跳到主要內容

臺灣博碩士論文加值系統

(2600:1f28:365:80b0:2119:b261:d24c:ce10) 您好!臺灣時間:2025/01/21 07:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:葉宗翰
研究生(外文):Zong-Han Yeh
論文名稱:蛋白質固定化用雙官能基載體之開發
論文名稱(外文):Development of bifunctional supports for proteinimmobilization
指導教授:林松池
口試委員:楊芳鏘賴世明
口試日期:2014-07-29
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:72
相關次數:
  • 被引用被引用:0
  • 點閱點閱:132
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用部分改質商業化膠體(Immobead 150) 希望藉由酵素末端含有的 His-tag,選擇性吸附特定的蛋白,進行固定化的同時,同時有純化的效果,省去純化的成本。本實驗利用亞胺乙二酸(IDA)作為螯合劑將基材表面的部分環氧基覆蓋,再利用金屬離子(Cu2+)的含量來判讀亞胺乙二酸(IDA)覆蓋的程度,發現蛋白濃度大約在 2.5-3mg/ml 之間做固定化效果較好。
本實驗所固定的酵素為開關蛋白 RG13 跟 L-N-carbamoylase, RG13 具有辨識麥芽糖的濃度,隨者麥芽糖濃度不同誘導出不同酵素活性,而L-N-carbamoylase 此酵素可以催化多種主 N-carbamoyl-L-amino acid。此酵素可用於催化生產 L-HPA,而 L-HPA 又可做為抗高血壓藥物的前驅物,具有蠻高的經濟價值。
而兩株酵素在選擇性吸附上,發現 L-NCA 這株酵素比 RG13 這株效更明顯,同樣的條件,使用 RG13 的選擇性吸附比 1.078,而 L-NCA 的選擇性吸附比 1.647,選擇性大約多了 53.9%。
在 L-NCA 固定化部分,利用 IMAC 的方法所形成物理吸附大約需要 2-3個小時,而在 4-5 個小時吸附量達到最大,而大約要 6-7 個小時酵素才會與基材形成共價鍵結,而酵素的吸附時間與活性有相當關係,以活性結果來看大約是以 0.3M 亞胺乙二酸(IDA)部分改質的基材,吸附 5 個小時,所測得的活性最大。


It is said that enzyme’s His-tag will absorb certain proteins while immobilization, and save the cost of purification at the same time. In this study, iminodiacetic acid (IDA) is used to modify Immobead 150 as chelating agent to cover the substrate of the epoxy group, and it is concluded that when a protein concentration is between 2.5-3mg/ml, enzyme could be better immobilization.
Two enzymes Protein switch RG13 and L-N-carbamoylase are used for the following two reasons. First, Protein switch RG13 could specify the concentration of maltose, and induce the activity of different enzymes. Second, L-N-carbamoylase could catalyze a variety of primary N-carbamoyl-L -amino acid, and it can be used to catalyze the production of L-HPA. It is known that the L-HPA can be used as precursor of antihypertensive drug, which has high economic value nowadays.
Under the same condition, compared the selectivity adsorption of the two enzymes, the selectivity adsorption of L-NCA is 1.647, and RG13 is 1.07, which is 53.9% more than that of RG13. Therefore, L-NCA is apparently better than RG13. Moreover, in L-NCA immobilization, it took about 2 to 3 hours to form physical adsorption by means of IMAC, and achieved the maximum amount of adsorption after 4 or 5 hours.
To summary, the results show that the time of adsorption is related with the enzyme activity, and by using 0.3M iminodiacetic acid(IDA) to modify Immobead 150 could achieve the maximum activity after five hours of adsorption.


