跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/12 02:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:翁明己
研究生(外文):Ming-Ji Weng
論文名稱:台中和屏東地區大氣 PM2.5 組成特性及其污染源解析
論文名稱(外文):Chemical Composition and Source Apportionment of Ambient Fine Particulates in Taichung and Pingtung Area
指導教授:鄭曼婷鄭曼婷引用關係
口試委員:邱嘉斌望熙榮
口試日期:2014-07-04
學位類別:碩士
校院名稱:國立中興大學
系所名稱:環境工程學系所
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:106
中文關鍵詞:PM2.5CMB 受體模式台中屏東
外文關鍵詞:PM2.5CMB receptor modelTaichungPingtung
相關次數:
  • 被引用被引用:4
  • 點閱點閱:410
  • 評分評分:
  • 下載下載:94
  • 收藏至我的研究室書目清單書目收藏:0
本研究彙整 2010 年 1 月至 12 月於台中中興大學測站及 2013 年 3 月至 4月於屏東地區 8 處測站的大氣細懸浮微粒(PM2.5)組成數據,分析此兩地區PM2.5 的特性,並以化學質量平衡(CMB)受體模式解析其污染源貢獻量。
研究結果顯示,台中地區 PM2.5 質量濃度平均為 31.6 ± 16.0 μg/m3,其水溶性陰陽離子佔 41.9 %,碳成分佔 26.3 %,金屬元素則佔 5.1 %,而屏東地區 PM2.5 質量濃度平均為 49.6 ± 15.0 μg/m3,其組成含 49.1 %水溶性陰陽離子,33.3 %碳成分及 4.6 %金屬元素。比較兩地區 PM2.5 濃度及組成,屏東地區 PM2.5 質量濃度、水溶性陰陽離子含量及碳含量均較台中地區高,兩地區離子成分均以 SO42-、NO3-及 NH4+為主。
為了利用 CMB 受體模式分析兩地區 PM2.5 的污染源貢獻量,本研究彙
整 54 筆國內外污染源排放組成資料 分析不同類別污染源排放的 PM2.5 特性,,並測試交通源 PM2.5 指紋數據的適用性,根據 CMB 解析結果顯示,台中地區 PM2.5 污染源貢獻量,交通排放約佔 41 %,二次氣膠佔 36 %,另有地殼物質佔 5.4 %、電力業 4.1 %、工業排放 1.3 %及海鹽飛沫佔 1.5 %之貢獻;屏東地區 PM2.5 污染源貢獻量,交通排放平均佔 45 %,二次氣膠貢獻量佔42 %,其他污染源有地殼物質 5.7 %、海鹽飛沫 1.1 %、電力業 2.3 %、工業排放 4.8 %。兩地區 PM2.5 的主要污染來源皆為交通排放和二次氣膠,由此分析結果和文獻資料顯示交通污染和二次氣膠的前驅物管制為 PM2.5 減量的
主要措施。
In this study, the characteristics of PM2.5 and their source apportionments in Taichung and Pingtung areas were evaluated by using a chemical mass balance (CMB) receptor model. The data of the chemical compositions of PM2.5 were obtained from the measurements conducted at Taichung during January to December in 2010 and at eight sites in Pingtung area during March to April in 2013. The object of this study was to investigate the characteristics of PM2.5 and to understand the contribution of pollution sources to PM2.5.

Comparing the characteristics of PM2.5 in these two areas, the average mass concentration of PM2.5 in Taichung area was 31.6 ± 16.0 μg/m3. The percentage of water-soluble ions, total carbon and metals in PM2.5 were 41.9%, 26.3% and 5.1%,respectively. However, the average mass concentration of PM2.5 in Pingtung area was 49.6 ± 15.0 μg/m3. The abundance of water-soluble ions, total carbon and metals in PM2.5 were 49.1%, 33.3% and 4.6%. These results showed that the mass concentration,the contents of water-soluble ions and total carbon of PM2.5 in Pingtung were higher than those in Taichung. The major ionic species of PM2.5 in both areas were SO42-, NO3- and NH4+.

In order to use CMB receptor model to evaluate the source apportionment of PM2.5 in these two areas, this study collected and summarized 54 fingerprints from various pollution sources reported in the literature.
