跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/14 04:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅雅眉
研究生(外文):Ya-Mei Luo
論文名稱:雙層及三層複合薄膜應用於二氧化碳及甲烷分離之研究
論文名稱(外文):CO2/CH4 Separation Using Bi- and Tri-layer Composite Membranes
指導教授:孫幸宜
指導教授(外文):Shing-Yi Suen
口試委員:童國倫曾惠馨
口試委員(外文):Kuo-Lun TungHui-Hsin Tseng
口試日期:2014-06-23
學位類別:碩士
校院名稱:國立中興大學
系所名稱:化學工程學系所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:81
中文關鍵詞:複合型薄膜聚二甲基矽氧烷玻璃態高分子1-丁基-3-甲基咪唑四氟硼酸鹽氣體分離
外文關鍵詞:Composite membranePolydimethylsiloxanesGlassy polymer1-Butyl-3-methylimidazolium tetrafluoroborateGas separation
相關次數:
  • 被引用被引用:5
  • 點閱點閱:302
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用聚二甲基矽氧烷(polydimethylsiloxanes, PDMS)分別與玻璃態高分子聚醚碸(Polyether sulfones, PES)、聚苯乙烯(Polystyrene, PS)以及醋酸纖維素(Cellulose acetate, CA)製備不同厚度比的雙層及三層複合型高分子薄膜,並應用於二氧化碳及甲烷氣體分離實驗。實驗結果發現當 PDMS/玻璃態高分子複合薄膜增加,氣體透過量會因膜厚造成之阻力與 PDMS 高通量性質而呈現先下降後上升的趨勢,但上升趨勢不大。而在 PDMS/CA複合膜中在特定厚度比有氣體選擇率提升的現象,其中 PDMS/CA (20/20)複合膜相較於 20 μm CA 薄膜氣體選擇率從 20 上升至 31.85,PDMS/CA(40/10)複合膜相較於 10 μm CA 薄膜氣體選擇率更是從 3.42 上升至 36.6,但持續增加厚度比則又往 PDMS 低選擇率的特性前進。由雙層及三層複合薄膜氣體滲透實驗中可得知層數並不影響其氣體滲透結果,主要的影響因素為 PDMS 與 CA 在複合膜中的總厚度比。而以複合薄膜之平均滲透率來看,進一步使用對氣體分離有良好效果的離子液體 1-丁基-3-甲基咪唑四氟硼 酸 鹽 (1-Butyl-3-methylimidazolium tetrafluoroborate, [bmim][BF4]) 與PDMS 薄膜及 PDMS/CA (70/10)複合膜製備成複合薄膜,發現不僅氣體分離效果更加改善,並且突破了 1991 年的 Robeson’s upper bound。

In this study, the different thickness ratios of bi- and tri-layer composite membranes were prepared from polydimethylsiloxanes and glassy polymer (Polyether sulfones, polystyrene and cellulose acetate) for separation of CO2 and CH4. The results showed that the permeance decreased followed by a slight increase due to the resistance from membrane thickness and high flux of PDMS membrane. The CO2/CH4 selectivity increases in the certain thickness ratio of PDMS/CA composite membranes. When the PDMS/CA (20/20) composite membrane was compared to 20 μm CA membrane, the CO2/CH4 selectivity increases was found to be 31.85 and 20;the CO2/CH4 selectivity for PDMS/CA (40/10) composite membrane compared to 10 μm CA membrane was found to increase from 3.42 to 36.6. However, the selectivity was found to decreases as the thickness ratio continued to increase. According to the experiment conducted on bi- and tri-layer of composite membranes, it was found that the number of membrane layer will not affect the gas permeability. Instead, the overall thickness ratio PDMS and CA in the composite membranes is the main factor that affecting the gas permeability. when based on the average permeability in composite membranes, a better gas separation efficiency was achieved and the Robeson''s upper bound (1991) was broken through when gas separation was carried out by using [bmim][BF4]/PDMS and [bmim][BF4]/PDMS/CA composite membranes.