致謝 ........................................................................................................................ I

中文摘要 ............................................................................................................... II

Abstract................................................................................................................. III

目錄 ...................................................................................................................... IV

表目錄 ............................................................................................................... VIII

圖目錄 .................................................................................................................. IX

第一章 緒論 .......................................................................................................... 1

第二章 文獻回顧 .................................................................................................. 2

2-1 認識蛋白質 .................................................................................................. 2

2-1-1 蛋白質的結構 ....................................................................................... 2

2-2 蛋白質純化 .................................................................................................. 4

2-2-1 鹽沈澱法(salting-in/out) ....................................................................... 5

2-2-2 膠體過濾法(gel filtration) .................................................................... 6

2-2-3 離子交換法(ion exchange) ................................................................... 6

2-2-4 親和層析法(affinity chromatography) ................................................. 8

2-3 固定化金屬親和層析法(Immobilized metal ion affinity chromatography)9

2-3-1 吸附基材(matrix) ................................................................................ 10

2-3-2 延伸臂(space-arm) .............................................................................. 12

2-3-3 金屬螯合劑(chelating agent) .............................................................. 12

2-3-4 金屬離子(metal ion) ........................................................................... 13

2-3-5 影響固定化金屬離子親和層析法的因素探討 ................................. 14

2-4 酵素固定化 ................................................................................................ 15

2-4-1 固定化方法 ......................................................................................... 16

2-4-2 包埋法(encapsulation) ........................................................................ 16

2-4-3 交聯法(cross-linking) ......................................................................... 17

2-4-4 鍵結法(binding to a support or carrier) .............................................. 17

2-4-3 酵素穩定性 ......................................................................................... 18

2-5 研究系統簡介 ............................................................................................ 20

2-5-1 多功能性的環氧基固定化基材 ......................................................... 22

2-5-2 固定化之酵素 ..................................................................................... 24

第三章 藥品與儀器 ............................................................................................ 28

3-1 實驗材料 .................................................................................................... 28

3-2 實驗藥品 .................................................................................................... 28

3-3 實驗儀器 .................................................................................................... 30

第四章 實驗方法 ................................................................................................ 31

4-1 酵素 L-NCA 的製備 .................................................................................. 31

4-1-1 L-N-carbamoylas 之菌種來源 ............................................................ 31

4-1-2 LB 固態洋菜培養基的製備 ............................................................... 31

4-1-3 LB 液態培養基的製備 ....................................................................... 31

4-1-4 菌種的培養方式 ................................................................................. 32

4-1-5 菌體回收與粗酵素液的製備 ............................................................. 32

4-2 酵素 RG13 的製備 ..................................................................................... 33

4-2-1 菌種的來源 ......................................................................................... 33

4-2-2 LB 固態培養基的製備 ....................................................................... 33

4-2-3 LB 液態培養基的製備 ....................................................................... 33

4-2-4 菌種的培養方式 ................................................................................. 34

4-2-5 菌體回收與粗酵素液的製備 ............................................................. 34

4-2-6 酵素純化 ............................................................................................. 34

4-3 酵素固定化基材製備 ................................................................................ 36

4-3-1 改質 Immobead 150 ............................................................................ 36

4-4 酵素固定化 ................................................................................................ 36

4-4-1 於不同酵素濃度進行酵素固定化 ..................................................... 36

4-5 不同條件 RG13 吸附動力學..................................................................... 37

4-6 分析方法 .................................................................................................... 38

4-6-1 SDS-PAGE 電泳分析 ......................................................................... 38

4-6-2 銅離子濃度分析 ................................................................................. 40

4-6-3 蛋白質濃度分析 ................................................................................. 41

4-7 活性分析 .................................................................................................... 41

4-7-1 RG13 活性分析................................................................................... 41

4-7-2 N-Carbamoyl-L-HPA 製備 ................................................................. 42

4-7-3 L-N-carbamoylase 活性分析 ............................................................. 43

第五章 結果與討論 ............................................................................................ 45

5-1 開關蛋白 RG13 的製備 ............................................................................. 45

5-2 銅離子的含量 ............................................................................................ 46

5-3 不同酵素濃度固定化 ................................................................................ 47

5-4 RG13 吸附動力學 ...................................................................................... 49

5-5 IDA 所佔含量之密度探討 ....................................................................... 56

5-6 RG13 酵素固定化 ...................................................................................... 57

5-7 L-N-carbamoylase 的製備 .......................................................................... 60
5-8 L-NCA 酵素固定化 .................................................................................. 60

5-9 L-NCA 活性分析 ....................................................................................... 63

5-10 固定化 L-NCA 重複批次操作試驗 ........................................................ 65

第六章 結論與未來展望 .................................................................................... 67

第七章 參考文獻 ................................................................................................ 68

附錄 計算式定義 ................................................................................................ 72


[1] Zayats, M., et al., Surface-tethered protein switches. Chem Commun (Camb),2011. 47(12): p. 3398-400.

