跳到主要內容

臺灣博碩士論文加值系統

(44.200.169.3) 您好!臺灣時間:2022/12/01 01:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:莊伯超
研究生(外文):Bo-Chao Zhuang
論文名稱:微特徵尺寸快速模具研究與應用
論文名稱(外文):Development and Application of Rapid Tooling Technology with Micro-Featured Size
指導教授:郭啟全郭啟全引用關係
指導教授(外文):Chil-Chyuan Kuo
口試委員:謝政道劉福興
口試委員(外文):Cheng-Tiao HsiehFwu-Hsing Liu
口試日期:2014-07-30
學位類別:碩士
校院名稱:明志科技大學
系所名稱:機械工程系機械與機電工程碩士班
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:136
中文關鍵詞:快速模具橡膠樹脂金屬樹脂微齒輪高深寬比熱壓印成型澆注成型
外文關鍵詞:Rapid ToolingRubberAl-filled epoxyMicro gearHigh aspect ratioHot embossing processCasting process
相關次數:
  • 被引用被引用:1
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
  近年來,微結構應用需求大增,目前已知應用於微致動器、微傳動系統及通訊系統等領域,故本研究首先以提高模具翻製率為前提,以快速模具結合橡膠樹脂做為中介模具,製作微齒輪金屬樹脂熱壓印模具;此外,高深寬比微結構已被廣泛應用。本研究以製作高深寬比微結構為前提,利用氧氣電漿進行表面改質,以快速模具結合橡膠樹脂做為中介模具,提出運用快速模具技術製作高深寬比接近20之微結構金屬樹脂模具。透過此方法製作高深寬比微結構模具,此模具為硬模可應用於批量生產元件,僅需三天時間即可完成。
  由微齒輪金屬樹脂熱壓印模具研究結果得知,微模具製作之製程複製率為96%,微模具表面之粗糙度為1.98 μm,運用於微熱壓印成型之轉寫率為99.2%,與原型件比較之轉寫率為94.5%,由微高深寬比微結構模具研究結果得知,其總轉寫率為98.4 %。與微機電系統比較,其開發費用與微機電系統製程相比可節省約71.3 %,因此本研究所提出之高深寬比微結構模具,整體加工製程步驟及時間縮短,且具有高尺寸精度,確實能夠達到快速製造之目的。
  There has been an increasing need of micro-sized features mold in recent years. It is being applied in many fields, such as Microactuator, Micro Drivetrain System, and Communication System. Based on the premise that transcription rate was expected to rise, the current study manufacturd micro gear Al-filled epoxy hot embossing molds by means of Rapid Tooling (RT) where the rubber is used as intermediate mold. In addition, high aspect ratio micro sized features are widely applied.To manufacture molds with high aspect ratio micro sized features, the current study proposed an ideal skill for manufacturing Al-filled epoxy of high aspect ratio close to 20 by which applying oxygen plasma treatment to surface modification and the rubber is used as intermediate mold. Made with high aspect ratio micro sized features mold, such hard molds require only three working days to meed the need of mass production of parts.
The study of micro gear Al-filled epoxy hot embossing molds showed that replication rate of manufacturing micro mold was 96%, the surface roughness was 1.98 μm. Replication rate of application to micro hot embossing process was 99.2%, and that the replication rate of comparing master models was 94.5%. The study of molds with high aspect ratio micro sized features showed the total replication rate was 98.4%. In comparison with Micro Electro Mechanical Systems (MEMS), the cost of development was cheaper by 71.3 %. Therefore, the skill proposed in the study successfully sped up manufacturing process and increase accuracy.
