跳到主要內容

臺灣博碩士論文加值系統

(44.211.34.178) 您好!臺灣時間:2024/11/02 23:22
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林哲敏
研究生(外文):Che-Min Lin
論文名稱:濺鍍銅合金薄膜自形成超薄鉻鉬鈮釕鉭釩多元擴散阻障層之研究
論文名稱(外文):Self Formation of Ultrathin CrMoNbRuTaV Multi-component Diffusion Barrier from Sputtered Cu Alloy Film
指導教授:張守一
指導教授(外文):Shou-Yi Chang
口試委員:蔡銘洪游瑞松
口試委員(外文):Ming-Hung TsaiRuei-Sung Yu
口試日期:2014-03-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:64
中文關鍵詞:銅製程自形成擴散阻障層銅合金
外文關鍵詞:Copper processSelf-forming diffusion barrierCopper alloys
相關次數:
  • 被引用被引用:0
  • 點閱點閱:333
  • 評分評分:
  • 下載下載:20
  • 收藏至我的研究室書目清單書目收藏:0
當超大型積體電路元件尺寸不斷的縮小,半導體銅製程內連線之線路寬度急遽降低,為防止銅迅速擴散進入元件內造成特性退化,需要擴散阻障層來阻隔銅的擴散。本實驗以射頻磁控濺鍍法於矽基板上沉積銅(鉻鉬鈮釕鉭釩)合金薄膜,經350 °C退火後,藉由合金元素擴散至界面處自形成一多元擴散阻障層,期望能開發出性能優越之擴散阻障層材料。由場發射掃描式電子顯微鏡可看到純銅薄膜結構於400 °C退火後發現少許銅矽化合物的出現,顯示銅矽已交互擴散發生反應。銅合金(自形成)薄膜於500 °C退火後只有晶粒成長,並無銅矽化合物產生,顯示銅合金薄膜具有較佳之擴散阻障能力。經X光繞射儀及四點探針分析研究發現,銅合金(自形成)薄膜可有效將阻障極限溫度自300 °C提升至500 °C,電阻值遠較純銅膜為低。由上述分析可知,銅合金薄膜內的合金元素確實擴散至界面處自形成一極薄之阻障層,阻止銅快速擴散進入矽基板中,因此提供了較佳之擴散阻障能力。
As the size of ULSI devices continually decreases, the line width of Cu interconnects is drastically reduced. In order to prevent Cu diffusion into devices and subsequent performance degradation, a diffusion barrier is strongly needed. In this study, a Cu (Cr/Mo/Nb/Ru/Ta/V) alloy film was deposited on Si substrates by radio-frequency magnetron sputtering. A self-forming multi-component alloy layer at the Cu/Si interface by the diffusion of alloyed elements during thermal annealing at 350 °C was developed as a promising diffusion barrier. Experiment results indicated that, from the structure of pure Cu film after annealing at 400°C, a Cu3Si compound was formed, revealing the interdiffusion and reaction of Cu and Si. In comparison, the Cu alloy film (with a self-forming barrier) after annealing at 500 °C showed only Cu grain growth rather than Cu3Si compounds, suggesting the high diffusion resistance of the Cu alloy film. From X-ray diffraction and four-point probe analyses, the endurance temperature of the Cu alloy film was effectively enhanced from 300 to 500 °C, with much lower electrical resistivity than the Cu film. From the above analysis, it is concluded that the alloyed elements indeed diffused to the Cu/Si interface and formed an ultrathin barrier layer to prevent the rapid Cu diffusion into Si substrates, accordingly providing a better diffusion-resistant ability.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
表目錄 VIII
壹、前言 1
貳、文獻回顧 3
2-1 積體電路多層內連線 3
2-1-1 電阻-電容延遲效應(RC Delay) 3
