(3.227.208.0) 您好!臺灣時間:2021/04/20 16:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:張庭綸
研究生(外文):Chang, Ting-Lun
論文名稱:氣氛與摻雜對無鉛鈦酸鉍鈉鋇微觀結構及電性的影響
論文名稱(外文):Effects of Atmosphere and Doping on Microstructures and Electrical Properties of Lead-Free (Bi1/2Na1/2)TiO3-BaTiO3
指導教授:陳炳宜陳正劭
指導教授(外文):Chen, Pin-YiChen, Cheng-Sao
口試委員:陳炳宜陳正劭杜繼舜
口試委員(外文):Chen, Pin-YiChen, Cheng-SaoTu, Chi-Shun
口試日期:2014-07-05
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:116
中文關鍵詞:無鉛壓電陶瓷氧空缺極性奈米區域電場誘發應變
外文關鍵詞:Lead-free piezoceramicsoxygen vacanciespolar nanoregionsE-field induced strain
相關次數:
  • 被引用被引用:0
  • 點閱點閱:273
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
本研究分為兩部分,第一部份為氣氛燒結對無鉛鈦酸鉍鈉壓電陶瓷的微觀結構和電性影響,第二部份為具有大應變及極化演變在鋯摻雜92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3無鉛壓電陶瓷。
第一部份0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3(簡稱BNT-7BT)為具有潛力的無鉛壓電陶瓷之一,分別通入O2和N2氣氛環境中燒結,探討氣氛對缺陷、微觀結構和電性的影響。實驗結果顯示, XRD結構並沒有明顯的差異,結構主要展現菱方結構為主但接近立方結構體之特徵。掃描式電子顯微鏡顯示在N2氣氛燒結試片的晶粒尺寸較大,可能歸因於離子空缺存在強化了離子傳輸,進而增進晶粒成長。 XPS、SEM-EDS及TEM-EDS分析證明,在N2氣氛燒結試片表現出更多的缺陷,包括鉍離子空缺和鈉離子空缺以及氧空缺。漏電流量測間接證實通N2導致更多的氧空缺。電滯曲線量測顯示O2氣氛中燒結試片展現較高的剩餘極化Pr〜29.5 μC/cm2和較低的矯頑電場EC〜26.2 kV/cm。電場-應變量測也顯示O2氣氛中燒結試片有較高的電場誘發應變0.256 %。無鉛BNT壓電陶瓷建議使用富氧的環境下燒結,有利於減少缺陷和提高鐵電及應變特性。
第二部份探討本研究選擇92.5%(Bi0.5Na0.5)TiO3-7.5%Ba(Ti1-xZrx)O3 (BNT7.5BT-100xZr; x=0-0.04)壓電陶瓷材料系統,藉由施加電場與溫度為參數去探討材料結構、介電特性、應變行為、極化與壓電特性之研究。在改變電場的研究結果發現BNT7.5BT陶瓷中受電場誘發下展現明顯之相變化行為,從原本具由奈米電域(nanodomains)結構之P4bm相轉為具有長程電域(long-range-ordered domains)結構之P4mm相;而適量Zr摻雜的BNT7.5BT陶瓷在電場作用下則展現具可逆體積變化的晶格,可歸因於動態變動之極化奈米電域(polar nanoregions)結構,此特徵貢獻了電場誘發高應變之結果。而在改變溫度的研究結果發現BNT7.5BT陶瓷展現去極化相轉移溫度(depolarization temperature, Td)=90 oC,此溫度證實為電域結構從鐵電態(ferroelectric state)到弛豫態(relaxor state)之轉移行為。另外,Zr摻雜的BNT7.5BT陶瓷存在Burns temperatures (TB)位於400-435 °C區間,此溫度以下極化奈米電域結構開始發展。Zr摻雜的BNT7.5BT陶瓷展現寬化的擴散相轉移行為,建議為R+T相 到 T相的漸進式相轉移發生。Zr摻雜的BNT7.5BT陶瓷呈現出不受溫度影響的線性高應變行為,在150 °C時展現出0.482 %之最大應變值,此材料系統可做為非鉛壓電致動器發展考量之重要材料。

The study has been divided into two parts. PartΙfocuses on the effects of sintering atmosphere on microstructure and electrical properties of lead-free
(Bi0.5Na0.5)TiO3-based ceramics. PartΠ focuses on large E-field induced strain and polar evolution in lead-free Zr-doped 92.5%(Bi0.5Na0.5)TiO3- 7.5%BaTiO3 ceramics.