Particularly the suitability of source profile from the vehicular emission was tested. Results of CMB modeling showed that the contributions to PM2.5 in Taichung were about 41% from traffic emissions, 36% from secondary aerosols, 5.4% from crustal materials, 4.1% from power plant, 1.3% from industry and 1.5% from marine spray. In Pingtung area, the contributions to PM2.5 were about 45% traffic emissions, 42% secondary aerosols, 5.7% crustal materials, 1.1% marine spray, 2.3% power plant and 4.8% from industry. Based on this study and the results obtained in the literature, the major sources of PM2.5 were traffic emissions and secondary aerosols. Therefore the control of the traffic emissions and the reduction of precursors of the secondary aerosols should be the major strategies for improving the PM2.5 quality in these two areas.
摘要 ................... i
Abstract .............. ii
目錄 .................. iii
圖目錄 ................. vi
表目錄 ................. vii
第一章 前言 .............. 1
1.1 研究緣起 ............. 1
1.2 研究目的 .............. 2
1.3 研究架構 .............. 2
第二章 文獻回顧 ............. 4
2.1 大氣懸浮微粒污染來源及組成特性 ........................... 4
2.1.1 大氣懸浮微粒之來源 .... 4
2.1.2 大氣懸浮微粒之組成特性 ..5
2.2 大氣懸浮微粒之影響 ....... 6
2.3 污染源組成資料建立方法 ... 7
2.3.1 固定污染源排放煙道粒狀物檢測方法 ............................. 7
2.3.2 逸散污染源指紋資料建立方法 ............................ 11
2.3.3 移動污染源指紋資料建立方法 ............................ 11
2.4 應用 CMB 受體模式解析大氣懸浮微粒污染來源相關研究 ............................ 13
2.4.1 國外 CMB 受體模式研究與應用 ............................. 13
2.4.2 國內 CMB 受體模式研究與應用 .............................. 13
第三章 研究方法 ................ 16
3.1 大氣懸浮微粒採樣 ........... 16
3.1.1 採樣地點 ................ 16
3.1.2 採樣時間 ................ 18
3.2 採樣儀器與設備 .............. 20
3.2.1 採樣儀器 ................. 20
3.2.2 採樣濾紙處理程序 ............ 21
3.3 大氣懸浮微粒樣本之分析 .......... 22
3.3.1 水溶性陰陽離子分析 ......... 22
3.3.2 含碳量分析 ................ 23
3.3.3 金屬成分分析 ............. 26
3.4 CMB 受體模式 ............... 27
3.4.1 CMB 受體模式解析 .......... 27
第四章 結果與討論 ........... 30
4.1 PM2.5 質量濃度變化 ............. 30
4.1.1 台中地區 PM2.5 與大里測站 PM2.5 之比較 .............................. 30
4.1.2 台中地區 PM2.5 質量濃度分析 ................................... 31
4.1.3 屏東地區 PM2.5 與鄰近環保署測站 PM2.5 之比較 .................. 34
4.1.4 屏東地區 PM2.5 質量濃度分析 ................................ 34
4.2 大氣 PM2.5 化學組成探討 ................................. 37
4.2.1 台中地區 PM2.5 化學組成特性 ................................ 37
4.2.2 屏東地區 PM2.5 化學組成特性 ................................. 42
4.2.3 台中及屏東地區 PM2.5 化學組成探討 ................................ 50
4.3 CMB 受體模式 ................ 53
4.3.1 污染源組成資料摘要說明 ...... 53
4.3.2 交通污染源排放組成資料特性 ............................... 60
4.3.3 交通污染源排放組成資料測試 ................................ 64
4.4 台中及屏東地區 PM2.5 污染源解析 ................................. 70
4.4.1 台中地區 PM2.5 污染源貢獻量 ................................ 70
4.4.2 屏東地區 PM2.5 污染源貢獻量 .............................. 73
第五章 結論與建議 ............... 75
5.1 結論 ..................... 75
5.2 建議 ..................... 78
參考文獻 ....................... 79
附錄 A ........................ 85
附錄 B ....................... 93
附錄 C ....................... 103
Chan, Y. C., R. W. Simpson, G. H Mctainsh, P. D. Vowles, D. D. Cohan and G. M.