明志科技大學碩士學位論文指導教授推薦書
明志科技大學碩士學位論文口試委員會審定書
明志科技大學學位論文授權書
誌謝
中文摘要
Abstract
目 錄
表目錄
圖目錄
第一章 緒論
1.1 前言
1.2 研究動機與目的
1.3 論文架構
第二章 文獻探討
2.1 熱壓印技術
2.2 快速模具之簡介
2.3 高深寬比微結構簡介
2.4 高深寬比微特徵應用相關專利搜索說明
第三章 實驗規劃與方法
3.1 實驗材料與設備
3.1-1 底板
3.1-2 矽膠主劑與硬化劑
3.1-3 橡膠樹脂
3.1-4 金屬樹脂
3.1-5 離型劑
3.1-6 真空澆注機
3.1-7 高溫恆溫烤箱
3.1-8 熱壓印機
3.1-9 聚甲醛
3.1-10 晶圓切割機
3.2 量測設備
3.2-1 精密共軛焦顯微鏡
3.2-2 白光干涉儀
3.2-3 接觸角量測儀
3.2-4 掃描式電子顯微鏡
第四章 微特徵尺寸快速模具研究與應用
4.1 前言
4.2 實驗過程
4.3 結果與討論
4.4 結論
第五章 具高深寬比快速模具製程研發
5.1 前言
5.2 實驗過程
5.3 結果與討論
5.4 結論
第六章 結論與未來展望
6.1 結論
6.2 未來展望
參考文獻



[1]J. Haisma, M. Verheijen, K. Heuvel, J. Berg, “ Mold‐assisted nanolithography: A process for reliable pattern replication,” J. vac. sci. technol., B, Microelectron. nanometer struct. process. meas.phenom., vol. 14, pp. 4124-4128, Aug., 1996.
[2]E. W. Becker, W. Ehrfeld, P. Hagmann, A. Maner, D. Munchmeyer, “ Fabrication of microstructures with extreme structural heights by synchrotron radiation lithography, galvanoforming and plastic forming (LIGA process),” Microelectron. Eng., vol. 4, pp. 35-56, May., 1986.
[3]S. J. Chung, H. Hein, T. Hirata, J. Mohr, T. Akashi, “ A micro cycloid-gear system fabricated by multi-exposure LIGA technique,” Microsystem Technologies, vol. 6,pp.149-153, Apr., 2000.
[4]M. S. Huang, C. J. Li, J. C. Yu, Y. M. Huang, L. C. Hsieh, “ Robust parameter design of micro-injection molded gears using a LIGA-like fabricated mold insert,” J. mater. process. technol., vol. 209, pp. 5690-5701, Aug., 2009.
[5]W. Pfleging, W. Bernauer, T. Hanemann, M. Torge, “ Rapid fabrication of microcomponents – UV-laser assisted prototyping, laser micro-machining of mold inserts and replication via photomolding,” Microsystem Technologies, vol. 9, pp. 67-74, Nov., 2002.
[6]D. Reynaerts, P. H. Heeren, H. V. Brussel, “ Microstructuring of silicon by electro-discharge machining(EDM)part I: theory,” Sens. actuators. A Phys., vol. 60, pp. 212-218, May., 1997.
[7]P. H. Heeren, D. Reynaerts, H. V. Brussel, C. Beuret, O. Larsson, A. Bertholds, “ Microstructuring of silicon by electro-discharge machining (EDM) – Part II: Applications,” Sens. actuators. A Phys., vol. 61, pp. 379-386, May., 1997.
[8]Y. B. Bang, K. M. Lee, S. Oh, “ 5-axis micro milling machine for machining micro parts,” Int. j. adv. manuf. technol., vol 25, pp. 888-894, May., 2005.
[9]B. S. Li, M. X. Ren, C. Yang, H. Z. Fu, “ Microstructure of Zn-Al4 alloy microcastings by micro precisioncasting based on metal mold,” Trans. Nonferrous Met. Soc. China, vol. 18, pp. 327-332, Apr., 2008.
[10]G. Baumeister, R. Ruprecht, J. Hausselt, “ Microcasting of parts made of metal alloys,” Microsyst Technol, vol. 10, pp. 261-264, Mar., 2004.
[11]G. Baumeister, R. Ruprecht, J. Hausselt,“ Replication of LIGA structures using microcasting,” Microsyst Technol, vol. 10, pp. 484-488, Oct., 2004.
[12]G. Baumeister, K. Murller, R. Ruprecht, J. Hausselt,“ Production of metallic high aspect ratio microstructures by microcasting,” Microsyst Technol, vol. 8, pp. 105-108, May., 2002.
[13]Y. Zhang, Y. Liu, R. Ji, B. Cai, “Study of the recast layer of a surface machined by sinking electrical discharge machining using water-in-oil emulsion as dielectric,” Appl. surf. sci., vol. 257, pp. 5989-5997, May., 2011.
[14]Y. Tang, W. K. Tan, J. Y. H. Fuh, H. T. Loh, Y. S. Wong, S. C. H. Thian, L. Lut, “ Micro-mould fabrication for a micro-gear via vacuum casting,” J. mater. process. technol., vol. 192-193, pp.334-339, Oct., 2007.