0.93(Bi0.5Na0.5)TiO3-0.07BaTiO3 (BNT-7BT) piezoelectric ceramics sintered in O2 and N2 have been investigated to understand the effects of sintering atmosphere on defects, microstructures, and dielectric properties. The BNT-7BT ceramics sintered in O2 and N2 exhibit a major pseudo-cubic structure with slight distortion from the cubic cell. The specimen sintered in N2 atmosphere shows larger grain sizes than the specimen sintered in O2. The X-ray photoelectron spectroscopy (XPS), SEM-EDS, and TEM-EDS suggest that specimen sintered in N2 atmosphere exhibits more ion vacancies. Leakage current measurements suggest more oxygen vacancies for specimen sintered in N2. A higher remanent polarization and lower coercive field were observed for specimen sintered in O2. Strain vs. E field (S-E) loops display higher E-field induced strain up to 0.256% and higher dielectric permittivity for specimen sintered in O2. This work suggests that sintering in the O-rich atmosphere can reduce defects and enhance ferroelectric, dielectric, and piezoelectric properties.
Structure, dielectric permittivity, strain, electric (E) polarization, and piezoelectric responses of 92.5%(Bi0.5Na0.5)TiO3-7.5%Ba(Ti1-xZrx)O3 (BNT7.5BT-100xZr; x=0-0.04) ceramics were investigated as functions of poling E field and temperature. The BNT7.5BT ceramic reveals a phase transition from P4bm nanodomains to long-range-ordered P4mm domains under poling E field. The Zr-doped BNT7.5BT ceramic reveals a reversible change of unit cell with dynamically fluctuating polar nanoregions, which are responsible for the large strain. The poled BNT7.5BT ceramic displays a depolarization temperature of Td=90 oC, which corresponds to a phase transition from ferroelectric to relaxor state. The Zr-doped BNT7.5BT ceramics have Burns temperatures (TB) in the region of 400-435 °C, below which polar nanoregions begin to develop. The Zr-doped BNT7.5BT ceramics display wide diffuse phase transitions, suggesting a transition from R+T to T phase. BNT7.5BT-2Zr ceramic shows a temperature-dependent linear large strain of 0.482 % at 150 °C and can be a potential candidate for lead-free actuator.
明志科技大學碩士學位論文指導教授推薦書..........................................i
明志科技大學碩士學位論文口試委員會審定書.......................................ii
明志科技大學學位論文授權書....................................................iii
ACKNOWLEDGEMENTS誌謝...........................................................iv
ABSTRACT.......................................................................vi
CHINESE ABSTRACT中文摘要.....................................................viii
CONTENTS........................................................................x
FIGURE CAPTIONS..............................................................xiii
TABLE LIST...................................................................xvii
CHAPTER 1 Introduction..........................................................1
1.1 Motivations................................................................1
1.2 Literatures Review.........................................................4
1.2.1 Lead-Free (Bi0.5Na0.5)TiO3-Base Ceramics................................4
1.2.2 BNT100x%BT Structure and Physical Properties............................5
1.2.3 Aliovalently Doped Element..............................................7
1.2.4 Electrostriction....................................................... 9
1.2.5 Objectives.............................................................10
CHAPTER 2 Fundamental Principles...............................................11
2.1 X-ray Diffraction.........................................................11
2.2 Scanning Electron Microscope and Energy Dispersive Spectrometer...........13
2.3 Transmission Electron Microscopy..........................................16
2.4 X-ray Photoelectron Spectroscopy (XPS)....................................17
2.5 Dielectric Characterization...............................................18
2.6 Piezoelectric Effects.....................................................21
2.7 Pyroelectric Effects......................................................22
2.8 S-E & P-E Hysteresis Loops................................................23
