跳到主要內容

臺灣博碩士論文加值系統

(44.200.82.149) 您好!臺灣時間:2023/06/09 23:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:李晨華
研究生(外文):Chen-Hua Li
論文名稱:淡水河沿岸退潮後底棲生物群集生產量與呼吸量
論文名稱(外文):Benthic community production and respiration during emersion along the Danshuei River
指導教授:林幸助林幸助引用關係蕭淑娟蕭淑娟引用關係
指導教授(外文):Hsing-Juh LinShu-Chuan Hsiao
口試委員:任秀慧
口試委員(外文):Rita Sau-wai Yam
口試日期:2013-11-22
學位類別:碩士
校院名稱:國立中興大學
系所名稱:生命科學系所
學門:生命科學學門
學類:生物學類
論文種類:學術論文
論文出版年:2013
畢業學年度:102
語文別:中文
論文頁數:88
中文關鍵詞:淡水河濕地底棲微藻密閉罩蓋法碳匯
外文關鍵詞:Danshuei River wetlandmicrophytobenthosclosed-chamber flux methodCarbon sink
相關次數:
  • 被引用被引用:5
  • 點閱點閱:325
  • 評分評分:
  • 下載下載:34
  • 收藏至我的研究室書目清單書目收藏:0
近年來全球暖化的問題日漸嚴重,二氧化碳持續上升,因此濕地對全球碳循環中的碳吸存功能更顯重要。估算生產者的生產量能了解生態系統所吸納的二氧化碳量,即碳吸存服務功能。底棲微藻是沿岸濕地中重要的生產者,但其所具有的碳吸存能力很少被量化。本研究於2011年8月到2012年10月,兩個月一次,從淡水河流域上游到河口設立七個測站,於沿岸濕地退潮期間利用密閉罩蓋法,現地量測底棲生物群集的碳代謝量。結果顯示,底棲微藻生物量由河口至上游測站有遞增趨勢,以五股測站最高,河口測站最低。群集總生產量介於 0.003- 0.016 g C m-2 day-1,有季節變化,夏季高冬季低;群集呼吸量介於 0.22 - 1.16 g C m-2 day -1,春季高冬季低。整體而言,除了挖仔尾泥質測站外,由河口至上游測站全年GCP有遞增趨勢,影響底棲群集碳代謝的因子是底棲微藻生物量、大型底棲無脊椎動物、土壤細菌豐度、粒徑大小及營養鹽濃度。全年群集生產量的收支計算尚考慮底棲微藻垂直移動與潮汐週期之影響,估計為 -216.34 g C m-2 yr-1。淡水河沿岸濕地大型底棲無脊椎動物生物量相較於其他濕地(金門、高美及香山) 較高,細菌豐度相較於受油汙汙染的高美濕地也高,顯示淡水河沿岸濕地豐富的土壤細菌與大型底棲無脊椎動物,造成底棲生物群集呼吸量極高,當地藻類生產量不足以供應底棲生物群集使用。估算淡水河流域碳收支,底棲微藻每年輸出383公噸碳,為碳源系統。
Global warming has become a serious problem in recent years. Carbon sequestration in wetlands plays an important role in global carbon cycle. Determination of the primary production would quantify the carbon sequestration, which could be used to calculate economical value of an ecosystem. Microphytobenthos (MPB) are important primary producers inestuarine wetlands, but the capacity of carbon sequestration has rarely been quantified. This study was conducted every two months from August 2011 to October 2012. In total, there were 7 study sites along the Danshuei River from upstream to the estuary. Benthic gross community production (GCP) and community respiration (CR) were determined using the in situ closed-chamber flux method during emersion along the Danshuei River by monitoring CO2 fluxes in benthic chambers on intertidal sandflats. The results showed that MPB biomass increased from the estuary to the upstream, with the highest value at WG and the lowest at E. Both GCP (0.003 – 0.016 g C m-2 day-1) and CR (0.22 – 1.16 g C m-2 day -1) were higher in summer and fall and lower in spring and winter. The main influencing factors were MPB biomass, macrofaunal biomass, soil bacterial biomass, sediment grain size, and nutrient concentrations. To provide an accurate annual budget of community production during emersion, factors such as tidal cycle, MPB vertical migration and diurnal cycle were also taken into account in the calculations. Annual net benthic community production during emersion was estimated to be -216.34 g C m-2 yr-1, suggesting that the CR of the intertidal wetlands along the Danshuei River was high so that not enough supply of primary production for the use by the benthic community or a system of carbon source.