[15]R. Ruprecht, T. Benzler, T. Hanemann, K. Műller, J. Konys, V. Piotter, G. Schanz, L. Schmidt, A. Thies, H. Wöllmer, J. Haußelt, “ Various Replication Techniques for Manufacturing Three-Dimensional Metal Microstructures,” Microsystem Technologies, vol. 4, pp. 28-31, Dec., 1997.
[16]蕭宏宇,“微齒輪與生物晶片之製程分析測試”,大葉大學機械研究所 碩士論文,中華民國九十五年。
[17]C. T. Pan, S. C. Lo, J. C. Yang, Y. J. Chen, “ Fabrication of optical disk mastering using electron beam and embossing process,” Opt. quantum electron. , vol.39, pp. 693-705, Jun., 2007.
[18]C. T. Pan, T. T. Wu, M. F. Chen, Y. C. Chang, C. J. Lee, J. C. Huang, “ Hot embossing of micro-lens array on bulk metallic glass,” Sens. actuators. A Phys., vol. 141, pp. 422-431, Feb., 2008.
[19]T. E. Kimerling, W. Liu, B. H. Kim, D. Yao, “ Rapid hot embossing of polymer microfeatures,” Microsystem Technologies, vol. 12, pp. 730-735, Jul., 2006.
[20]P. K. D. V. Yarlagadda, I. P. Ilyas, P. Christodoulou, “ Development of rapid tooling for sheet metal drawing using nickel electroforming and stereolithography processes,” J. mater. process. technol., vol. 111, pp. 286-294, Apr., 2001.
[21]A. Trautmann, F. Heuck, C. Mueller, P. Ruther, and O. Paul, “Replication of microneedle arrays using vacuum casting and hot embossing, ” in Solid-State Sensors, Actuators and Microsystems, 2005. Digest of Technical Papers. TRANSDUCERS'05. The 13th International Conference on, 2005, pp. 1420-1423.
[22]G. Yang, O. V. Makarova, P. Amstutz, C. M. Tang, “Rapid replication of powder composite high-aspect-ratio microstructures using silicone rubber micromolds,” Microsyst Technol, vol. 14, pp. 1663-1667, Oct., 2008.
[23]S. C. H. Thian, J. Y. H. Fuh, Y. S. Wong, H. T. Loh, P. W. Gian, Y. Tang, “Fabrication of microfluidic channel utilizing silicone rubber with vacuum casting,” Microsyst Technol, vol. 14, pp.1125-1135, Aug., 2008.
[24]S. Rahmati, M. R. Rezaei, J. Akbari, “ Design and Manufacture of a Wax Injection Tool for Investment Casting Using Rapid Tooling,” Tsinghua Science & Technology, vol. 14, pp. 108-115, Jun., 2009.
[25]K. Metwally, L. Robert, R. Salut, C. K. Malek, “ SU-8-based rapid tooling for thermal roll embossing,” Microsystem Technologies, vol. 18, pp. 1863-1869, Nov., 2012.
[26]H. Wu, D. Li, Y. Tang, B. Sun, D. Xu, “ Rapid fabrication of alumina-based ceramic cores for gas turbine blades by stereolithography and gelcasting,” J. mater. process. technol., vol. 209, pp. 5886-5891, Sep., 2009.
[27]F. E. H. Tay, E. A. Haider, “ Laser sintered rapid tools with improved surface finish and strength using plating technology,” J. mater. process. technol., vol. 121, pp. 318-322, Feb., 2002.
[28]Y. Yang, S. P. Hannula, “ Development of precision spray forming for rapid tooling,” Mater. sci. eng. A Struct. mater. : prop. microstruct. process., vol. 477, pp. 63-68, Mar., 2008.
[29]E. C. Santos, M. Shiomi, K. Osakada, T. Laoui, “ Rapid manufacturing of metal components by laser forming,” Int. j. mach. tools manuf., vol. 46, pp.1459-1468, Oct., 2006.
[30]S. Akula, K. P. Karunakaran, “ Hybrid adaptive layer manufacturing: An Intelligent art of direct metal rapid tooling process,” Robot. comput.-integr. manuf., vol. 22, pp. 113-123, Apr., 2006.
[31]J. C. Ferreira, “ Rapid tooling of die DMLS inserts for shoot-squeeze moulding (DISA) system,” J. mater. process. technol., vol. 155-156, pp. 1111-1117, Nov., 2004.