誌謝 ...........I
中文摘要 ...........II
英文摘要 ........... III
目錄 ...........IV
表目錄 ...........VI
圖目錄 ...........VII
第一章 緒論 ...........1
第二章 文獻回顧 ........... 3
2.1 薄膜種類基本介紹...........3
2.2 氣體分子於緻密薄膜之傳送機制...........4
2.4 多層複合型高分子薄膜...........9
2.5 混合型高分子薄膜...........11
2.6 離子液膜 ........... 14
第三章 實驗方法 ...........16
3.1 實驗藥品、材料、儀器........... 16
3.1.1 實驗藥品...........16
3.1.2 實驗用氣體........... 17
3.1.3 儀器 ...........17
3.2 PDMS/玻璃態高分子複合薄膜之製備...........17
3.2.1 不同膜厚之 PDMS 薄膜製備 ...........17
3.2.2 玻璃態高分子薄膜製備...........18
3.2.3 PDMS/玻璃態高分子(20 μm PES、PS、CA)複合薄膜製備....... 19
3.2.4 PDMS/CA (10 μm)複合薄膜製備...........19
3.2.5 PDMS/CA/PDMS 三層複合薄膜製備 ...........19
3.3 離子液體相關複合薄膜之製備 ...........20
3.4 純高分子薄膜與 PDMS/玻璃態高分子複合薄膜特性分析...........20
3.4.1 薄膜厚度 ........... 20
3.4.2 薄膜熱重損失分析...........20
3.4.3 薄膜玻璃轉換溫度...........20
3.4.4 SEM 分析 ...........20
3.4.5 XRD 分析...........21
3.5 純高分子薄膜與 PDMS/玻璃態高分子複合薄膜氣體滲透實驗...........21
3.6 離子液體相關複合薄膜氣體滲透實驗...........25
第四章 結果與討論 ...........26
4.1 薄膜性質分析結果...........26
4.1.1 薄膜厚度...........26
4.1.2 熱重損失分析結果...........26
4.1.3 微分掃描熱量計分析結果........... 26
4.1.4 場發射掃描電子顯微鏡(SEM)分析結果...........27
4.1.5 X-ray 繞射分析儀(XRD)分析結果 ...........27
4.2 氣體滲透結果 ...........28
4.2.1 純高分子薄膜氣體滲透結果...........28
4.2.1.1 厚度對純高分子薄膜氣體滲透結果之影響 ........... 28
4.2.1.2 鑄膜液濃度對純高分子薄膜氣體滲透結果之影響 ...........28
4.2.1.3 氣體擴散係數與溶解度係數 ...........29
4.2.2 PDMS/玻璃態高分子(20 μm)複合薄膜氣體滲透結果 ...........30
4.2.2.1 PDMS 厚度對 PDMS/玻璃態高分子(20 μm)複合薄膜氣體透過量的影響...........30
4.2.2.2 玻璃態高分子對 PDMS/玻璃態高分子(20 μm)複合薄膜氣體分離結果的影響...........31
4.2.2.3 串聯阻力機制...........31
4.2.2.4 氣體擴散係數與溶解度係數 ...........32
4.2.2.5 Robeson’s upper bounds 的比較 ...........32
4.2.3 PDMS/CA(10 μm 與 20 μm)雙層複合薄膜及 PDMS/CA (10μm )/PDMS 三層複合膜氣體滲透結果 ...........33
4.2.3.1 PDMS 厚度對 PDMS/CA(10 μm 與 20 μm)雙層複合膜與PDMS/CA (10 μm)/PDMS 三層複合膜氣體透過量影響 ............ 33
4.2.3.2 PDMS/CA(10 μm 與 20 μm)雙層複合膜與 PDMS/CA (10 μm)/PDMS 三層複合膜氣體氣體選擇率 ...........33
4.2.3.3 串聯阻力機制...........34
4.2.3.4 Robeson’s upper bounds 的比較 ...........34
4.2.4 PDMS/離子液體雙層複合薄膜與 PDMS/CA/離子液體三層複合薄膜氣體滲透結果...........34
4.2.4.1 PDMS/CA/[bmim][PF6]三層複合薄膜氣體滲透結果...........34
4.2.4.2 PDMS/[bmim][BF4]雙層複合薄膜與 PDMS/CA/[bmim][BF4]三層複合薄膜氣體滲透結果 ...........35
4.2.4.3 Robeson’s upper bounds 的比較 ...........36
第五章 結論...........73
參考文獻 ...........74


1.A. Car, C. Stropnik, W. Yave, K. V. Peinemann, Pebax®/polyethylene glycol blend thin film composite membranes for CO2 separation: Performance with mixed gases. Separation and Purification Technology 62 (2008) 110–117.
2. K. Huang, S. Liu, Q. Li, W. Jin, Preparation of novel metal-carboxylate system MOF membrane for gas separation, Separation and Purification Technology 119 (2013) 94-101.
3. T. Chung, L. Jiang, Y. Li, S. Kulprathipanja, Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation, Progress in Polymer Science 32 (2007) 483–507.