致謝 i
摘要 iii
Abstract iiv
目次 v
表次 vii
圖次 viii
第一章、前言 1
一、沿岸生態系的重要性 1
二、濕地類型與重要性 2
三、底棲微藻碳吸存能力 3
四、研究樣點背景 6
五、研究動機與目的 8
六、研究假說 9
第二章、材料與方法 10
一、研究地點與採樣時間 10
二、環境因子 13
2.1. 光度 13
2.2. 水體水質 13
2.3. 底質因子 13
2.2.1. 底質氧化還原電位 13
2.2.2. 孔隙水 14
2.2.3. 底質有機物含量 14
2.2.4. 底質粒徑 14
三、生物因子 17
3.1. 底棲微藻生物量 17
3.2. 大型底棲無脊椎動物生物量 17
3.3 土壤細菌豐度 17
四、退潮期間底棲生物群集碳代謝量 18
五、統計分析 22
第三章、結果 23
一、環境因子 23
1.1. 降雨量 23
1.2. 水體水質 23
1.2.1. 水溫 23
1.2.2. 鹽度 23
1.2.3. 溶氧值 23
1.2.4. 酸鹼值 23
1.2.5. 溶解性無機磷濃度 24
1.2.6. 溶解性無機氮濃度 24
1.3. 底質環境因子 24
1.3.1. 孔隙水 24
1.3.1.1. 鹽度 24
1.3.1.2. 酸鹼值 24
1.3.1.3. 溶解性無機磷濃度 25
1.3.1.4 溶解性無機氮濃度 25
1.3.2. 底質氧化還原電位 25
1.3.3. 底質粒徑 26
1.3.4. 有機物含量 26
二、生物因子 26
2.1. 大型底棲無脊椎動物生物量 26
2.2. 土壤細菌豐度 27
2.3. 底棲微藻生物量 27
三、退潮期間底棲生物群集碳代謝量 28
四、退潮期間底棲生物群集年生產量估算 30
第四章、討論 53
一、各測站環境特性之差異 53
1.1. 環境因子 53
1.2. 底質因子 54
二、生物因子與環境因子之相關性 55
2.1. 土壤細菌豐度 55
2.2. 大型無脊椎動物生物量 56
2.3. 底棲微藻生物量 56
三、退潮期間碳代謝量與重要影響因子 58
4.1. 大型底棲無脊椎動物生物量 61
4.2. 底棲微藻生物量 61
4.3. 底棲生物群集碳代謝量 62
五、淡水河流域碳收支 63
第五章、結論 74
第六章、參考文獻 75
第七章、會議記錄 83
李俊賢。2006。以三維數值模式模擬淡水河河口及感潮段鹽度與懸浮沉積物。國立中央大學水文科學系研究所碩士學位論文。
林幸助、李麗華。2011。金門國家公園沿海濕地碳通量調查計畫。內政部營建署金門國家公園管理處委託辦理報告。
林幸助、薛美莉、陳添水、何東輯。2009。濕地生態系生物多樣性監測系統標準作業程序。行政院農業委員會特有生物研究保育中心。南投,臺灣。
林蔚任、林幸助。2011。金門西岸沿海濕地退潮期間底棲生物碳代謝量。國家公園學報 21: 14-21。
邱惠秀。2011。大漢溪與淡水河河口海域水質探討。國立台灣海洋大學海洋環境資訊研究所碩士學位論文。
陳見東。2007。台灣北部淡水河口沿岸水域的基礎生產量與植物性浮游生物縣量之季節變動研究。國立台灣海洋大學環境生物與漁業科學學系碩士論文。
翁義聰、楊英欽與陳坤能(主編)。2011 國家重要濕地彙編。台北市:內政
部營建署。
張勝騰。2003。淡水河河口水質與懸浮細泥之調查研究。國立中央大學水文科學系研究所碩士學位論文。
廖璟郡。2012。新竹香山濕地碳吸存。國立中興大學生命科學系研究所碩士學位論文。
葉子嫈。2011。潮汐作用對東海生地化循環及初級生產力之影響。國立中央大學水文與海洋科學研究所碩士學位論文。
萬鑫偉。2012。七股鹽田濕地潮間帶灘地初級生產量及溫室氣體通量調查。嘉南藥理科技大學環境工程與科學系研究所碩士學位論文。
謝莉顒。2003。淡水河感潮河段水層及底棲群聚溶氧代謝之研究。國立中興大學碩士論文。
謝蕙蓮,黃守忠,李坤瑄與陳章波。1993。潮間帶底棲生態調查法。生物科學 36: 71-80。
蔣國平。2007。台灣北部淡水河口沿岸水域的基礎生產力及植物型浮游生物現存量之季節變動研究。國立台灣海洋大學海洋環境與漁業科學系研究所碩士學位論文。
Anandraj, A., R. Perissinotto, C. Nozais, and D. Stretch. 2008. The recovery of microalgal production and biomass in a South African temporarily open/closed estuary, following mouth breaching. Estuarine, Coastal and Shelf Science 79:599-606.
Barendregt, A. and C. W. Swarth. 2013. Tidal Freshwater Wetlands: Variation and
