為0.05、0.1、0.15的材料化學組成,結果發現LTO材料內V及Ti的莫耳比如預期值之摻合量相近。噴霧乾燥後的球形LTO/C材料可使材料結構穩定性較佳,且可以承受更高速率及更優異的循環壽命表現,在1C/10C及1C/50C充放速率下放電克電容量分別為220.73 和 144.29 mAh g-1(0.01V-2.5V)。
本論文選擇五種陰極材料,即LiNi1/3Co1/3Mn1/3O2(LNCMO)、LiNi1/2Mn1/2O2(LNMO)、Li1.2Ni0.2Mn0.5O2(LR-LNMO)、LiFePO4(LFP)、LiFe1/2Mn1/2PO4(LFMP)與Li4Ti5O12陽極材料搭配,組裝成全電池進行全電池的電化學性質測試(全電池電容量是以LTO陽極控制);在0.1C速率下進行充放電之放電克電容量作比較時,則以LR-LNMO陰極材料較高,但在較高速率放電能力方面,放電克電容量則以LFMP陰極材料較佳,表示本論文所製備的LTO可搭配在不同陰極材料所組裝成全電池並作應用。

This work reports the preparation of a spinel Li4Ti5O12/C (donated as LTO) anode material by a solid-state method. Three ways to improve the LTO electrochemical properties: (1). use the organic carbon source in synthesis stage, then do post-sintering, from a conductive carbon layer on LTO/C composites. The experimental results found that Furan resin polymer as the carbon source shows good carbon coverage. The carbon quality was examimed by micro-Raman spectroscopy. The result of the R (R=ID/IG) is 1.05, which indicates the residual carbon with high-degree of graphite-like carbon; (2). LTO/C was doped with different mole fractions of vanadium (V), V2O5 as the dopent to improve the intrinsic electron conduetivity and the lithium ion diffusion. The results show the Li4Ti4.9V0.1O12/C composite material achieved the lithium ion diffusivity coeffient (DLi+) of 2.84×10-11 cm2 s-1 and the electron conduetivity of 5.44×10-6 S cm-1. It shows the low resistance at high discharge rate; (3). use spray dry method to improve uneven material particle size distribution. From SEM results, the secondary particle of spray-dried LTO/C is formed with a spherical morphology. From XRD analysis result discovered when doped V element is increased, the (111) diffraction peak shifted into the high angle direction more, From TXRF analysis result shows that the compositions of LTO materials with V and Ti molar ratios are 4.95:0.05 ; 4.9:0.1 and 4.85:0.16; the experimental compostion is in agreement with the nominal composition. It proves the V element doped into LTO structure. The spray-dried LTO/C composite exhibits excellent morphology and structure stability. It can tolerate high charge/discharge rates; at the same time, it shows longer cycle-life performonce. The spray-dried LTO/C composite material achieved the discharge capacities of 220.73 and 144.29 mAh g-1 at a 1C/10C and 1C/50C rate (in 0.01V-2.5V range), respectively.
The five types cathode materials, LiNi1/3Co1/3Mn1/3O2(LNCMO)、LiNi1/2Mn1/2O2(LNMO)、Li1.2Ni0.2Mn0.5O2(LR-LNMO)、LiFePO4(LFP)、LiFe1/2Mn1/2PO4(LFMP) and Li4Ti5O12 anode material were used to assembly a full cell (LTO capacity-limited). At 0.1C low rate, the LR-LNMO cathode material has the highest discharge capacity among five cathode materials. At a high rate condition, the LFMP cathode material shows the best performance among five cathode materials. From the test results demonstrates that the as-prepared LTO/C composie can be used as an anode to apply to different cathode materials to form full cell and do various energy storge applications.