[32]R. C. Luo, C. L. Chang, J. H. Tzou, Z. H. Huang, “ Automated desktop manufacturing: Direct metallic rapid tooling system, ” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 584-589.
[33]R. C. Luo, J. H. Tzou, “ The Development of Direct Metallic Rapid Tooling System,” Automation Science and Engineering, vol.4, pp. 1-10, Jan., 2007.
[34]D. Glocker, R. Wiseman, “A new method for the batch production of micro‐Fresnel zone plates,” J. vac. sci. technol. , vol.20, pp. 1098-1100, Apr., 1982.
[35]P. Christian, I. A Jones, C. D Rudd, R. I Campbell, T. J Corden, “ Monomer transfer moulding and rapid prototyping methods for fibre reinforced thermoplastics for medical applications,” Composites Part A: Applied Science and Manufacturing, vol. 32, pp. 969-976, Jul., 2001.
[36]L. S. Ching, C. C. Kai, C. S. Meng, “A novel technique for fabricating facial prosthetic model, ” in Engineering in Medicine and Biology Society, 1998. Proceedings of the 20th Annual International Conference of the IEEE, 1998, pp. 2746-2749.
[37]D. King, T. Tansey, “Alternative materials for rapid tooling, ” J. mater. process. technol.,vol. 212, pp. 313-317, Feb., 2002.
[38]A. Simchi , F. Petzoldt, H. Pohl, “On the development of direct metal laser sintering for rapid tooling, ” J. mater. process. technol., vol. 141, pp. 319-328, Nov., 2003.
[39]J. C. Ferreira, A. Mateus, “Studies of rapid soft tooling with conformal cooling channels for plastic injection moulding, ” J. mater. process. technol.,vol. 142, pp. 508-516, Nov., 2003.
[40]H. Dürr, R. Pilz, N. S. Eleser, “Rapid tooling of EDM electrodes by means of selective laser sintering, ” Comput. ind., vol. 39, pp. 35-45, Jun., 1999.
[41]游文鼎,“翻製式快速模具之研究”,國立台灣科技大學機械研究所 碩士論文,中華民國八十九年。
[42]李賢建,“金屬樹脂、粉末冶金與精密鑄造於薄殼產品之快速模具製作”,國立台灣科技大學機械研究所 碩士論文,中華民國八十九年。
[43]王長富,“金屬樹脂與粉末冶金技術於快速模具製作之可行性研究”,國立台灣科技大學機械研究所 碩士論文,中華民國八十七年。
[44]林致揚,“快速模具技術發展與應用”,明志科技大學機械研究所 碩士論文,中華民國一〇〇年。
[45]呂明駿,“金屬環氧樹脂快速模具應用於金屬引伸成形研究與探討”, 國立高雄應用科技大學模具研究所 碩士論文,中華民國一〇一年。
[46]蔡瑋佳,“油封快速模具之開發”, 國立台灣科技大學機械研究所 碩士論文,中華民國一〇一年。
[47]周岳鋒,“射出成型用之環氧樹脂添加金屬粉末快速模具開發與冷卻水路設計”, 國立高雄應用科技大學機械研究所 碩士論文,中華民國九十九年。
[48]徐聰榮,“直接澆鑄金屬快速模具之石膏基複合粉末及其成型方法之研究”,國立成功大學航空太空工程研究所 博士論文,中華民國九十八年。
[49]徐正宗,“微渦輪系統於快速原型與快速模具之設計製作”,國立雲林科技大學機械研究所 碩士論文,中華民國九十六年。
[50]劉韋志,“快速模具技術應用於微光學元件製作研究”, 國立臺灣科技大學機械研究所 碩士論文,中華民國九十五年。
[51]陳冠宇,“快速模具技術應用於導光板製作研究”,國立臺灣科技大學機械研究所 碩士論文,中華民國九十四年。
[52]張正龍,“微機電感測器嵌入於直接金屬快速模具之研發”,國立中正大學光機電整合工程研究所 碩士論文,中華民國九十四年。
[53]黃忠宏,“直接漸層合金材料快速模具系統之研發”,國立中正大學光機電整合工程研究所 碩士論文,中華民國九十四年。
[54]R. D. Chien, “ Hot embossing of microfluidic platform,” Int. commun. heat mass transf., vol.33 , pp. 645-653, May., 2006.
[55]J. C. Hung, Y. P. Tsai, C. Hung, “ Development of a new apparatus for ultrasonic vibration-assisted glass hot embossing process,” Precis. eng., vol.37, pp. 222-227, Jan., 2013.