Changes. Estuaries and Coasts 36:445-456.
Burford, M. A., A. T. Revill, J. Smith, and L. Clementson. 2012. Effect of sewage
nutrients on algal production, biomass and pigments in tropical tidal creeks.
Mar Pollut Bull 64:2671-2680.
Cahoon, L.B., 1999. The role of benthic microalgae in neritic ecosystems.
Oceanography and Marine Biology: an Annual Review 37:47-86.
Cartaxana, P., M. Ruivo, C. Hubas, I. Davidson, J. Serodio, and B. Jesus. 2011.
Physiological versus behavioral photoprotection in intertidal epipelic and
epipsammic benthic diatom communities. Journal of Experimental Marine
Biology and Ecology 405:120-127.
Chevaldonne, P., Godfroy, A., 1997. Enumeration of microorganisms from deep-sea
hydrothermal chimney samples. FEMS Microbiology Letters 146:211-216.
Clarke, K. R. & R. M. Warwick. 2001. Changes in marine communities: an approach to statistical analysis and interpretation. 2nd Edition.
PRIMER-E: Plymouth. Clement, UK.
Colijn, F., de Jonge, V.N., 1984. Primary production of microphytobenthos in the
Ems-Dollard Estuary. Marine Ecology Progress Series 14:185-96.
Consalvey, M., Paterson, D.M., Underwood, G.J.C., 2004. The ups and downs of life
in a benthic biofilm : migration of benthic diatoms. Diatom Research
19:181-202.
Cowardin, L. M. 1979. Classification of wetlands and deepwater habitats of the United States. Diane Pub Co.
Du, G. Y., M. Son, S. An, and I. K. Chung. 2010. Temporal variation in the vertical
distribution of microphytobenthos in intertidal flats of the Nakdong River
estuary, Korea. Estuarine, Coastal and Shelf Science 86:62-70.
Folk, R. L. 1966. A review of grain‐size parameters. Sedimentology 6: 73-93.
Guarini, J. M., L. Chauvaud, and J. Coston-Guarini. 2008. Can the intertidal benthic microalgal primary production account for the 'Missing Carbon Sink' ? Journal of Oceanography 1: 13-19.
Hsieh, H.L., and Chang, K.H. 1991. Habitat characteristics and occurrence of the spionid Pseudopolydorasp. on the tube-caps of the onuphid Diopatra bilobata (Polychaeta: Spionidae, Onuphidae). Bull. Inst. Zool., Academia Sinica 30:331-339.