明志科技大學碩士學位論文指導教授推薦書 I
明志科技大學碩士學位論文口試委員審定書 II
明志科技大學學位論文授權書 III
誌謝 IV
中文摘要 V
英文摘要 VI
目錄 VIII
表目錄 XI
圖目錄 XIII
第一章、緒論 1
1.1、前言 1
1.2、研究動機 2
第二章、文獻回顧 4
2.1 鋰離子電池工作原理 4
2.1.1 陰極材料(Cathode materials) 5
2.1.2 電解液(Electrolyte) 6
2.1.3 隔離膜(Separator) 6
2.1.4 陽極材料(Anode materials) 7
2.2 鈦酸鋰陽極材料的介紹 9
2.2.1 鈦酸鋰充/放電原理 11
2.2.2 鈦酸鋰陽極材料改質 13
2.3 鈦酸鋰(LI4TI5O12)陽極材料的合成方法 21
2.3.1 水熱合成法(Hydrothermal method) 21
2.3.2 溶膠-凝膠法(Sol-gel method) 22
2.3.3 固相反應法(Solid-state method) 22
2.3.4 噴霧裂解法(Spray pyrolysis method) 24
第三章、實驗方法 26
3.1 實驗藥品 26
3.2 儀器設備與器材 27
3.3 陽極材料製備方法 29
3.4 LI4TI5-XVXO12/C複合材料噴霧乾燥法改質 31
3.5 LI4TI5O12/C複合陽極材料之物化性分析項目 35
3.5.1 材料的物理性質檢測 36
3.5.1.1 材料表面形態觀察(SEM) 36
3.5.1.2 材料包覆碳材之結構分析(micro-Raman) 37
3.5.1.3 材料晶體結構分析(XRD) 38
3.5.1.4 材料表面形態觀察-高解析穿透式電子顯微鏡 (HR-TEM) 40
3.5.1.5 材料粒徑分析-雷射粒徑分析儀 (DLS) 41
3.5.1.6 材料比表面積分析 (BET) 42
3.5.2 材料的化學性質檢測 44
3.5.2.1 碳含量(EA) 44
3.5.2.2 材料化學組成分析(TXRF) 45
3.5.3 電化學性質檢測 46
3.5.3.1 Li4Ti5O12/C粉末的電子導電度量測 46
3.5.3.2 陽極電極製備方式 47
3.5.3.3 鈕扣形鋰電池封裝方式 50
3.5.3.4 鈕扣形電池充/放電測試 51
3.5.3.5 AC電流阻抗測試 53
3.5.3.6 鈕扣形電池CV測試 54
第四章、結果與討論 55
4.1 LI4TI5-XVXO12/C陽極複合材料之分析 55
4.1.1 材料的晶相分析 55
4.1.2 材料的殘碳分析 62
4.1.3 材料的表面形態分析 66
4.1.4 材料的碳包覆顯微結構分析 69
4.1.5 材料的殘碳量分析 73
4.1.6 材料的化學組成分析 74
4.1.7 材料的電子導電度分析 78
4.1.8 材料的鋰離子擴散係數分析 80
4.2 半電池之LI4TI5O12/C陽複合極材料的電性檢測 88
4.2.1 純相Li4Ti5O12材料之充放電分析 88
4.2.2 添加不同碳源時Li4Ti5O12/C材料的充放電分析 92
4.2.3 摻合不同x量的V元素之Li4Ti5-xVxO12/C材料的電性分析 102
4.2.4 半電池之循環壽命分析 112
4.3 SP-LI4TI4.9V0.1O12/C陽極材料表面形態分析及電性檢測 114
4.3.1 SP-Li4Ti4.9V0.1O12/C 陽極複合材料之表面形態分析 114
4.3.2 SP-Li4Ti4.9V0.1O12/C陽極複合材料之粒徑分析 118
4.3.3 Li4Ti5-xVxO12/C 陽極複合材料之循環伏安法分析 122
4.3.4 Li4Ti4.9V0.1O12/C陽極複合材料之比表面積分析 124
4.3.5 SP-Li4Ti4.9V0.1O12/C陽極複合材料之電性測試 126
4.3.6 SP-Li4Ti4.9V0.1O12/C陽極複合材料之不同速率下材料的充/放電性能測試 146
4.4 各式陰極材料與LTO組裝進行全電池電性檢測 148
4.4.1 LNCMO /LTO全電池之電性分析 148
4.4.2 LNMO/LTO全電池之電性分析 152
4.4.3 LR-LNMO/LTO全電池之電性分析 152
4.4.4 LFP/LTO全電池之電性檢測及分析 160
4.4.5 LFMP/LTO全電池之電性檢測及分析 167
第五章、結論 172
第七章、參考文獻 174


[1]M. Armand; N. Ravet,Carbon nano-painting: application tonon-phosphate oxyanions.Electrochem. Soc. Interface2003, 20, 15-22.
[2]林建山,商情預測-技術與實務,環球經濟社,1987。
[3]N. Terada; T. Yanagi; S. Arai; M. Yoshikawa; K. Ohta; N. Nakajima; A. Yanai; N. Arai,Development of lithium batteries for energy storage and EV applications.J. Power Sources2001, 100, 80-92.
[4]B. Scrosati; F. Croce; S. Panero, Progress in lithium polymer battery R&D.J.Power Sources2001, 100, 93-100.
[5]閆孟瀅,http://www.xgo.com.cn/xgo/article_show.php?doc_id=192989,汽車點評網,2011。
[6]費定國, 工業材料雜誌229期, 2006年1月, p.143.