CHAPTER 3 Effects of Sintering Atmosphere on Microstructures and Electrical Properties of Lead-Free (Bi0.5Na0.5)TiO3-Based Ceramics........................26
3.1 Experimental Perocedures..................................................26
3.1.1 Flow Chart of Ceramics Synthesis.......................................26
3.1.2 Ceramic Preparation....................................................27
3.2 Results and Discussion....................................................30
3.2.1 X-ray Diffraction......................................................30
3.2.2 Microstructural Investigation by SEM...................................32
3.2.3 Ferroelectric Properties...............................................34
3.2.4 Piezoelectric Properties...............................................35
3.2.5 Dielectric Propertites.................................................36
3.2.6 X-ray Photoelectron Spectroscopy.......................................38
3.2.7 Qualitative Analysis...................................................41
3.2.8 Leakage Current Density................................................44
CHAPTER 4 E-field Induced Strain and Polar Evolution in Zr-Doped 92.5%(Bi0.5Na0.5)TiO3- 7.5%BaTiO3 Ceramics.....................................46
4.1 Experimental Perocedures..................................................46
4.1.1 Flow Chart of Ceramics Synthesis.......................................46
4.1.2 Ceramic Preparation....................................................47
4.1.3 Specimen Preparation...................................................48
4.2 Results and Discussion....................................................53
4.2.1 BNT-xBT and Different Element Doped BNT-7.5BT..........................53
4.2.2 Structures.............................................................58
4.2.3 SEM Morphology.........................................................60
4.2.4 Ferroelectric and Piezoelectric Properties.............................61
4.2.5 E-Field Induced Phase Transition.......................................65
4.2.6 Polar Nanoregions and Diffraction Patterns of TEM......................67
4.2.7 Temperature-Dependent Phase Transition.................................71
CHAPTER 5 Conclusions..........................................................82
5.1 Effects of Sintering Atmosphere...........................................82
5.2 E-field Induced Strain and Polar Evolution................................83
References.....................................................................84


[1]G. A. Smolenskii, V. A. Isupov, A. I. Agranovskaya, N. N. Krainik, “New ferroelectrics of complex composition IV,” Sov. Phys. Solid State 2, pp. 2651-54, 1961.
[2]C. F. Buhrer, “Some properties of bismuth perovskites,”. J. Chem. Phys., vol . 36, pp. 798, May. 1961.
[3]T. Takenaka, K. Maruyama, K. Sakata, “(Bi1/2Na1/2)TiO3-BaTiO3 System for lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., vol. 30, pp. 2236-39, Sep. 1991.
[4]C. S. Tu, I. G. Siny, V.H. Schmidt, “Sequence of dielectric anomalies and high-temperature relaxation behavior in Na1/2Bi1/2TiO3,” Phys. Rev. B, vol. 49, pp. 11550-59, May. 1994.
[5]D. Lin, D. Xiao, J. Zhu, and P. Yu, “Piezoelectric and ferroelectric properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 lead-free piezoelectric ceramics,“ Appl. Phys. Lett., vol. 88, pp. 062901, Feb. 2006.
[6]T. Takenaka, H. Nagata, and Y. Hiruma, “Current developments and prospective of lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., pp. 3787-3801, May. 2008.
[7]C. Xu, D. Lin, and K. W. Kwok, “Structure, electrical properties and depolarization temperature of (Bi0.5Na0.5)TiO3-BaTiO3 lead-free piezoelectric ceramics,” Solid State Sci. vol. 10, pp. 934-940, Jul. 2008.
[8]M. Chen, Q. Xu, B. H. Kim, B. K. Ahn, J. H. Ko, W. J. Kang, and O. J. Nam, “Structure and electrical properties of (Na0.5Bi0.5)1−xBaxTiO3 piezoelectric ceramics,” J. Eur. Ceram. Soc., vol. 28, pp. 843-849, Aug. 2007.
[9]S. T. Zhang, A. B. Kounga, E. Aulbach, T. Granzow, W. Jo, H. J. Kleebe, and J. Rödel, “Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3. I. Structure and room temperature properties,” J. Appl. Phys., vol. 103, pp. 034107, Feb. 2008.