Hubas, C., D. Davoult, T. Cariou, and L. F. Artigas. 2006. Factors controlling benthic metabolism during low tide along a granulometric gradient in an intertidal bay (Roscoff Aber Bay, France). Marine Ecology Progress Series 316: 53-68.
Hyland, J., L. Balthis, I. Karakassis, P. Magni, A. Petrov, J. Shine, O. Vestergaard, and R. Warwick. 2005. Organic carbon content of sediments as an indicator of stress in the marine benthos. Marine Ecology Progress Series 295: 91-103.
Jassby, A. D. and T. Platt. 1976. Mathematical formulation of the relationship between photosynthesis and light for phytoplankton. Limnology and Oceanography 21: 540-547.
Jefferey, S.W., and G.F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c1, and c2 in higher plants, algae, and natural phytoplankton. Biochem. Physiol. Pflanzen. 167: 191-194.
Jenkin, D. and Medsker, L. L., 1964. Brucine method for determination of nitrate in
ocean, estuarine, and fresh waters. Analytical Chemistry, 36(3):610-612.
Lin, H. J., K. T. Shao, R. Q. Jan, H. L. Hsieh, C. P. Chen, L. Y. Hsieh, and Y. T.
Hsiao. 2007. A trophic model for the Danshuei River Estuary, a hypoxic
estuary in northern Taiwan. Mar Pollut Bull 54:1789-1800.
Lee, L. H., L. Y. Hsieh, and H. J. Lin. 2011. In situ production and respiration of the
benthic community during emersion on subtropical intertidal sandflats.
MARINE ECOLOGY PROGRESS SERIES 441:33-47.
Lee, L. H. and H. J. Lin. 2013. Effects of an oil spill on benthic community
production and respiration on subtropical intertidal sandflats. Mar Pollut Bull
73:291-299.
Longhurst, A., S. Sathyendranath, T. Platt, and C. Caverhill. 1995. An estimate of global primary production in the ocean from satellite radiometer data. Journal of Plankton Research 17: 1245-1271.
MacIntyre, H. L., R. J. Geider, and D. C. Miller. 1996. Microphytobenthos: the ecological role of the “secret garden” of unvegetated, shallow-water marine habitats. I. Distribution, abundance and primary production. Estuaries and Coasts 19: 186-201.
Mayor, D. J., B. Thornton, and A. F. Zuur. 2012. Resource quantity affects benthic
microbial community structure and growth efficiency in a temperate intertidal
mudflat. PLoS One 7:e38582.
Meleder, V., L. Barille, Y. Rince, M. Morancais, P. Rosa, and P. Gaudin. 2005. Spatio-temporal changes in microphytobenthos structure analysed by pigment composition in a macrotidal flat (Bourgneuf Bay, France). Marine Ecology Progress Series 297: 83-99.
Migne, A., D. Davoult, J. J. Bourrand, and G. Boucher. 2005. Benthic primary production, respiration and remineralisation: in situ measurements in the soft-bottom Abra alba community of the western English Channel (North Brittany). Journal of Sea Research 53: 223-229.
Migne, A., D. Davoult, N. Spilmont, D. Menu, G. Boucher, J. P. Gattuso, and H. Rybarczyk. 2002. A closed-chamber CO2-flux method for estimating intertidal primary production and respiration under emersed conditions. Marine Biology 140: 865-869.
Migne, A., F. Gevaert, A. Creach, N. Spilmont, E. Chevalier, and D. Davoult. 2007. Photosynthetic activity of intertidal microphytobenthic communities during emersion: in situ measurements of chlorophyll fluorescence (PAM) and CO2 flux (IRGA). Journal of Phycology 43: 864-873.
Migne, A., V. Ouisse, C. Hubas, and D. Davoult. 2011. Freshwater seepages and ephemeral macroalgae proliferation in an intertidal bay: II. Effect on benthic biomass and metabolism. Estuarine, Coastal and Shelf Science 92: 161-168.