[2] Sulkowski, E., Purification of proteins by IMAC. Trends in Biotechnology,1985. 3(1): p. 1-7.

[3] Gaberc-Porekar,V. andV. Menart, Perspectives of immobilized-metal affinity chromatography. Journal of Biochemical and Biophysical Methods, 2001.49(1–3): p. 335-360.

[4] Gutiérrez, R., E.M. Martín delValle, and M.A. Galán, Immobilized Metal‐Ion Affinity Chromatography: Status and Trends. Separation & Purification Reviews, 2007. 36(1): p. 71-111.

[5] Suen, S.-Y., Y.-C. Liu, and C.-S. Chang, Exploiting immobilized metal affinity membranes for the isolation or purification of therapeutically relevant species. Journal of Chromatography B, 2003. 797(1–2): p. 305-319.

[6]Liu, Y., Suen, S., Huang, C., and Changchien, C. (2005) Effects of spacer arm on penicillin G acylase purification using immobilized metal affinity membranes, Journal of Membrane Science 251, 201-207.

[7] Pearson, R.G., Hard and soft acids and bases. Benchmark papers in inorganic chemistry1973, Stroudsburg, Pa.,: Dowden. xiii, 480 p.

[8] Tischer, W. and F. Wedekind, Immobilized Enzymes: Methods and Applications Biocatalysis - From Discovery to Application, W.-D. Fessner, et al., Editors. 1999, Springer Berlin / Heidelberg. p. 95-126

[9] Buchholz, K., Reaction engineering parameters for immobilized biocatalysts Reaction Engineering, 1982, Springer Berlin / Heidelberg. p. 39-71.

[10] Sheldon, R.A., Enzyme Immobilization: The Quest for Optimum Performance. Advanced Synthesis & Catalysis, 2007. 349(8-9): p. 1289-1307

[11] Mateo, C., et al., Increase in conformational stability of enzymes immobilized on epoxy-activated supports by favoring additional multipoint covalent attachment. Enzyme and Microbial Technology, 2000. 26(7): p. 509-515.

[12] Mateo, C., et al., Epoxy sepabeads: a novel epoxy support for stabilization of industrial enzymes via very intense multipoint covalent attachment. Biotechnol Prog, 2002. 18(3): p. 629-34.

[13] Abad, J.M., et al., Immobilization of Peroxidase Glycoprotein on Gold Electrodes Modified with Mixed Epoxy-Boronic Acid Monolayers. Journal of the American Chemical Society, 2002. 124(43): p. 12845-12853.

[14] Ogawa, J., H. Miyake, and S. Shimizu, Purification and characterization of N-carbomoyl-l-amino acid amidohydrolase with broad substrate specificity from Alcaligenes xylosoxidans. Applied Microbiology and Biotechnology, 1995. 43(6): p. 1039-1043.

[15] Wilms, B., et al., Cloning, nucleotide sequence and expression of a new -N-carbamoylase gene from Arthrobacter aurescens DSM 3747 in E. coli. Journal of Biotechnology, 1999. 68(2-3): p. 101-113.

[16] Ogawa, J. and S. Shimizu, β-Ureidopropionase with N-carbamoyl-α-l-amino acid amidohydrolase activity from an aerobic bacterium, Pseudomonas putida IFO 12996. European Journal of Biochemistry, 1994. 223(2): p. 625-630.

[17] Ishikawa, T., et al., N-Carbamyl-L-Amino Acid Amidohydrolase of Pseudomonas sp. Strain NS671: Purification and Some Properties of the Enzyme Expressed in Escherichia coli Biosci. Biotech. Biochem., 1996. 60: p. 612-615.

[18]Mukohara, Y., et al., Molecular cloning and sequencing of the gene for a thermostable N-carbamyl-L-amino acid amidohydrolase from Bacillus stearothermophilus strain NS1122A. Biosci. Biotech. Biochem., 1993. 57: p. 1935-1937.

[19] Hu, H.-Y., W.-H. Hsu, and H.R. Chien, Characterization and phylogenetic analysis of a thermostable N-carbamoyl-l-amino acid amidohydrolase from Bacillus austophilus CCRC11223. Archives of Microbiology, 2003. 179(4): p. 250-257.