[10]S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, and D. Damjanovic, “High-strain lead-free antiferroelectric electrostrictors, “ Adv. Mater., vol. 21, pp. 4716-4720, Aug. 2009.
[11]C. Ma and X. Tan, “Phase diagram of unpoled lead-free (1-x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics,” Solid State Commun., vol. 150, pp. 1497-1500, Sep. 2010.
[12]W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, and J. Rödel, “Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics,” J. Appl. Phys., vol. 109, pp. 014110, Jan. 2011.
[13]W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, and H. J. Kleebe, A. J. Bell, and J. Rödel, “On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol%BaTiO3,” J. Appl. Phys., vol. 110, pp. 074106, Oct. 2011.
[14]S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, “Giant strain in lead-free (Bi0.5Na0.5)TiO3-based single crystals,” Appl. Phys. Lett., vol. 92, pp. 182905, May. 2008.
[15]Y. Noguchi, T. Matsumoto, and M. Miyayama, “Impact of defect control on the polarization properties in Bi4Ti3O12 ferroelectric single crystals,” Jpn. J. Appl. Phys., vol. 44, pp. 570-572, Apr. 2005.
[16]X. B. Ren, “Large electric-field-induced strain in ferroelectric crystals by reversible domain switching,” Nat. Mater., vol. 3, pp. 91-94, Jan. 2004.
[17]D. Lin, D. Xiao, J. Zhu, and P. Yu, “Piezoelectric and ferroelectric properties of [Bi0.5(Na1-x-yKxLiy)0.5]TiO3 lead-free piezoelectric ceramics,” Applied Physics Letters, vol. 88, Feb. 2006.
[18]S. T. Zhang, A. B. Kounga, E. Aulbach, Y. Deng, “Temperature-dependent electrical properties of 0.94Bi0.5Na0.5TiO3–0.06BaTiO3 ceramics,” J. Am. Ceram. Soc., vol. 91(12), pp. 3950-54, Dec. 2008.
[19]K. Yoshii, Y. Hiruma, H. Nagata, T. Takenaka, “Electrical properties and depolarization temperature of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3 lead-free piezoelectric ceramics,” Jpn. J. Appl. Phys., vol. 45(5B), pp. 4493-96, 2006.
[20]A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, “Dielectric and piezoelectric properties of (Bi0.5Na0.5)TiO3–(Bi0.5K0.5)TiO3 systems,” Jpn. J. Appl. Phys., vol. 38, pp. 5564-67, Sep. 1999.
[21]P. Y. Chen, C. C. Chou, T. Y. Tseng, H. Chen, “Second phase and defect formation in Bi0.5Na0.5-xKxTiO3 ceramics,” Jpn. J. Appl. Phys., vol. 49, pp. 061506-12, Jun. 2010.
[22]Y. Hiruma, H. Nagata, T. Takenaka, “Phase diagrams and electrical properties of (Bi1/2Na1/2)TiO3-based solid solutions,” J. Appl. Phys, vol. 104, pp. 124106-7, Dec. 2008.
[23]H. Nagata, N. Koizumi, T. Takenaka, “Lead-Free piezoelectric ceramics of (Bi1/2Na1/2)TiO3-BiFeO3 system,” Key Eng. Mater, vol. 169, pp. 37-40, 1999
[24]Y. Hiruma, Y. Imai, Y. Watanabe, T. Takenaka, “Large electrostrain near the phase transition temperature of (Bi0.5Na0.5)TiO3–SrTiO3 ferroelectric ceramics,” Appl. Phys. Lett , vol. 92, pp. 262904-3, Jul. 2008.
[25]S. T. Zhang, A. B. Kounga, E. Aulbach, H. Ehrenberg, J. Rödel, “Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3 – BaTiO3 – K0.5Na0.5NbO3 system,” Appl. Phys. Lett., vol. 91, pp. 112906-3, Sep. 2007.
[26]K. Wang, A. Hussain, W. Jo, J. Rödel, “Temperature-dependent properties of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–SrTiO3 lead-free piezoceramics,” J. Am. Ceram. Soc., vol. 95(7), pp. 2241-47, Jul. 2012.