[7]R. Fong; U. Sacken; J. R. Dahn,Studies of Lithium Intercalation into Carbon Using Nonaqeous Electrochemical Cell.J. Electrochem. Soc.1990, 137, 2009-2013.
[8]H. Fujimoto; A. Mabuchi; K. Tokumitsu; T. Kasuh,Irreversible capacity of lithium secondary battery using meso-carbon micro beads as anode material.J. Power Sources.1995, 54, 440-443.
[9]X. Qiu; Q. Liu; L. Yang,The processes of lithium ions intercalating into benzene pyrolytic decomposition carbon. Solid State Ionics1993, 60, 351-355.
[10]張彥博、陳金銘、郭信良,「鋰離子電池高容量父及材料技術」,工業材料雜誌,2009, 28,12-14.
[11]A.S. Andersson; J.O. Thomas; B. Kalska; L. Haggstrom, Electrochem.Solid-State Lett.2004, 16, 5721-5723.
[12]廖世傑、林正榮、鄭佳容,「快速充電鋰電池富及材料技術」,工業材料雜誌,28 (2009) 12-13.
[13]T. Ohzuku; A. Ueda; N. Yamamoto, Zero-strain insertion materials of Li[Li1/3Ti5/3]O4 for rechargeable lithium cells.J. Electrochem. Soc.1995, 142, 1431-1435.
[14]A. Deschanvres; B. Raveau; Z. Sekkal; A. Deschanvres; B. Raveau; Z. Sekkal, Mise en evidence et etude cristallographique d'une nouvelle solution solide de type spinelle Li1+xTi2−xO4. Mater. Res. Bull.1971, 6, 699-704.
[15]G. Izquierdo; A. R. West,Phase equilibria in the system Li2O-TiO2. Mater. Res. Bull.1980, 15, 1655-1660.
[16]K. Kataoka; Y. Takahashi; N. Kijima; J. Akimoto,Single crystal growth and structure refinement of Li4Ti5O12.J.Phys. Chem.Solids2008, 69, 1454-1456.
[17]E. Ferg; R. J. Gummow; A. Kock, Spinel Anode for Lithium-Ion Batteries.J. Electrochem. Soc.1994, 141, L147-L150.
[18]L. Aldon; P. Kubiak; M. Womes; J. C. Jumas; J. L. Tirado, Oxide/aqueous solution interfaces, interplay of surface chemistry and electrocatalysis. Chem. Mater.1987, 16, 349-371.
[19]N. Takami; K. Hoshina; H. Inagaki,Lithium Diffusion in Li4/3Ti5/3O4 Particles during Insertion and Extraction.J. Electrochem. Soc.2011, 158, A725-A730.
[20]S. Scharner; W. Weppner; P. Schmid-Beurmann; Evidence of Two-Phase Formation upon Lithium Insertion into the Li1.33Ti1.67O4 Spinel. J. Electrochem. Soc.1999, 146, 857-861.
[21]J. Chen; L. Yang; S; Fang; Y. Tang,Synthesis of sawtooth-like Li4Ti5O12(Spinel) Exhibiting Fast Li Insertion.Electrochim. Acta2010, 55, 6596-6600.
[22]Y. R. Zhu; L. C. Yin; T. F. Yi; H. Liu; Y. Xie; R. S. Zhu, Electrochemical performance and lithium-ion intercalation kinetics of submicron-sized Li4Ti5O12 anode material.J. Alloys Compd2013, 547, 107-112.
[23]T. F. Yi; H. Liu; Y. R. Zhu; L. J. Jiang; R. S. Zhu; Y. Xie; R. S. Zhu, Improving the high rate performance of Li4Ti5O12 through divalent zinc substitution.J. Power Sources2012, 215, 258-265.
[24]T. F. Yi; L. J. Jiang; J. Shu; C. B. Yue; R. S. Zhu; H. B. Qiao,Recent development and application of Li4Ti5O12 as anode material of lithium ion battery.J. Phys. Chem. Solids2010, 71, 1236-1242.
[25]Y. Tang; L. Yang; S. Fang; Z. Qiu, Li4Ti5O12 hollow microspheres assembled by nanosheets as an anode material for high-rate lithum ion batteries.Electrochim. Acta2009, 54, 6244-6249.
[26]H. Xiang; B. Tian; P. Lian; Z. Li; H. Wang, Sol-gel synthesis and electrochemical performance of Li4Ti5O12/grapheme composite anode for lithium-ion batteries.J. Alloys Compd2011, 509, 7205-7209.