2-1-2 金屬內連線材料 4
2-1-3 低介電常數材料 7
2-1-4 雙鑲嵌製程(Dual Damascene) 9
2-1-5 擴散阻障層(Diffusion Barrier Layer) 11
2-2 擴散阻障層材料之發展................................................................12
2-2-1 傳統擴散阻障層材料.............................................................12
2-2-2 二元以上過渡金屬氮化物擴散阻障層之發展 .13
2-2-3 過渡金屬氮化物疊層結構擴散阻障層之發展 .15
2-2-4 多元高熵合金及其氮化物擴散阻障層之發展 .17

2-2-5 自組裝擴散阻障層之發展.....................................................20
2-3 自形成擴散阻障層 .22
2-3-1 自形成擴散阻障層之發展.....................................................22
2-3-2 自形成擴散阻障層之應用.....................................................23
2-4 研究目的 27
參、實驗步驟 30
3-1 實驗規劃 30
3-2 實驗步驟 31
3-2-1 基板準備 31
3-2-2 靶材製備 31
3-2-3 銅合金薄膜沉積 31
3-2-4 氣氛熱處理 31
3-3 分析儀器 33
3-3-1 場發射掃描式電子顯微鏡(FE-SEM) 33
3-3-2 X光繞射儀(XRD) 33
3-3-3 四點探針(Four-Point Probe) 33
肆、結果與討論 35
4-1 純銅薄膜基本性質 35
4-1-1 表面形貌微結構 35
4-1-2 晶體結構 37
4-1-3 電阻率 39
4-2 銅合金(無自形成)薄膜擴散阻障性質 41
4-2-1 表面形貌微結構 41
4-2-2 晶體結構 43
4-2-3 電阻率 45
4-3 銅合金(自形成)薄膜擴散阻障性質 47
4-3-1 表面形貌微結構 47
4-3-2 晶體結構 49
4-3-3 電阻率 52
伍、結論 55
陸、參考文獻 56


圖目錄
圖 2-1 鋁線因電致遷移而產生的斷路情形。 5
圖 2-2 IBM的銅導線晶片,圖中的晶片具有六層電路。 6
圖 2-3 時間延遲對元件尺寸的關係圖。 8
圖 2-4 雙鑲嵌製程流程圖。 10
圖 2-5高熵合金氮化物(1N-6N)擴散阻障層經不同溫度退火前後之X光繞射圖。 18
圖 2-6 高分子自組裝擴散阻障層之示意圖。 21
圖 2-7 自形成擴散阻障層示意圖。 25
圖 2-8 鉻鉬鈮釕鉭釩各元素與銅之二元相圖。 29
圖 3-1 實驗流程規劃圖。 30
圖 4-1 純銅膜結構退火前後之 SEM 表面形貌影像。 36
圖 4-2 純銅膜結構退火後之X光繞射圖。 38
圖 4-3 純銅膜結構在退火前後電阻率變化情形。 40
圖 4-4 銅合金(無自形成)薄膜結構退火前後之 SEM 表面形貌影像。 42
圖 4-5 銅合金(無自形成)薄膜結構退火前後之X光繞射圖。 44
圖 4-6 銅合金(無自形成)薄膜結構在退火前及不同溫度退火後之電阻率變化。 46
圖 4-7 銅合金(self-formed)薄膜結構退火前後之 SEM 表面形貌影像。 48
圖 4-8 銅合金(self-formed)薄膜結構退火前後之X光繞射圖。......51
圖 4-9 銅合金(self-formed)薄膜結構在退火前及不同溫度退火後之電阻率變化。……………………………………………….....53
圖 4-10 純銅薄膜、銅合金(無自形成)薄膜與銅合金(self-formed)薄膜結構在不同溫度退火之電阻率比較。…………………54




表目錄
表 2-1 二元以上擴散阻障層之成分、厚度、擴散阻障極限溫度及持溫時間。 14
表2-2 擴散阻障層疊層結構其成分、厚度、擴散阻障極限溫度及持溫時間。 16
表2-3 多元高熵合金擴散阻障層之成分、厚度、擴散阻障極限溫度及持溫時間。 19
表2-4 自組裝擴散阻障層之成分、阻障銅矽擴散之極限溫度、外加偏壓、持溫時間。 21
表2-5 自形成擴散阻障層之成分、非銅元素含量、擴散阻障極限溫度及持溫時間。 26
[1] S. P. Murarka, and S. W. Hymes, “Copper metallization for ULSL and beyond”, Crit.l Rev. Solid State, 20 (1995) 57-124.
[2] A. Cros, M. O. Aboelfotoh, and K. N. Tu, “Formation, oxidation, electronic, and electrical properties of copper silicides”, J. Appl. Phys., 67 (1990) 3328–3336.
[3] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami,
“Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films”, J. Electrochem. Soc., 34 (2005) 592-599.
[4] J. P. Chu, C. H. Lin, and V. S. John, “Barrier-free Cu metallization
with a novel copper seed layer containing various insoluble substances”, Vacuum, 83 (2009) 668–671.