[56]H. Becker, U. Heim, “ Hot embossing as a method for the fabrication of polymer high aspect ratio structures,” Sens. actuators. A Phys., vol.83, pp.130-135, May., 2000.
[57]M. Heckele, W. Bacher, K. D. Müller, “ Hot embossing-the molding technique for plastic microstructures,” Microsystem Technologies , vol.4, pp. 122-124, May., 1998.
[58]L. J. Heyderman, H. Schift, C. David, J. Gobrecht, T. Schweizer, “ Flow behaviour of thin polymer films used for hot embossing lithography,” Microelectron. eng., vol. 54, pp. 229-245, Dec., 2000.
[59]G. B. Lee, S. H. Chen, G. R. Huang, W. C. Sung, Y. H. Lin, “ Microfabricated plastic chips by hot embossing methods and their applications for DNA separation and detection,” Sens. actuators. B Chem., vol. 75, pp. 142-148, Apr., 2001.
[60]Y. Fan, T. Li, W. M. Lau, J. Yang, “ A Rapid Hot-Embossing Prototyping Approach Using SU-8 Molds Coated With Metal and Antistick Coatings,” IEEE Journal of Microelectromechanical Systems , vol.4, pp. 875-881, Aug., 2012.
[61]S. Lan, H. Lee, J. Ni, M. Lee, S. Choi, “ Experiment Study of micro hot-embossing process using GC mold and PC substrate, ” in Smart Manufacturing Application, 2008. ICSMA 2008. International Conference on, 2008, pp. 377-382.
[62]J. L.Charest, L. E. Bryant, A. J. Garcia, W. P. King, “ Hot embossing for micropatterned cell substrates,” Biomaterials., vol.25, pp. 4767-4775, Aug., 2004.
[63]P.W. Leech, R.A. Lee, B.A. Sexton, F. Smith, “ Hot embossing of micrographic elements in polypropylene,” Microelectron. eng., vol. 84, pp. 109-113, Jan., 2007.
[64]Y. Wang, K. Sefiane, S. Harmand, “Flow boiling in high-aspect ratio mini-and micro-channels with FC-72 and ethanol: Experimental results and heat transfer correlation assessments, ” Exp. therm. fluid sci., vol. 36, pp. 93-106, Jan., 2012.
[65]M. Pizzarelli, F. Nasuti, M. Onofri, “Trade-off analysis of high-aspect-ratio-cooling-channels for rocket engines,” Int. j. heat fluid flow., vol. 44, pp. 458-467, Dec., 2013.
[66]M. C. DeBrosse, K. K. Comfort, E. A. Untener, D. A. Comfort, S. M. Hussain, “High aspect ratio gold nanorods displayed augmented cellular internalization and surface chemistry mediated cytotoxicity,” Materials Science and Engineering: C, vol. 33, pp. 4094-4100, Oct., 2013.
[67]C. W. Hsu, G. J. Wang, “Highly sensitive glucose biosensor based on Au–Ni coaxial nanorod array having high aspect ratio,” Biosens. bioelectron., vol. 56, pp. 204-209, Jun., 2014.
[68]S. Sardo, F. Giacometti, S. Doneda, U. Colombo, D. Crippa, M. D. Muri, A. Fiorino, A. Garnier1, R. Morson, A. Nottola, G. Zuliani, M. Gentili, M. Romagnoli, “Fabrication of ultra-high aspect ratio Bragg gratings for optical filter, ” Microelectron. eng., vol. 85, pp. 1511-1513, Jul., 2008.
[69]N. Wangler, S. Beck, G. Ahrens, A. Voigt, G. Grützner, C. Müller, “Ultra thick epoxy-based dry-film resist for high aspect ratios,” Microelectron. eng., vol. 97, pp. 92-95, Sep., 2012.
[70]J. Cui, K. Feng, S. Zhu, Y. Zhang, J. Tan, “Subpixel edge location method proposed to improve the performance of optical fiber spherical coupling probe during dimensional measurement of micro-cavities with high aspect ratio, ” Measurement, vol. 47, pp. 707-714, Jan., 2014.
[71]E. Al-Hajri, A. H. Shooshtari, S. Dessiatoun, M. M. Ohadi, “Performance characterization of R134a and R245fa in a high aspect ratio microchannel condenser,” Int. j. refrig., vol. 36, pp. 588-600, Mar., 2013.