Bailey, “Source Apportionment of PM2.5 and PM10 Aerosols in Brisbane (Australia) by Receptor Modelling,” Atmospheric Environment, Vol. 33, pp.
3251–3268 (1999).
Chiang, H. L. and Y. S. Huang, “Particulate Matter Emissions from On-road Vehicles in a Freeway Tunnel Study,” Atmospheric Environment, Vol. 43, pp.
4014–4022 (2009)
Chio, C. P., M. T. Cheng and C. F. Wang, “Source Apportionment to PM10 in Different Air Quality Conditions for Taichung Urban and Coastal Areas,Taiwan,” Atmospheric Environment, Vol. 38, pp. 6893-6905 (2004).
Chow, J. C., J. G. Watson, L. C. Pritchett, W. R. Pierson, C. A. Frazier and R. G.
Purcell, “The DRI Thermal/Optical Reflectance Carbon Analysis System: Description, Evaluation and Applicationsin U.S. Air Quality Studies,’’
Atmospheric Environment, Vol. 27A (8), pp. 1185–1201 (1993).
Chow, J. C., J. G. Watson, H. Kuhns, V. Etyemezian, D. H. Lowenthal, D. Crow,S. D. Kohl, J. P. Engelbrecht and M. C. Green, “Source Profiles for Industrial, Mobile, and Area Sources in the Big Bend Regional Aerosol
Visibility and Observational Study,’’ Chemosphere, Vol. 54, pp. 185–208 (2004).
Chow, J. C., J. G. Watson, D. H. Lowenthal, L. W. A. Chen, B. Zielinska, L. R.
Rinehart and K. L. Magliano, “Evaluation of Organic Markers for Chemical Mass Balance Source Apportionment at the Fresno Supersite,” Atmospheric Chemistry & Physics, Vol. 6, pp. 10341–10372 (2006).
England, G. C., B. Zielinska , K. Loos, I. Crane and K. Ritter, “Characterizing PM2.5 Emission Profiles for Stationary Sources: Comparison of Traditional
and Dilution Sampling Techniques,’’ Fuel Processing Technology , Vol. 65–66, pp. 177–188 (2000).

Fujita, E. M., D. E. Campbell, W. P. Arnott, J. C. Chow and B. Zielinska,“Evaluations of the Chemical Mass Balance Method for Determining Contributions of Gasoline and Diesel Exhaust to Ambient Carbonaceous Aerosols,’’ Journal of the Air & Waste Management Association, Vol 57, pp.721–740 (2007).
Getler, A. W., D. A. Lowenthal and W. G. Coulombe, “PM10 Source Apportionment Study in Bullhead City, Arizona,” Journal of the Air & Waste Management Association, Vol. 45, pp. 75–82 (1995).
Kampa, M. and E. Castanas, “Human Health Effects of Air Pollution,”
Environmental Pollution, Vol. 151, pp. 362–367 (2008).
Loomis, D., Y. Grosse, B. Lauby-Secretan, F. E. Ghissassi, V. Bouvard, L.
Benbrahim-Tallaa, N. Guha, R. Baan, H. Mattock and K. Straif, “The Carcinogenicity of Outdoor Air Pollution,” The Lancet Oncology, Vol. 14,pp. 1262–1263 (2013)
Mori, I., N. Masataka, T. Toshifumi and Q. Hao, “Change in Size Distribution and Chemical Composition of Kosa (Asian Dust) Aerosol During Long-range Transport,” Atmospheric Environment, Vol. 37, pp. 4253–4263 (2003).
Ohta, S. and T. Okita, “A Chemical Characterization of Atmospheric Aerosol in
Sapporo,” Atmospheric Environment. Part A. General Topics, Vol. 24, pp.815–822 (1990).
Olmez, I., A. E. Sheffield, G. E. Gordon, J. E. Houck, L. C. Pritchett, J. A.
Cooper, T. G. Dzubay and R. L. Bennett, “Compositions of Particles from Selected Sources in Philadelphia for Receptor Modeling Applications,”
Journal of the Air and Waste Management Association, Vol. 38, pp. 1392–1402 (1988).