Migne, A., N. Spilmont, G. Boucher, L. Denis, C. Hubas, M.-A. Janquin, M. Rauch, and D. Davoult. 2009. Annual budget of benthic production in Mont Saint-Michel Bay considering cloudiness, microphytobenthos migration, and variability of respiration rates with tidal conditions. Continental Shelf Research 29: 2280-2285.
Migne, A., N. Spilmont, and D. Davoult. 2004. In situ measurements of benthic primary production during emersion: seasonal variations and annual production in the Bay of Somme (eastern English Channel, France). Continental Shelf Research 24: 1437-1449.
Nellemann, C. 2009. Blue carbon: The role of healthy oceans in binding carbon, Vol. UNEP
Nellemann, C., Corcoran E., Duarte C. M., Valdes L., DeYoung C, Fonseca L., Grimsditch G. 2009. Blue carbon. A Rapid Response Assessment United Nations Enviornment Programme, GRID-Arendal
Nicastro, A. and M. J. Bishop. 2013. Weak and habitat-dependent effects of nutrient pollution on macrofaunal communities of southeast Australian estuaries. PLoS One 8:e65706.
Orvain, F., S. Lefebvre, J. Montepini, M. Sebire, A. Gangnery, and B. Sylvand. 2012. Spatial and temporal interaction between sediment and microphytobenthos in a temperate estuarine macro-intertidal bay. Marine Ecology Progress Series 458:53-68.
Pai SC, Tsau YJ, Yang TI. 2001. pH and buffering capacity problems involved in the determination of ammonia in saline water using the indophenol blue spectrophotometric method. Analytica Chimica Acta 434:209-216
Pai, S.C., Yang C.C., P. Riley J. 1990. Formation kinetics of the pink azo dye in the determination of nitrite in natural waters. Analytica Chimica Acta 232:345-349
Parsons, T. R., Maita Y., Lalli C. M. 1984a. A manual of biological and chemical methods for seawater analysis. In. Pergamon Press
Parsons, T. R., Maita Y, Lalli C. M. 1984b. Manual of chemical and biological methods for seawater analysis, Vol. Pergamon
Perissinotto, R., C. Nozais, and I. Kibirige. 2002. Spatio-temporal dynamics of phytoplankton and microphytobenthos in a South African temporarily -open estuary. Estuarine, Coastal and Shelf Science 55: 47-58.
Pinckney, J. L. and R. Zingmark. 1991. Effects of tidal stage and sun angles on intertidal benthic microalgal productivity. Marine Ecology Progress Series 76: 81-89.
Ribeiro, P. D. and O. O. Iribarne. 2011. Coupling between microphytobenthic
biomass and fiddler crab feeding. Journal of Experimental Marine Biology and
Ecology 407:147-154.
Schelske, C.L., and E.P. Odum. 1962. Mechanisms maintaining high productivity in Georgia estuaries. Paper read at Proceedings of the Gulf and Caribbean Fish Institute.
Schumacher, B.A. (2002). Methods for the determination of total Organic carbon (TOC) in soils and sediments. Ecological risk assessment support center, office of research and development. Las Vegas, NV: U.S. environmental protection agency. Vegas, NV: U.S. environmental protection agency.
Serodio, J. and F. Catarino. 2000. Modelling the primary productivity of intertidal microphytobenthos: time scales of variability and effects of migratory rhythms. Marine Ecology Progress Series 192: 13-30.
Serodio, J., 2003. A chlorophyll fluorescence index to estimate short-term rates of
photosynthesis by intertidal microphytobenthos. Jurnal of Phycology 39:33-46.
Spilmont, N., A. Migne, L. Seuront, and D. Davoult. 2007. Short-term variability of intertidal benthic community production during emersion and the implication in annual budget calculation. Marine Ecology Progress Series 333: 95-101.
Spilmont. N., Davoult. D., Migne. A., 2006, Benthic primary production during
emersion: In situ measurements and potential primary production in the Seine
Estuary (English Channel, France), Marine Pollution Bulletin 53, 49–55.