[72]Y. Takenaka, Y. Kawabata, H. Kitahata, M. Yoshida, Y. Matsuzawa, T. Ohzono, “Effects of surfactant concentration on formation of high-aspect-ratio gold nanorods, ” J. colloid interface sci, vol. 407, pp. 265-272, Oct., 2013.
[73]P. H. Maheshwari, C. Nithya, S. Jain, R. Mathur, “Development of free standing anodes of high aspect ratio carbon materials for rechargeable Li-ion batteries, ” Electrochim. acta., vol. 92, pp. 55-63, Mar., 2013.
[74]E. Hosono, H. Matsuda, I. Honma, S. Fujihara, M. Ichihara, H. Zhou, “Synthesis of single crystalline electro-conductive Na 0.44 MnO 2 nanowires with high aspect ratio for the fast charge–discharge Li ion battery, ” Journal of Power Sources, vol. 182, pp. 349-352, Jul., 2008.
[75]S. Gorelick, J. Vila-Comamala, V. Guzenko, R. Mokso, M. Stampanoni, C. David, “Direct e-beam writing of high aspect ratio nanostructures in PMMA: A tool for diffractive X-ray optics fabrication,” Microelectron. eng., vol. 87, pp. 1052-1056, May., 2010.
[76]P. Forsberg, M. Karlsson, “High aspect ratio optical gratings in diamond,” Diamond and Related Materials, vol. 34, pp. 19-24, Apr., 2013.
[77]H. Lan, “Web-based rapid prototyping and manufacturing systems: A review,” Comput. ind., vol. 60, pp. 643-656, Dec., 2009.
[78]J.A.V. Kan, A.A. Bettiol, B.S. Wee, T.C. Sum, S.M. Tang, F. Watt, “ Proton beam micromachining: a new tool for precision three-dimensional microstructures,” Sens. actuators. A Phys., vol. 92, pp. 370-374, Aug., 2001.
[79]H. Lorenz, M. Laudon, P. Renaud, “ Mechanical Characterization of a New High-Aspect-Ratio Near UV-Photoresist,” Microelectron. eng., vol. 41-42, pp. 371-374, Mar., 1998.
[80]H. Lorenz, M. Despont, P. Vettiger, P. Renaud, “Fabrication of photoplastic high-aspect ratio microparts and micromolds using SU-8 UV resist,” Microsystem Technologies, vol. 4, pp. 143-146, May., 1998.
[81]S. W. Youn, H. Goto, M. Takahashi, S. Oyama,Y. Oshinomi, K. Matsutani, R. Maeda, “A replication process of metallic micro-mold by using parylene embossing and electroplating,” Microelectron. eng., vol. 85, pp. 161-167, Jan., 2008.
[82]Y. Guo, G. Liu, Y. Xiong, J. Wang, X. Huang, Y. Tian, “Study of Hot Embossing Using Nickel and Ni–PTFE LIGA Mold Inserts,” Microelectromechanical systems., vol. 16, pp. 589-597, Jun., 2007.
[83]G. Lucchetta, M. Sorgato, S. Carmignato, E. Savio, “Investigating the technological limits of micro-injection molding in replicating high aspect ratio micro-structured surfaces,” CIRP ann., vol. 63, pp. 521-524, May., 2014.
[84]M. Takahashi, Y. Murakoshi, R. Maeda, K. Hasegawa, “Large area micro hot embossing of Pyrex glass with GC mold machined by dicing,” Microsystem Technologies, vol. 13, pp. 379-384, Feb., 2007.
[85]G. N. Levy, R. Schindel, and J.-P. Kruth, “Rapid manufacturing and rapid tooling with layer manufacturing (LM) technologies, state of the art and future perspectives,” CIRP ann., vol. 52, pp. 589-609, 2003.
[86]S. K. Jui, A. B. Kamaraj, M. M. Sundaram, “High aspect ratio micromachining of glass by electrochemical discharge machining (ECDM),” Manufacturing processes, vol. 15, pp. 460-466, Oct., 2013.
[87]S. H. Ko, H. Pan, C. P. Grigoropoulos, C. K. Luscombe, J. M. J. Fr´echet, D. Poulikakos, “All-inkjet-printed flexible electronics fabrication on a polymer substrate by low-temperature high-resolution selective laser sintering of metal nanoparticles,” Nanotechnology, vol. 18, pp. 1-8, Aug., 2007.