Pant, P. and R. M. Harrison, “Estimation of the Contribution of Road Traffic Emissions to Particulate Matter Concentrations from Field Measurements: A review,” Atmospheric Environment, Vol. 77, pp. 78–97 (2013).
Pytkowicz, R. M. and D. R. Kester, “The Physical Chemistry of Seawater, in Annual Review,” Oceanographic Marine Biology, Vol.9, pp. 11–60 (1971).

Seinfeld, J. H. and S. N. Pandis, “Atmospheric Chemistry and Physics: From Air Pollution to Climate Change,” A Wiley-Interscience Publication, (1998).
Turpin, B. J. and J. J. Huntzicker, “Identification of Secondary Organic Aerosol
Episodes and Quantitation of Primary and Secondary Organic Aerosol Concentrations During SCAQS,” Atmospheric Environment, Vol. 29, pp.
3527–3544 (1995).
U. S. EPA, CMB8.2 User's Manual, Office of Air Quality Planning and Standards: Research Triangle Park, NC, 2000.
U. S. EPA, METHOD 201A, “Determination of PM10 and PM2.5 Emissions from Stationary Sources,” (2010).
U. S. EPA, METHOD 202, “Dry Impinger Method for Determining Condensable Particulate Emissions from Stationary Sources,” (2010).
U. S. EPA, METHOD CTM039, “Measurement of PM2.5 and PM10 Emissions by Dilution Sampling,’’ (2004).
Vega, E., D. Lowenthal, H. Ruiz, E. Reyes, J. G. Wason, J. C. Chow, M. Viana, X.
Querol and A. Alastuey, “Fine Particle Receptor Modeling in the Atmosphere of Mexico City,” Journal of the Air & Waste Management Association, Vol. 59, pp. 1417–1428 (2009).
Wan, J. M., M. Lin, C. Y. Chan, Z. S. Zhang, G. Engling, X. M. Wang, I. N. Chan and S.-Y. Li, “Change of Air Quality and its Impact on Atmospheric Visibility in Central-western Pearl River Delta,” Environmental Monitoring and Assessment, Vol. 172, pp. 339–351 (2011).
Wang, W. C., K. S. Chen, S. J. Chen, C. C. Tsai, J. H. Lai and S. K. Wang,“Characteristics and Receptor Modeling of Atmospheric PM2.5 at Urban and Rural Sites in Pingtung, Taiwan,” Aerosol and Air Quality Research, Vol. 8, pp. 112–129 (2008).
Ward, T. J. and G. C. Smith, “The 2000/2001 Missoula Valley PM2.5 Chemical Mass Balance Study, Including the 2000 Wildfire Season—Seasonal Source Apportionment,” Atmospheric Environment, Vol. 39, pp. 709–717 (2005).
Watson, J. G., “Chemical Element Balance Receptor Model Methodology for Assessing the Sources of Fine and Total Suspended Particulate Matter in Portland, Oregon,” Ph.D. Dissertation, Oregon Graduate Center, Beaverton,Oregon (1979).
Watson, J. G., N. F. Robinson, J. C. Chow, R. C. Henry, B. M. Kim, T. G. Pace, E. L. Meyer and Q. Nguyen, “The USEPA/DRI Chemical Mass Balance Receptor Model, CMB 7.0,” Environmental Software, Vol. 5, pp. 38–49 (1990).
Watson, J. G., J. C. Chow, D. H. Lowenthal, L. C. Pritchett, C. A. Frazier, G. R.
Neuroth and R. Robbins, “Differences in The Carbon Composition of Source Profiles for Diesel and Gasoline Powered Vehicles,” Atmospheric Environment. Vol. 28, pp. 2493–2505. (1994).
Watson, J. G., N. F. Robinson, C. Lewis, T. Coulter, J. C. Chow, E. M. Fujita, D.
H. Lownethal, T. L. Conner, R. C. Henry and R. D. Willis, “Chemical Mass Balance Receptor Model Version 8 User’s Manual,” Desert Research Institute Document No. 1808.1D1 (1997).
Watson, J. G., “Visibility: Science and Regulation,” Journal of the Air & Waste
Management Association, Vol. 52, pp. 628–713 (2002).