Sullivan, M. J. and C. A. Moncreiff. 1988. Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology 24: 49-58.
Tang, Y., L. Wang, J. Jia, Y. Li, W. Zhang, H. Wang, X. Fu, and Y. Le. 2011.
Variability of soil microbial respiration under different vegetation succession
stages in Jiuduansha wetland. Desalination and Water Treatment 32:277-283.
Tang, Y.-s., L. Wang, J.-w. Jia, X.-h. Fu, Y.-q. Le, X.-z. Chen, and Y. Sun. 2011.
Response of soil microbial community in Jiuduansha wetland to different
successional stages and its implications for soil microbial respiration and
carbon turnover. Soil Biology and Biochemistry 43:638-646.
Tirok, K. and U. M. Scharler. 2013. Dynamics of pelagic and benthic microalgae during drought conditions in a shallow estuarine lake (Lake St. Lucia). Estuarine, Coastal and Shelf Science 118:86-96.
van der Wal, D., A. Wielemaker-van den Dool, and P. M. J. Herman. 2010. Spatial Synchrony in Intertidal Benthic Algal Biomass in Temperate Coastal and Estuarine Ecosystems. Ecosystems 13:338-351.
Vieira, S., L. Ribeiro, J. Marques da Silva, and P. Cartaxana. 2013. Effects of
short-term changes in sediment temperature on the photosynthesis of two
intertidal microphytobenthos communities. Estuarine, Coastal and Shelf
Science 119:112-118.
Ubertini M., Se’bastien L., Aline G., Karine G., Romain L. G.,Francis O. 2012.
Spatial Variability of Benthic-Pelagic Coupling in an Estuary Ecosystem:
Consequences for Microphytobenthos Resuspension Phenomenon. PLoS ONE
7(8): e44155.
Underwood, G. and J. Kromkamp. 1999. Primary production by phytoplankton and microphytobenthos in estuaries. Advances in Ecological Research 29: 93-153.
Wang, C.-F., M.-H. Hsu, and A. Y. Kuo. 2004. Residence time of the Danshuei River
estuary, Taiwan. Estuarine, Coastal and Shelf Science 60:381-393.
Wang, Q., T. He, S. Wang, and L. Liu. 2013. Carbon input manipulation affects soil
respiration and microbial community composition in a subtropical coniferous
forest. Agricultural and Forest Meteorology 178:152-160.
Waska, H. and G. Kim. 2010. Differences in microphytobenthos and macrofaunal
abundances associated with groundwater discharge in the intertidal zone.
MARINE ECOLOGY PROGRESS SERIES 407:159-172.
Weerman, E. J., P. M. J. Herman, and J. van de Koppel. 2011. Macrobenthos
abundance and distribution on a spatially patterned intertidal flat. MARINE
ECOLOGY PROGRESS SERIES 440:95-103.
Wen L-S, K-T Jiann, K-K Liu 2008. Seasonal variation and flux of dissolved nutrients
in the Danshuei Estuary, Taiwan: A hypoxic subtropical mountain river.
Estuarine, Coastal and Shelf Science 78:694–704.
Yallop, M.L., Paterson, D., Wellsbury, M.P., 2000. Interrelationships between rates of
microbial production, exopolymer production, microbial biomass, and
sediment stability in biofilms of intertidal sediments. Microbial Ecology 39:
116-127.
Yu, Y., H. Wang, J. Liu, Q. Wang, T. Shen, W. Guo, and R. Wang. 2012. Shifts in
microbial community function and structure along the successional gradient
of coastal wetlands in Yellow River Estuary. European Journal of Soil
Biology 49:12-21.
Zhang, Y., Y. Li, L. Wang, Y. Tang, J. Chen, Y. Hu, X. Fu, and Y. Le. 2013. Soil
microbiological variability under different successional stages of the
Chongming Dongtan wetland and its effect on soil Organic carbon storage.
Ecological Engineering 52:308-315.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top