[88]C. H. Amon, J. L. Beuth, L. E. Weiss, R. Merz, F. B. Prinz, “Shape Deposition Manufacturing with Microcasting : Processing, Thermal and Mechanical Lssues,” J. manuf. sci. eng., vol. 120, pp. 656-665, Aug., 1998.
[89]S. J. Rock, C. R. Gilman, “A New SFF process for functional part rapid prototyping and manufacturing: freeform powder molding,” in Solid Freeform Fabrication Symposium Proceedings, 1995, pp. 80-87.
[90]J. Wang, X. P. Wei, P. Christodoulou, H. Hermanto, “Rapid tooling for zinc spin casting using arc metal spray technology,” J. mater. process. technol., vol. 146, pp. 283-288, Mar., 2004.
[91]C. C. Wang, M. J. Jang, Y. L. Yeh, W. R. Wang, “Design and Manufacture of Novel MEMS-based Dielectrophoretic Biochip,” Nano/Micro Engineered and Molecular Systems, vol. 07, pp. 230- 234, Jan., 2007.
[92]K. Y. Hung, Y. K. Chen, S. H. Huang, D. C. Shye, “Molding and hot forming techniques for fabricating plastic aspheric lenses with high blue-light transmittance,” Microsystem Technologies : Sensors, Actuators, Systems Integration, vol. 16, pp. 1439-1444, Aug., 2010.
[93]T.A. Osswald, J.P. Hernández-Ortiz,Polymer processing: modeling and simulation: Hanser Gardner Pulications,Inc., pp.20-24, 2006.
[94]S. H. Lan, H. J. Lee, E. H. Kim, J. Ni, S. H. Lee, X. M. Lai, J. H. Song, N. K. Lee, M. G. Lee, “A parameter study on the micro hot-embossing process of glassy polymer for pattern replication,” Microelectron. eng., vol. 86, pp. 2369-2374, Dec., 2009.
[95]B. E. Rapp, M. Schneider, M. Worgull, “Hot punching on an 8 inch substrate as an alternative technology to produced holes on a large scale, ” in Design, Test, Integration & Packaging of MEMS/MOEMS, 2009. MEMS/MOEMS'09. Symposium on, 2009, pp. 136-139.
[96]Gogoi, P. Bishnu,“在高深寬比微機電系統中寬溝槽及窄溝槽之形成”,專利號碼:I395257,中華民國一百零二年。
[97]S. Pamarthy, H. T. Dao, X. P. Zhou, K. A. Mcdonough, J. Dinev, F. Abooameri, D. E. Gutierrez, J. Zhongyi, R. S. Clark, D. M. Koosau, J. W. Dietz, D. Scanlan, S. Deshmukh, J. P. Holland, A. Paterson,,“適於蝕刻高深寬比特徵結構之真空處理室以及其組件”,專利號碼:I385744,中華民國九十六年。
[98]K. Bera, K. L. Doan, S. Wege, S. Deshmukh,“藉由處理在高深寬比開口之側壁上形成之聚合物以避免開口中蝕刻輪廓折彎與彎曲之方法”,專利號碼:I367527,中華民國一百零一年。
[99]M. H. Shen, U. Leucke, G. X. Jin, X. K. Wang, W. Liu, S. Williams, “形成用於高深寬比應用之非等向性特徵的蝕刻方法”,專利號碼:I352387,中華民國九十六年。
[100]王維中、鄭博仁、楊學安、陳佩君,“具有位於低介電材料內之高深寬比鍍通結構的裝置及其製造方法”,專利號碼:I349358,中華民國一百年。
[101]R. C. Luo, C. L. Chang, J. H. Tzou, Z. H. Huang, “Automated Desktop Manufacturing: Direct Metallic Rapid Tooling System,” in Robotics and Automation, 2005. ICRA 2005. Proceedings of the 2005 IEEE International Conference on, 2005, pp. 584-589.
[102]W. Michaeli, D. Opfermann, T. Kamps, “Advances in micro assembly injection moulding for use in medical systems,” The International Journal of Advanced Manufacturing Technology, vol.33, pp. 206-211, May., 2007.
[103]B. Y. Pemg, C. W. Wu, Y. K. Shen, Y. Lin, “Microfluidic chip fabrication using hot embossing and thermal bonding of COP,” Polymers for Advanced Technologies, vol. 21, pp.457-466, May., 2010.
[104]C. Y. Chang, S. Y. Yanga, L. S. Huang, J. H. Chang, “Fabrication of plastic microlens array using gas-assisted micro-hot-embossing with a silicon mold,” Infrared phys. technol., vol. 48, pp. 163-173, Jun., 2006.