王秋森,「石化工廠產生的粒狀空氣污染物的受體模式之建立」,行政院國家科學委員會專題研究計畫,NSC83-0421-B-002-318Z(1994)。
王景良,「中部空品區污染源逸散粉塵的組成分析」,碩士論文,國立中興大學環境工程學系,台中(2000)。
中鼎工程股份有限公司,「空氣品質改善/維護計畫之執行追蹤檢討」,高雄市政府環境保護局報告,(1996)。
中興工程顧問股份有限公司,「98 年度臺北市空氣品質改善計畫規劃整合暨成效評核計畫」,臺北市政府環境保護局期末報告,(2010)。
李文智、楊錫賢、謝徨麒、王琳麒,「南高屏地區空氣品質總量管制研究—現場觀測組子計畫:排放源粒狀物組成調查分析」,行政院環境保護署
研究報告,EPA-89-FA11-03-100 (2000)。

李奎廷、羅紹瑋、李旻珊、楊錫賢,「中部地區固定污染源系懸浮微粒化學組成特性分析」,台中市 PM2.5 控制技術及管理策略研討會論文集,台中(2013)。
林順信,「台中都會區大氣懸浮微粒中元素之時間變化與特性」,碩士論文,國立中興大學環境工程學系,台中(2009)。
林盈禎、劉俊男、蔡春進,「PM2.5 手動採樣和自動監測之差異與異常生成物對手動採樣測值影響之研究」第十九屆國際氣膠科技研討會暨 2012 細,懸浮微粒(PM2.5)管制策略研討會,台中(2012)。
陳志傑,「固定源與移動源 PM2.5 採樣量測」,細懸浮微粒(PM2.5)監測與管制策略研討會論文集(2013)。
陳昭忞,「重油鍋爐煙道排放之 PM2.5 及 PM10 微粒的特性及化學組成」,碩士論文,國立中興大學環境工程學系,台中(2002)。
陳勳融,「加裝濾煙器重型柴油引擎排放微粒物化特性」,碩士論文,國立中興大學環境工程學系,台中(2011)。
張章堂、林耿立、洪志青、楊詠淇,「各類型排放管道中粒狀污染物粒徑分析研究」,行政院環境保護署研究報告,EPA-93-E3S2-02-01 (2004)。
康廷工程顧問企業有限公司,「99 年度空氣污染綜合防治暨應變計畫」,桃園縣政府環境保護局期末報告,(2011)。
康城工程顧問股份有限公司,「101 年度空氣品質綜合管理計畫」,新竹縣政府環境保護局期末報告,(2012)。
黃柏翔, 「台中及南海地區大氣懸浮微粒的化學組成及其汙染源貢獻量解析」,碩士論文,國立中興大學環境工程學系,台中(2010)。
黃慕欣,「台灣三重、麥寮與林園三地區大氣中懸浮微粒及微粒源化學組成之探討」,碩士論文,國立台灣大學公共衛生學系,台北(1996)。
楊宏隆,「大氣懸浮微粒 PM2.5 及 PM2.5-10 之特性及來源分析」,碩士論文,國立中興大學環境工程研究所,台中 (1998)。

蔡瀛逸、米孝萱、陳健民、邱嘉斌、陳建隆,「100 年臺南市細懸浮微粒管制對策及健康風險評估計畫」,台南市環保局研究報告,(2011)。
鄭曼婷、邱嘉斌、王景良、賴宏志,「南高屏地區空氣污染總量管制專案計畫—子題 E2:受體模式空氣污染事件之應用與解析」,行政院環境保護
署研究報告,EPA-88-EA42-03-F5 (1999)。
賴立蓁,「鹿港和二林地區大氣懸浮微粒的化學組成及揚塵污染源指紋資料之建立」,碩士論文,國立中興大學環境工程學系,台中(2010)。
薛智遠,「北部地區細懸浮微粒化學成分及來源貢獻暨民眾細懸浮微粒暴露
之研究」,碩士論文,朝陽科技大學環境工程與管理系,台中(2011)。
環保署,NIEA A212.10B,「煙道中細懸浮微粒(PM2.5)檢測方法」,(2013)。
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