[5] B. Zhao, K. F. Sun, Z. L. Song, and J. H. Yang, “Ultrathin Mo/MoN
bilayer nanostructure for diffusion barrier application of advanced Cu metallization”, Appl. Surf. Sci., 256 (2010) 6003-6006.
[6] 朱啟元,張維新,岳瀚,”半導體低介電常數(low k)多孔洞材料之介紹”,台灣大學,化學研究所,2001年。
[7] P. S Ho, ”low k Dielectrics For Submicron Interconnect Applications”, Low k tutorial Taiwan, 2000.
[8] 劉柏村,張鼎張,”低介電常數材料應用於導體連線製程技術
的探討”,奈米通訊,第九卷第二期,2002年。
[9] Y. S. Diamand, and S. Lopatin, “Integrated electroless metallization for ULSI”, Electrochimica Acta, 44 (1999) 3639-3649.
[10] L. Peters, “Pursuing the perfect low-k dielectrics”, Semiconductor International, 21 (1998) 64.
[11] 莊達人,”VLSI製造技術”,高立圖書公司,2006年。
[12] R. S. Muller, T. I. Kamins, and M. chan, “Device electronics for integrated circuits”, 2nd ed., John Wiley & Sons, New York, (1986) 1-56.
[13] 楊正杰,張鼎張,鄭晃忠,”銅金屬與低介電常數材料與製程”奈米通訊,第七卷第四期,2000年。
[14] T. Ida, M. Rossnegal, and D. M. Isen, ” Collimated magnetron sputter deposition”, J. Vac. Sci. Technol A, 9 (1991) 261.
[15] T. Sakurai, IEEE Trans. Electron Devices, 40 (1993) 118.
[16] 邱顯光,蔡明蒔,林鴻志,”雙鑲嵌結構製作技術簡介”,奈米通訊,第六卷第三期,1999年。
[17] K. Kudo et al., “Copper dual damascene interconnects with very low k dielectrics targeting for 130 nm node”, Proc. of IEEE IITC, (2000) 270-272.
[18] 林宗新,”無阻障層濺鍍銅薄膜之先進材料分析技術”,2007年。
[19] 吳文發,黃麒峰,”銅製程之擴散阻障層”,奈米通訊,第六卷第四期,2000年。
[20] A. Noya, and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, J. Appl. Phys., 30 (1991) 1760-1763.
[21] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN Microstructure on Barrier Properties in Cu metallization”, J. Electrochem. Soc., 145 (1998) 2164-2167.
[22] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectron. Eng., 33 (1997) 269-275.
[23] K. H Min, K. C. Chun, and K. B. Kim, “Comparative Study of
Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization”, J. Vac. Sci. Technol B, 14 (1996) 3263-3269.
[24] C. S. Kwon, Y. T. Kim, S. K. Min, and I. H. Choi, “The Characteristics of Nitrogen Implanted Tungsten Film as a New Diffusion Barrier for Metal Organic Chemical Vapor Deposited Cu Metallization”, Jpn. J. Appl. Phys., 34 (1995) 6857-6860.
[25] G. He, L. Yao, Z. Song, Y. Li, and K. Xu, “Diffusion barrier
performance of nano-structured and amorphous Ru–Ge diffusion
barriers for copper metallization”, Vacuum 86 (2012) 965-969.
[26] Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, “Diffusion barrier
performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315.
[27] T. K. Eom, W. Sari, T. Cheon, S. H. Kim, and W. K. Kim,
“A bilayer diffusion barrier of Ru/WSixNy for advanced Cu interconnects”, Thin Solid Films 521 (2012) 73–77.
[28] C. H. Lin, “Cu(ReTaNx) Copper Alloy Films Suitable for
Electronic-Device Manufacturing-Process Simplification”, Jpn. J. Appl. Phys., 51 (2012) 01AC08.
[29] J. Li, H. S. Lu, Y. W. Wang, and X. P. Qu, “Sputtered Ru–Ti, Ru–N
and Ru–Ti–N films as Cu diffusion barrier”, Microelectron. Eng., 88 (2011) 635–640.
[30] K. C. Hsu, D. C. Perng, J. B. Yeh, and Y. C. Wang, “Ultrathin Cr
added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects”, Appl. Surf. Sci., 258 (2012) 7225– 7230.