[27]C. Ang, Z. Yu, “High, purely electrostrictive strain in lead-free dielectrics,” Adv. Mater, vol. 18, pp. 103-06, Jan. 2006.
[28]S. T. Zhang, A. B. Kounga, W. Jo, C. Jamin, K. Seifert, T. Granzow, J. Rödel, D. Damjanovic, “High-strain lead-free antiferroelectric electrostrictors,” Adv. Mater, vol. 21, pp. 4716-20, Dec. 2009.
[29]Jo W, Granzow T, Aulbach E, Rödel J, Damjanovic D, “Origin of the large strain response in (K 0.5Na0.5)NbO3-modified (Bi0.5Na0.5)TiO3 –BaTiO3 lead-free piezoceramics,” J. Appl. Phys., vol. 105 pp. 094102-5, May. 2009.
[30]C. Ma, H. Guo, S. P. Beckman, X. Tan, “Creation and destruction of morphotropic phase boundaries through electrical poling : a case study of leadf-free (Bi1/2Na1/2)TiO3–BaTiO3,” Phy. Rev. Lett., vol. 109, pp. 107602-5, Sep. 2012.
[31]P. Y. Chen, C. S. Chen, C. S. Tu, C. D. Cheng, J. S. Cherng, “Relaxor effect on electric field induced large strain in (1-x)(Bi0.5Na0.5)TiO3–xBaTiO3 lead-free piezoceramics,” Ceram. Int., vol. 40, pp. 6137-42, May. 2014.
[32]J. E. Daniels, W. Jo, J. Rödel, J.L. Jones, “Electric-field-induced phase transformation at a lead-free morphotropic phase boundary: case study in a 93%(Bi0.5Na0.5)TiO3–7%BaTiO3 piezoelectric eramic,” Appl. Phys. Lett., vol. 95, pp. 032904-3, Jul. 2009.
[33] M. Hinterstein, J. Rouquette, J. Haines, P. h. Papet, M. Knapp, J. Glaum, H. Fuess, “Structural description of the macroscopic piezo- and ferroelectric properties of lead zirconate titanate,” Phys. Rev. Lett.,, vol. 107, pp. 077602-4, Aug. 2011.
[34]H. Guo, C. Ma, X, Liu, X, Tan, “Electrical poling below coercive field for large piezoelectricity,” Appl. Phys. Lett., vol. 102, pp. 092902-4, Mar. 2013.
[35]C. Ma, X. Tan, “Phase Diagram of Unpoled Lead-Free (1-x) (Bi1/2Na1/2) TiO3 – xBaTiO3 ceramics,” Solid State Commun, vol. 150, pp. 1497-50, Sep. 2010.
[36]C. Ma, X. Tan, E. Dul’kin, M. Rot, “Domain structure-dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics,” J. Appl. Phys., vol. 108, pp. 104105-8, Nov. 2010.
[37]C. Ma, X. Tan, “In situ transmission electron microscopy study on the phase transition in lead-free (1−x)(Bi1/2Na1/2)TiO3–xBaTiO3 ceramics,” J. Am. Ceram. Soc., vol. 94, pp. 4040-44, Jun. 2011.
[38]W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, J. Rödel. “Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2) TiO3 –BaTiO3 piezoceramics,” J. Appl. Phys., vol. 109, pp. 014110-7, Jul. 2011.
[39]H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rödel, M. Hoffman, “Electric-field-induced strain mechanisms in lead-free 94%Bi1/2Na1/2TiO3–6%BaTiO3,” Appl. Phys. Lett., vol. 98, pp. 082901-3, Feb. 2011.
[40]C. S. Chen, P. Y. Chen, C. S. Tu, “Polar nanoregions and dielectric properties in high-strain lead-free 0.93(Bi1/2Na1/2)TiO3-0.07BaTiO3 piezoelectric single crystals,” J. Appl. Phys., vol. 115, pp. 014105-8, Jan. 2014.
[41]A. A. Bokov, Z. G. Ye, “Recent progress in relaxor ferroelectrics with perovskite structure,” J. Mater. Sci., vol. 41, pp. 31-52, Jan. 2006.