4. T. Graham, On the absorption and dialytic separation of gases by colloid septa, Philosophical Transactions, 32 (1866) 399-439.
5. P. Pandey, R. S. Chauhan, Membranes for gas separation. Progress in Polymer Science, 26 (2001) 853-893.
6. C. M. Zimmerman, A. Singh, W. J. Koros, Tailoring mixed matrix composite membranes for gas separations, Journal of Membrane Science 137 (1997) 145-154.
7. A. E. Polotsky, G. A. Polotskaya, Study on top layer structure of composite membranes, Journal of Membrane Science 140 (1998) 97-102.
8. 翁子翔, 高分子薄膜與多層複合薄膜氣體分離特性之研究, 博士論文,國立中興大學環境工程研究所, 台中, 台灣 (2010).
9. P. Pandey, R. S. Chauhan, Membrane for gas separation, Progress in Polymer Science 26 (2001) 853-893.
10. C. Scholes, G. Stevens, S. Kentish, Membrane gas separation applications in natural gas processing, Fuel 96 (2012) 15–28
11. R. Abedini, A. Nezhadmoghadam, Application of Membrane in Gas Separation Processes: Its Suitability and Mechanisms, Petroleum & Coal 52(2) (2010) 69-80.
12. D. Bastani , N. Esmaeili, M. Asadollahi, Polymeric mixed matrix membranes containing zeolites as a filler for gas separation applications: A review, Journal of Industrial and Engineering Chemistry 19 (2013) 375–393.
13. R. W. Baker, Future Directions of Membrane Gas Separation Technology, American Chemical Society 41 (2002) 1393-1411.
14. Y. Yampolskii, Polymeric Gas Separation Membranes, American Chemical Society 45 (2012) 3298-3311.
15. P. Bernardo, E. Drioli, G. Golemme, Membrane Gas Separation: A Review/State of the Art, American Chemical Society 48 (2009) 4638–4663.
16. L. M. Robeson, Correlation of separation factor versus permeability for polymeric membranes. Journal of Membrane Science 62 (1991) 165-185.
17. L. M. Robeson, The upper bound revisited. Journal of Membrane Science 320 (2008) 390-400.
18. S. Kim, Y. M. Lee, Thermally rearranged (TR) polymer membranes with nanoengineered cavities tuned for CO2 separation, Journal of Nanoparticle Research 14 (2012) 949-959.
19. C. Y. Liang, P. Uchytil, R. Petrychkovych, Y. C. Lai, K, Friess, M. Sipek, M. M. Reddy, S. Y. Suen, A comparison on gas separation between PES (polyethersulfone)/MMT (Na-montmorillonite) and PES/TiO2 mixed matrix membranes. Separation and Purification Technology 92 (2012) 57–63.
20. Y. S. Bhole, P. B. Karadkar, U. K. Kharul, Nitration and amination of polyphenylene oxide: Synthesis, gas sorption and permeation analysis, European Polymer Journal 43 (2007) 1450–1459.
21. X. G. Li, I. Kresse, J. Springer, J. Nissen, Y. L. Yang, Morphology and gas permselectivity of blend membranes of polyvinylpyridine with ethylcellulose, Polymer 42 (2001) 6859-6869.
22. M. E. Rezac, W. J. Koros, Preparation of Polymer-Ceramic Composite Membranes with Thin Defect-Free Separation Layers, Journal of Applied Polymer Science, 46 (1992) 1927-1938.
23. L. Zhang, G. He, W. Zhao, F. Nie, X. Li, M. Tan, Studies on the coating layer in a PTFPMS/PEI composite membrane for gaseous separation, Journal of Membrane Science 371 (2011) 141–147.
24. T. S. Chung, J. J. Shieh, W. W. Y. Lau, M.P. Srinivasan, D.R. Paul, Fabrication of multi-layer composite hollow fiber membranes for gas separation, Journal of Membrane Science 152 (1999) 211-225.
25. J. Peter, K. V. Peinemann, Multilayer composite membranes for gas separation based on crosslinked PTMSP gutter layer and partially crosslinked Matrimid® 5218 selective layer, Journal of Membrane Science 340 (2009) 62–72.
26. Ali. Kargari, A. A. Shamsabadi, M. B. Babaheidari, Influence of coating conditions on the H2 separation performance from H2/CH4 gas mixtures by the PDMS/PEI composite membrane, International Journal of Hydrogen Energy 39 (2014) 6588–6597.
27. I. F. J. Vankelecom, B. Moermans, G. Verschueren, P. A. Jacobs, Intrusion of PDMS top layers in porous supports, Journal of Membrane Science 158 (1999) 289-297.