[105]國家衛生研究院核心儀器設施中心,上網日期:102.4.3,檢自:http://core.nhri.org.tw/ 。
[106]王耀逸,“不同製程方法對超薄型導光板成型特性比較”,國立高雄應用科技大學模具工程研究所 碩士論文,中華民國九十八年。
[107]J. M. Li, C. Liu,J. Peng, “Effect of hot embossing process parameters on polymer flow and microchannel accuracy produced without vacuum,” J. mater. process. technol., vol. 207, pp. 163-171, Oct., 2008.
[108]S. Chung, Y. Ima, H. Kim, H. Jeong, D. A. Dornfeld, “Evaluation of micro-replication technology using silicone rubber molds and its applications,” Int. j. mach. tools manuf., vol. 43 , pp. 1337-1345, Oct., 2003.
[109]S. Chung, S. Park, I. Lee, H. Jeong, D. Cho, “Replication techniques for a metal microcomponent having real 3D shape by microcasting process,” Microsystem Technologies : Sensors, Actuators, Systems Integration, vol. 11 , pp. 424-428, Jun., 2005.
[110]S. J. Choi, P. J. Yoo, S. J. Baek, T. W. Kim, H. H. Lee, “An ultraviolet-curable mold for sub-100-nm lithography,” J. Am. Chem. Soc. , vol. 126, pp. 7744–7745, Jun., 2004.
[111]R. K. Jena, C. Y. Yue, Y. C. Lam, P. S. Tang, A. Gupta, “Comparison of different molds (epoxy, polymer and silicon) for microfabrication by hot embossing technique,” Sens. actuators. B Chem., vol. 163, pp. 233-241, Mar., 2012.
[112]P. K. Sharma, K. H. Rao, “Analysis of different approaches for evaluation of surface energy of microbial cells by contact angle goniometry,” Adv. colloid interface sci., vol. 98, pp. 341-463, Aug., 2002.
[113]欣創達科技有限公司,上網日期:102.4.3,檢自:http://www.sindatek.com/。
[114]H. Taylor, D. Boning, C. Iliescu, “A razor-blade test of the demolding energy in a thermoplastic embossing process,” Journal of Micromechanics and Microengineering, vol. 21, pp. 67002-67007, Apr., 2011.
[115]X. Yang, C. Grosjean, Y. C. Tai, C. M. Ho, “A MEMS thermopneumatic silicone rubber membrane valve,” Sens. actuators. A Phys., vol. 64, pp. 101-108, Jan., 1998.
[116]F. H. Olivaresa, G. Barluenga, “Fire performance of recycled rubber-filled high-strength concrete,” Cem. concr. res., vol. 34, pp. 109-117, Jan., 2004.
[117]R. Morent, N. D. Geyter, C. Leys, “Effects of operating parameters on plasma-induced PET surface treatment,” Nuclear Instruments and Methods in Physics Research B, vol. 266, pp. 3081-3085, Jun., 2008.
[118]A. Tepman, “Planar magnetron sputtering source producing improved coating thickness uniformity, step coverage and step coverage uniformity, ” U.S. Patent 5320728, 1994.
[119]W. Oepts, R. Coehoorn, J. Kools, W. De Jonge, “Enhanced anisotropy of permalloy layers sputter deposited on V-grooved substrates and tilted surfaces,” J. magn. magn. mater., vol. 218, pp. 114-120, Jul., 2000.
[120]許勝翔,“電漿疏水化表面改質技術應用在彩色濾光片噴墨印刷之研究”,大同大學模具工程研究所 碩士論文,中華民國九十六年。
[121]C. Cheng, Z. Liye, R. J. Zhan, “Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet,”Surf. Coat technol., vol. 200, pp. 6659-6665, Aug., 2006.
[122]P. K. Yarlagadda, T. S. Hock, “Statistical analysis on accuracy of wax patterns used in investment casting process,” J. mater. process. technol., vol. 138, pp. 75-81, Jul., 2003.
[123]G.B. Lee, C.H. Lin, G.L. Chang, “Micro flow cytometers with buried SU-8/SOG optical waveguides,” Sens. actuators. A Phys., vol. 103, pp. 165-170, Jan., 2003.
[124]ASTM. Standard test method for tensile properties of plastics D638-10. Pennsylvania, United States: ASTM International 2014.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