[42]V. V. Shvartsman, D. C. Lupascu, “Lead-free relaxor ferroelectrics,” J. Am. Ceram. Soc., vol. 95(1), pp. 1-26, Jan. 2012.
[43]H. Foronda, M. Deluca, E. Aksel, J. S. Forrester, J. L. Jones, “Thermally-induced loss of piezoelectricity in ferroelectric Na0.5Bi0.5TiO3-BaTiO3,” Mater. Lett.,vol. 115, pp. 132-135, Jan. 2014.
[44]J. Suchanicz, J. Kwapulinski, “X-ray diffraction study of the phase transitions in Na0.5Bi0.5TiO3,” Ferroelectrics, vol. 165, pp. 249-253, Mar. 1995.
[45]GO Jones, P. A. Thomas, “Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3,” Acta Cryst.B, vol. 58, pp. 168-178, Apr. 2002.
[46]W. Jo, S. Schaab, E. Sapper, L. A. Schmitt, H. J. Kleebe, “On the phase identity and its thermal evolution of lead free (Bi1/2Na1/2)TiO3-6 mol% BaTiO3,” J. Appl. Phys., vol. 110, pp. 074106-9, Oct. 2011.
[47]E. Sapper, S. Schaab, W. Jo, T. Granzow, J. Rödel, “Influence of electric fields on the depolarization temperature of Mn doped (1-x)(Bi1/2Na1/2)TiO3- xBaTiO3,” J. Appl. Phys., vol. 111(1), pp. 014105-6, Jan. 2012.
[48]Y. Hiruma, H. Nagata, T. Takenaka, “Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics,” J. Appl. Phys., vol. 105 (8), pp. 084112, Apr. 2009.
[49]E. M. Anton, W. Jo, D. Damjanovic, J. Rödel, “Determination of depolarization temperature of (Bi1/2Na1/2)TiO3-based lead-free piezoceramics,” J. Appl. Phys., vol. 110, pp. 094108-14, Nov. 2011.
[50]S. E. Park, T. R. Shrout, “Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals,” J. Appl. Phys. vol. 82, pp. 1804-8, May. 1997.
[51]G. H. Haertling, “Ferroelectric ceramics : history and technology,” J. Am. Ceram. Soc., vol. 82, pp. 797-18, Apr. 1999.
[52] J. Rödel, W. Jo, K. T. P. Serfert, E. M. Anton, T. Granzow, “Perspective on the development of lead-free piezoceramics,” J. Am. Ceram. Soc., vol. 92, pp. 1153-77, Jan. 2009.
[53]J. Anthoninappen, C. H. Lin, C. S. Tu, P. Y. Chen, C. S. Chen, S. J. Chiu, H. Y. Lee, S. F. Wang, C. M. Hung, “Enhanced piezoelectric and dielectric responses in 92.5%(Bi0.5Na0.5)TiO3-7.5%BaTiO3 Ceramics,” J. Am. Ceram. Soc., vol. 97(6), pp. 2890-1894, Jun. 2014 .
[54]S. A. Sheets, A. N. Soukhojak, N. Ohashi, Y. M. Chianga, “Relaxor single crystals in the (Bi1/2Na1/2)1-xBaxZryTi1-yO3 (BNBZT) System exhibiting high electrostrictive strain,” J. Appl. Phys., vol. 90, pp. 5287-95. 2001.
[55]Y. Q. Yao, T. Y. Tseng, C. C. Chou, H. D. Chen, “Phase transition and piezoelectric property of (Bi0.5Na0.5)0.94Ba0.06ZryTi1−yO3 (y=0–0.04) ceramics,” J. Appl. Phys., vol. 102, pp. 094102-5, Nov. 2007.
[56]C. C. Jin, F. F. Wangn, Q. R. Yao, Y. X. Tang, T. Wang, W. Z. Shi, “Ferroelectric, dielectric properties and large strain response in Zr-modified (Bi0.5Na0.5)TiO3–BaTiO3 lead-free ceramics,” Ceram. Int., vol. 40, pp. 6143-50, May. 2014.