28. F. Peng, J. Liu, J. Li, Analysis of the gas transport performance through PDMS/PS composite membranes using the resistances-in-series model, Journal of Membrane Science 222 (2003) 225–234.
29. S. S. Madaeni, S. Hoseini, Fabrication and characterization of PDMS coated PES membranes for separation of ethylene from nitrogen, Journal of Polymer Research, 16 (2009) 591-599.
30. Y. Shi, C. M. Burns, X. Feng, Poly(dimethyl siloxane) thin film composite membranes for propylene separation from nitrogen, Journal of Membrane Science 282 (2006) 115–123.
31. S.S. Madaeni, M. M. S. Badieh, V. Vatanpour, Effect of Coating Method on Gas Separation by PDMS/PES Membrane, Polymer Engineering & Science 53 (2013) 1878-1885.
32. F. Hamad, K. C. Khulbe, T. Matsuura, Comparison of gas separation performance and morphology of homogeneous and composite PPO membranes, Journal of Membrane Science 256 (2005) 29–37.
33. S. S. Hosseini, M. M. Teoh, T. S. Chung, Hydrogen separation and purification in membranes of miscible polymer blends with interpenetration networks, Polymer 49 (2008) 1594-1603.
34. T. Johnson, S. Thomas, Nitrogen/oxygen permeability of natural rubber, epoxidised natural rubber and natural rubber/epoxidised natural rubber blends, Polymer 40 (1999) 3223–3228.
35. A. Mushtaq, H. B. Mukhtar, A. M. Shariff, H. A. Mannan, A Review: Development of Polymeric Blend Membrane for Removal of CO2 from Natural Gas, International Journal of Engineering & Technology 13 (2013) 53-60.
36. A. Bos, I. Pünt, H. Strathmann, M. Wessling, Suppression of gas separation membrane plasticization by homogeneous polymer blending, Journal of Membrane Science 47 (2001) 1088-1093.
37. W. F. Yong, F. Y. Li, Y. C. Xiao, P. Li, K. P. Pramoda, Y. W. Tong, T. S. Chung, Molecular engineering of PIM-1/Matrimid blend membranes for gas separation, Journal of Membrane Science 407– 408 (2012) 47– 57.
38. W. F. Yong, F. Y. Li, T. S. Chung, Y. W. Tong, Highly permeable chemically modified PIM-1/Matrimid membranes for green hydrogen purification, Journal of Materials Chemistry A 1 (2013) 13914-13925.
39. N. K. Acharya, V. Kulshrestha, K. Awasthi, A. K. Jain, M. Singh, Y. K. Vijay, Hydrogen separation in doped and blend polymer membranes, International Journal of Hydrogen Energy 33 (2008) 327 – 331.
40. F. Dorosti, M. R. Omidkhah, M. Z. Pedram, F. Moghadam, Fabrication and characterization of polysulfone/polyimide–zeolite mixed matrix membrane for gas separation, Chemical Engineering Journal 171 (2011) 1469– 1476.
41. X. Zhao, H. B. Xing, R. L. Li, Q. W. Yang, B. G. Su, Q. L. Ren, Gas Separation Based on Ionic Liquids, Progress in Chemistry 11 (2011) 2258-2268.
42. 陳季妙, 離子液體吸收二氧化碳之熱物性質量測研究, 碩士論文, 中原大學化學工程研究所, 桃園, 台灣 (2007).
43. P. Uchytila, J. Schauer, R. Petrychkovych, K. Setnickova, S. Y. Suen, Ionic liquid membranes for carbon dioxide–methane separation, Journal of Membrane Science 383 (2011) 262– 271.
44. P. Cserjesi, N. Nemestothy, K. B. Bako, Gas separation properties of supported liquid membranes prepared with unconventional ionic liquids, Journal of Membrane Science 349 (2010) 6–11.
45. P. Scovazzo, D. Havard, M. McShea, S. Mixon, D. Morgan, Long-term, continuous mixed-gas dry fed CO2/CH4 and CO2/N2 separation performance and selectivities for room temperature ionic liquid membranes, Journal of Membrane Science 327 (2009) 41–48.
46. S. H. Barghi, M. Adibi, D. Rashtchian, An experimental study on permeability, diffusivity, and selectivity of CO2 and CH4 through [bmim][PF6] ionic liquid supported on an alumina membrane: Investigation of temperature fluctuations effects, Journal of Membrane Science 362 (2010) 346–352.