[20]劉育銘, 以固定化金屬親和吸附薄膜固定開關蛋白作為開發生物感測器之研究, 2012, 國立中興大學

[21]洪?祐,延伸臂對固定化開關蛋白之影響, 2013, 國立中興大學

[22]錢佩欣, 以反應曲面法最適化聚乙烯醇修飾 PET 不織布做為固定化金屬親和吸附基材之研究, 2012, 國立中興大學

[24] Mateo, C., et al., Multifunctional Epoxy Supports: A New Tool To Improve the Covalent Immobilization of Proteins. The Promotion of Physical Adsorptions of Proteins on the Supports before Their Covalent Linkage. Biomacromolecules, 2000. 1(4): p. 739-745.

[25] Mateo, C., et al., One-step purification, covalent immobilization, and additional stabilization of poly-His-tagged proteins using novel heterofunctional chelate-epoxy supports. Biotechnol Bioeng, 2001. 76(3): p. 269-76.

[26] Fischer, L. and F. Peißker, A covalent two-step immobilization technique using itaconic anhydride. Applied Microbiology and Biotechnology, 1998. 49(2): p. 129-135.

[27] Martinez-Rodriguez, S., et al., Mutational and structural analysis of L-N-carbamoylase reveals new insights into a peptidase M20/M25/M40 family member. J Bacteriol, 2012. 194(21): p. 5759-68.

[28]Zhang, D., et al., Gradually accumulating beneficial mutations to improve the thermostability of N-carbamoyl-D-amino acid amidohydrolase by step-wise evolution. Appl Microbiol Biotechnol, 2011. 90(4): p. 1361-71.

[29] Lei Ying, E.T.K., . ELSEVIER, 2002: p. 208 (2002) 361–374.

[30] Bayramoglu, G., B. Kaya, and M. Yakuparica, Immobilization of lipase onto spacer-arm attached poly(GMA-HEMA-EGDMA) microspheres. Food Chemistry, 2005. 92(2): p. 261-268.

[31]Block, H., et al., Chapter 27 Immobilized-Metal Affinity Chromatography (IMAC). 2009. 463: p. 439-473.

[32]Guntas, G. and M. Ostermeier, Creation of an Allosteric Enzyme by Domain Insertion. Journal of Molecular Biology, 2004. 336(1): p. 263-273.

[33]Piera Piacquadio, Phenols removal from apple juice by laccase immobilizedon Cu2+-chelate regenerable carrier, Journal of Biotechnology Techniques, 11, p.515-517.

[34]Joshua A. Bornhorst, J. J. F. (2000) [16] Purification of proteins using polyhistidine affinity tags, Methods in Enzymology 326, p.245-254.

35 Pilar Armi na, C. M., E trella Cort c, oL Barredod, ranci co Saltod, Br no Diezd, Lorenzood e, oLarc ac, Roberto Fernández-Lafuenteb, José M Guisánb,. (1999) Selective adsorption of poly-His tagged glutaryl acylase on tailor-made metal chelate supports, Journal of Chromatography A 848, p.61-70.

[36] Guntas, G., S.F. Mitchell, and M. Ostermeier, A molecular switch created by in vitro recombination of nonhomologous genes. Chem Biol, 2004. 11(11): p. 1483-7.

[37] Ke, W., et al., Structure of an engineered beta-lactamase maltose binding protein fusion protein: insights into heterotropic allosteric regulation. PLoS One, 2012. 7(6): p. e39168

[38] Coquet, L., G.A. Junter, and T. Jouenne, Resistance of artificial biofilms of Pseudomonas aeruginosa to imipenem and tobramycin. Journal of Antimicrobial Chemotherapy, 1998. 42(6): p. 755-760.

[39]Kobe, B., Structure of an Engineered b-Lactamase Maltose Binding Protein Fusion Protein: Insights into Heterotropic Allosteric Regulation. Departments of Biochemistry, February 28, 2012.

[40]陳竑毅, 從內函體回收 N-胺甲醯基-L 型-胺基酸胺基水解酵素, 2012, 國立中興大學

[41]羅雪霞,利用新的酵素法生產 L-Homophenylalanine, 2004, 國立中興大學


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top