[57]J. Glaum, H. Simons, M. Acosta, M. Hoffman, “Tailoring the piezoelectric and pelaxor properties of (Bi1/2Na1/2)TiO3–BaTiO3 via zirconium doping,” J. Am. Ceram. Soc., vol. 96(9), pp. 2881-86, Sep. 2013.
[58]C. S. Chou, R. Y. Yang, J. H. Chen, and S. W. Chou, “The optimum conditions for preparing the lead-free piezoelectric ceramic of Bi0.5Na0.5TiO3 using the Taguchi method,” Powder Technology, vol. 199, pp. 264-271, May. 2010.
[59]K. Wang, A. Hussain, W. Jo, and J. Rӧdel, “Temperature-dependent properties of (Bi1/2Na1/2)TiO3-(Bi1/2K1/2)TiO3- SrTiO3 lead-free piezoceramics,” J. Am. Ceram. Soc., vol. 95(7), pp. 2241-2247, Mar. 2012.
[60]V. H. Schmidt, G. F. Tuthill, C. S. Tu, T. V. Schogoleva, S. C. Meschia, “Conductivity across random barrier distribution as origin of large low-frequency dielectric peak in perovskite crystals and ceramics,” J. Phys. Chem. Solids, vol. 57, pp. 1493-1497, Oct. 1996.
[61]J. F. Moulder, W. F. Stickle, P. E. Sobol, and K. D. Bomben, “Handbook of X-Ray Photoelectron Spectroscopy,” edited by J. Chastain Perkin-Elmer Corporation, Minnesota, 1992.
[62]C. Metzmacher, K. Albertsen, “Microstructural Investigations of Barium Titanate-Based Material for Base Metal Electrode Ceramic Multilayer Capacitor,” J. Am. Ceram. Soc., vol. 84(4), pp. 821-826, Apr. 2001.
[63] Y. Sakabe, N. Wade, T. Hiramatsu, and T. Tonogaki, “Dielectric Properties of Fine-Grained BaTiO3 Ceramics Doped with CaO,” Jpn. J. Appl. Phys., vol. 41, pp. 6922–6925, Nov. 2002.
[64]Y. Noguchi, M. Soga, M. Takahashi, and M. Miyayama, “Oxygen stability and leakage current mechanism in ferroelectric La-substituted Bi4Ti3O12 single crystals,” Jpn. J. Appl. Phys., vol. 44, pp. 6998-7002, Sep. 2005.
[65]Y. Kizaki, Y. Noguchi, and M. Miyayama, “Defect control for low leakage current in K0.5Na 0.5NbO3 single crystals,” Appl. Phys. Lett., vol. 89, pp. 142910, 2006.
[66]S. E. Park and S. J. Chung, “Ferroic phase transitions in (Na1/2Bi1/2)TiO3 crystals,” J. Am. Ceram. Soc., vol. 79, pp. 1290-1296, May. 1996.
[67]U. Robels, and G. Arlt, “Domain wall clamping in ferroelectrics by orientation of defects,” J. Appl. Phys., vol. 133, pp. 3454-3460, 1993.
[68]W. Jo, J. E. Daniels, J. L. Jones, X. Tan, P. A. Thomas, D. Damjanovic, J. Rödel, “Evolving morphotropic phase boundary in lead-free (Bi1/2Na1/2)TiO3-BaTiO3 piezoceramics,” J. Appl. Phys., vol. 109, pp. 014110, Jul. 2011.
[69] C. S. Chen, C. S. Tu, P. Y. Chen, Y. Ting, S. J. Chiu, C. M. Hung, H. Y. Lee, S. F. Wang, J. Anthoninappen, V. H. Schmidt, R. R. Chien, “Dielectric properties in lead-free piezoelectric (Bi0.5Na0.5)TiO3–BaTiO3 single crystals and ceramics,” J. Cryst. Growth, vol. 393, pp. 129-133, May. 2014.
[70]H. Y. Chen, C. S. Tu, C. M. Hung, V. H. Schmidt, C. S. Ku, H. Y. Lee, “Poling effect and piezoelectric response in high-strain ferroelectric 0.7Pb(Mg1/3Nb2/3)O3 -0.3PbTiO3 crystal,” J. Appl. Phys., vol. 108, pp. 044101-6, Aug. 2010.