47. D. D. Iarikov, P. Hacarlioglu, S. T. Oyama, Supported room temperature ionic liquid membranes for CO2/CH4 separation, Chemical Engineering Journal 166 (2011) 401–406.
48. 梁家毓, 以聚醚碸/蒙脫土複合薄膜為三明治結構離子液體薄膜之支撐 層應用於氣體輸送, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2011). 49. G. Wu, S. Gan, L. Cui, Y. Xu, Preparation and characterization of PES/TiO2 composite membranes, Applied Surface Science 254 (2008) 7080–7086.
50. T. Dollase, H. W. Spiess, M. Gottlieb, R. Yerushalmi-Rozen, Crystallization of PDMS: The effect of physical and chemical crosslinks, Europhys. Lett. 60 (3) (2002) 390-396. 51. J. F. Li, Z. L. Xu, H. Yang, L. Y. Yu, M. Liu, Effect of TiO2 nanoparticles on the surface morphology and performance of microporous PES membrane, Applied Surface Science 255 (2009) 4752-4732.
52. E. Kung, A. J. Lesser, T. J. McCarthy, Morphology and mechanical performance of polystyrene/polyethylene composites prepared in supercritical carbon dixide, Macromolecules 31 (1998) 4160-4169.
53. F. J. Rodriguez, M. J. Galotto, A. Guarda, J. E. Bruna, Modification of cellulose acetate using nanofillers based on organoclays. Journal of Food Engineering 110 (2012) 262-268.
54. M. Rezakazemi, K. Shahidi, T. Mohammadi, Hydrogen separation and purification using crosslinkable PDMS/zeolite A nanoparticles mixed matrix membranes, International Journal of Hydrogen Energy 37 (2012) 14576-14589.
55. K. Berean, J. Z. Ou, M. Nour, K. Latham, C. McSweeney, D. Paull, A. Halim, S. Kentish, C. M. Doherty, A. J. Hill, K. Kalantar-zadeh, The effect of crosslinking temperature on the permeability of PDMS membranes: Evidence of extraordinary CO2 and CH4 gas permeation, Separation and Purification Technology 122 (2014) 96–104.
56. Z. Huang, Y. Li, R. Wen, M. M. Teoh, S. Kulprathipanja, Enhanced Gas Separation Properties by Using Nanostructured PES-Zeolite 4A Mixed Matrix Membranes, Journal of Applied Polymer Science 101 (2006) 3800-3805.
57. E. Karatay, H. Kalıpcılar , L. Yılmaz, Preparation and performance assessment of binary and ternary PES-SAPO 34-HMA based gas separation membranes, Journal of Membrane Science 364 (2010) 75–81.
58. U. Cakal, L. Yilmaz, H. Kalipcilar, Effect of feed gas composition on the separation of CO2/CH4 mixtures by PES-SAPO34-HMA mixed matrix membranes, Journal of Membrane Science 417–418 (2012) 45–51.
59. A. Higuchi, T. Agatsuma, S. Uemiya, T. Kojima, K. Mizoguchi, I. Pinnau, K. Nagai, B. D. Freeman, Preparation and gas permeation of immobilized fullerene membranes, Journal of Applied Polymer Science 77 (2000) 529–537.
60. B. D. Bhide, A. Voskericyan, S. A. Stem, Hybrid processes for the removal of acid gases from natural gas, Journal of Membrane Science 140 (1998) 27-49.
61. W. Kim, J. S. Lee, D. G. Bucknall, W. J. Koros, S. Nair, Nanoporous layered silicate AMH-3/cellulose acetate nanocomposite membranes for gas separations, Journal of Membrane Science 441 (2013) 129–136.
62. A. R. Moghadassi , Z. Rajabi, S. M. Hosseini, M. Mohammadi, Fabrication and modification of cellulose acetate based mixed matrix membrane: Gas separation and physical properties, Journal of Industrial and Engineering Chemistry 20 (2014) 1050–1060.
63. 羅梓宏, 醋酸纖維素/二氧化鈦奈米顆粒混合基材薄膜應用於二氧化碳 和甲烷的分離, 碩士論文, 國立中興大學化學工程研究所, 台中, 台灣 (2012).
64. S. W. RUTHERFORD, D. D. DO, Review of Time Lag Permeation Technique as a Method for Characterisation of Porous Media and Membranes, Adsorption 3 (1997) 283-312.
65. 蔡傑, 複合膜中界面聚合層的氣體分離性質, 碩士論文, 國立中央大學化學工程與材料工程研究所, 桃園, 台灣 (2011).



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top