[27]H. G. Jung; J. Kim; B. Scrosati; Y. K. Sun,Micron-sized, carbon-coated Li4Ti5O12 as high power anode material for advanced lithium batteries.J.Power Sources2011, 196, 7763-7766.
[28]P. Kubiak; A. Garcia; M. Womes; L. Aldon; J. Olivier-Fourcade; P. E. Lippens; J. C. Jumas, Phase transition in the spinel Li4Ti5O12 induced by lithium insertion: Influence of the substitutions Ti/V, Ti/Mn, Ti/Fe.J. Power Sources2003, 121, 626-630.
[29]S. Ji; J. Zhang; W. Wang; Y. Huang; Z. Feng; Z. Zhang; Z. Tang, Preparation and effects of Mg-doping on the electrochemical properties of spinel Li4Ti5O12 as anode material for lithium ion battery.Mater. Chem. Phys.2010, 123, 510-515.
[30]H. Zhao; Y. Li; Z. Zhu; J. Lin; Z. Tian; R. Wang, Structural and electrochemical characteristics of Li4−xAlxTi5O12 as anode material for lithium-ion batteries.Electrochim. Acta2008, 53, 7079-7083.
[31]B. Tian; H. Xiang; L. Zhang; Z. Li; H. Wang, Niobium doped lithium titanate as a high rate anode material for Li-ion batteries.Electrochim. Acta2010, 55, 5453-5458.
[32]Y. R. Jhan; J. G. Duh,Electrochemical performance and low discharge cut-off voltage behavior of ruthenium doped Li4Ti5O12 with improved energy density.Electrochim. Acta2012, 63, 9-15.
[33]F. Gu; G. Chen; Z. Wang, Synthesis and electrochemical performances of Li4Ti4.95Zr0.05O12/C as anode material for lithium-ion batteries. J. Solid State Electrochem.2012, 16, 375-382.
[34]T. F. Yi; J. Shu; Y. R. Zhu; X. D. Zhu; R. S. Zhu; A. N. Zhou, Advanced electrochemical performance of Li4Ti4.95V0.05O12 as a reversible anode material down to 0V. J. Power Sources2010, 195, 285-288.
[35]Z. Yu; X. Zhang; G. Yang; J. Liu; J. Wang; R. Wang; J. Zhang, High rate capability and long-term cyclability of Li4Ti4.9V0.1O12 as anode material in lithium ion battery.Electrochim. Acta2011, 56, 8611-8617.
[36]W. Fang; X. Cheng; P. Zuo; Y. Ma; L. Liao; G. Yin,Hydrothermal-assisted sol-gel synthesis of Li4Ti5O12/C nano-composite for high-energy lithium-ion batteries. Solid State Ionics2013, 244, 52-56.
[37]J. Wang; X. M. Liu; H. Yang; X. D. Shen, Characterization and electrochemical properties of carbon-coated Li4Ti5O12 prepared by a citric acid sol–gel method.J. Alloys Compd.2011, 509, 712-718.
[38]X. Li; M. Qu; Y. Huai; Z. Yu,Preparation and electrochemical performance of Li4Ti5O12/carbon/carbon nano-tubes for lithium ion battery.Electrochim. Acta2010, 55,2978-2982.
[39]X. Hu; Z. Lin; K. Yang; Y. Huai; Z. Deng, Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction.Electrochim. Acta2011, 56 5046-5053.
[40]F. Wu; Z. Wang; X. Li; H. Guo; P. Yue; X. Xiong; Z. He; Q. Zhang, Characterization of spherical-shaped Li4Ti5O12 prepared by spray drying.Electrochim. Acta2012, 78, 331-339.
[41]S. M. Oh; Y. K. Sun, Improving the electrochemical performance of LiMn0.85Fe0.15PO4–LiFePO4 core–shell materials based on an investigation of carbon source effect.J. Power Sources2013, 244, 663-667.
[42]T. Ogihara; M. Yamada; A. Fujita; S. Akao; K. Myoujin, Effect of organic acid on the electrochemical properties of Li4Ti5O12/C composite powders synthesized by spray pyrolysis.Mater.Res.Bull.2011,46, 796-800.
[43]K. Kordesch; G. Simader, Fuel Cells and Their Applications. VCH, New York 1996, 23-50.
[44]H. Mi; Y.X. Cao; X.G. Zhang; X. B. Zhao; H. L. Li,Synthesis and characterization of LiFePO4/(Ag+C) composite cathodes with nano-carbon webs.Powder Technol.2008, 181, 301-306.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊
 
系統版面圖檔 系統版面圖檔