[71]H. Wang, H. Xu, H. Luo, Z. Yin, A. A. Bokov, Z. G. Ye, “Dielectric anomalies of the relaxor-based 0.9Pb(Mg1/3Nb2/3)O3-0.1PbTiO3 single crystals,” Appl. Phys. Lett., vol. 87, pp. 012904-3, Jul. 2005.
[72]J. Suchanicz, A. Molak, C. Kuś, “Dependence of the electric permittivity on the sample thickness of Na0.5Bi0.5TiO3: the manifestation of nonlinearity in the region of diffuse phase transition,” Ferroelectrics, vol. 177, pp. 201-06, 1996.
[73]J. Suchanicz, K. Roleder, J. Kwapuliński, I. Jankowska-Sumara, “Dielectric and structural relaxation phenomena in Na0.5Bi0.5TiO3 single crystal,” Phase Transit, vol. 57, pp. 173- 82, 1996.
[74]A. M. Glazer, “The classification of tilted octahedra in perovskites,” Acta Crystallogr. B, vol. 28, pp. 3384-92, Nov. 1972.
[75]D. I. Woodward, I. M. Reaney, “Electron diffraction of tilted perovskites,” Acta Crystallogr. B, vol. 61, pp. 387-99, May. 2005.
[76]C. W. Tai, S. H. Choy, H. L. W. Chan, “Ferroelectric domain morphology evolution and octahedral tilting in lead-free (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(Bi1/2Li1/2)TiO3–BaTiO3 ceramics at different temperatures,” J. Am. Ceram. Soc., vol. 91, pp. 3335-41, 2008.
[77]V. H. Schmidt, G. F. Tuthill, C. S. Tu, T. V. Schogoleva, S. C. Meschia, “Conductivity across random barrier distribution as origin of large low-frequency dielectric peak in perovskite crystals and ceramics,” J. Phys. Chem. Solids, vol. 57, pp. 1493-97, Oct. 1996.
[78]K. Hirota, Z. G. Ye, S. Wakimoto, P. M. Gehring, G. Shirane, “Neutron diffuse scattering from polar nanoregions in the relaxor Pb(Mg1/3Nb2/3)O3,” Phys. Rev. B, vol. 65, pp. 104105-7, Feb. 2002 .
[79]D. Viehland, S. J. Jang, L. E. Cross, M. Wuttig, “Deviation from Curie-Weiss behavior in relaxor ferroelectrics,” Phys. Rev. B, vol. 46, pp. 8003-06, Oct. 1992 .
[80]J. Suchanicz, “Behavior of Na0.5Bi0.5TiO3 ceramics in the a.c. electric field,” Ferroelectrics, vol. 209, pp. 561-68, 1998.
[81]T. Oh, M. H. Kim, “Phase relation and dielectric properties in (Bi1/2Na1/2)1−xBaxTiO3 lead-free ceramics,” Mater. Sci. Eng. B, vol. 132, pp. 239-46, 2006.
[82]F. Wang, M. Xu, Y. Tang, T. Wang, W. Shi, and C. M. Leung, “Large strain response in the ternary Bi0.5Na0.5TiO3–BaTiO3–SrTiO3 solid solutions.,” J. Am. Ceram. Soc., vol. 95(6), pp. 1955-59, Jun. 2012.
[83]K. T. P. Seifert, W. Jo, and J. Rödel, “Temperature‐insensitive large strain of (Bi1/2Na1/2)TiO3–(Bi1/2K1/2)TiO3–(K0.5Na0.5)NbO3 lea‐free piezoceramics,” J. Am. Ceram. Soc.,vol. 93(5), pp. 1392-96, May. 2010.
[84]S. T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, J. Rödel, “Lead-free piezoceramics with giant strain in the system Bi0.5Na0.5TiO3–BaTiO3–K0.5Na0.5NbO3. II. temperature dependent properties,” J. Appl. Phys., vol. 103, pp. 034108-7, Feb. 2008.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