[31] B. T. Liu, J. H. Chen, X. H. Li, K. M. Wang, M. Li, D. Y. Zhao, L.
Yang, Q. X. Zhao, L. X. Ma, and X. Y. Zhang, “Investigation of amorphous Ni-Al-N film as diffusion barrier between Cu and SiO2” , J. Alloy. Compd., 509 (2011) 8093-8096.
[32] Y. L. Kuo, F. C. Kung, and T. L. Su, “Superior Stability of Ultrathin
and Nanocrystalline TiZrN Films as Diffusion Barriers for Cu”, Nanosci. Nanotechnol. Lett., 1 (2009) 37-41.
[33] S. T. Lin, and C. Lee, “Characteristics of sputtered Ta-B-N thin film
as diffusion barriers between copper and silicon”, Apppl. Surf. Sci., 253 (2006) 1215-1221.
[34] K. C. Hsu, D. C. Perng, and Y. C. Wang, “Robust ultra-thin RuMo
alloy film as a seedless Cu diffusion barrier”, J. Alloy. Compd., 516 (2012) 102-106.
[35] J. S. Fang, J. H. Lin, B. Y. Chen, G. S. Chen, and T. S. Chin, “Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects”, J. Electron. Mater., 41 (2011) 138-143.
[36] P. Majumdera, and C. Takoudis, “Reactively sputtered Mo-V nitride
thin films as ternary diffusion barrier for copper metallization”, J. Electrochem. Soc., 155 (2008) 703-706.
[37] Y. L. Kuo, C. Lee, T, J. C. Lin, Y. W. Yen, and W. H. Lee,
“Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271.
[38] Q. Xie, Y. L. Jiang, K. K. De, C. Detavernier, D. Deduytsche, G. P.
Ru, X. P. Qu, and K. N. Tu, “The effect of sputtered W-based carbide diffusion barriers on the thermal stability and void formation in copper thin films”, Microelectron. Eng., 87 (2010) 2535-2539.
[39] S. H. Kim, H. T. Kim, S. S. Yim, D. J. Lee, K. S. Kim, H. M. Kim,
K. B. Kim, and H. Sohn, “A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu”, J. Electrochem. Soc., 155 (2008) H589-H594.
[40] P. Majumder and C. Takoudis, “Thermal stability of Ti/Mo and
Ti/MoN nanostructures for barrier applications in Cu interconnects”, Nanotechnology, 19 (2008) 205202.
[41] Z. X. Song, J. A. Wang, Y. H. Li, F. Ma, K. W. Xu, and S. W. Guo,
“The self-formation graded diffusion barrier of Zr/ZrN”, Microelectron. Eng., 87 (2010) 391–393.
[42] D. C. Perng, J. B. Yeh, and K. C. Hsu, “Ru/WCoCN as a seedless Cu
barrier system for advanced Cu metallization”, Appl. Surf. Sci., 256 (2009) 688–692.
[43] L. C. Leu, D. P. Norton, L. McElwee, and T. J. Anderson, “Ir/TaN
as a bilayer diffusion barrier for advanced Cu interconnects”, Appl. Phys. Lett., 92 (2008) 111917.
[44] S. Rawal, D. P. Norton, K. Kim, T. J. Anderson, and L.
McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization
on Si”, Appl. Phys. Lett., 89 (2006) 231914.
[45] W. Sari, T. K. Eom, S. H. Choi, and S. H. Kim, “Ru/WNx Bilayers as Diffusion Barriers for Cu Interconnects”, Jpn. J. Appl. Phys., 50 (2011) 05EA08.
[46] C. X. Yang, S. J. Ding, D. W. Zhang, P. F. Wang, X. P. Qu, and R.
Liu, “Improvement of Diffusion Barrier Performance of Ru Thin
Film by Incorporating a WHfN Underlayer for Cu Metallization”, Electrochem. Solid State Lett., 14 (2011) H84-H87.
[47] Y. Wang, F. Cao, Y. Liu, and M. H. Ding, “Investigation of
Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Appl. Phys. Lett., 92 (2008) 032108.
[48] Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, and G.P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Surf. Sci., 253 (2006) 1666–1672.
[49] 葉均蔚,陳瑞凱,”高熵合金”,科學發展,377期,2004年5月。
[50] A. L Greer, “Materials Science - Confusion by Design”, Nature, 366 (1993) 303.
[51] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10 (2008) 534-538.
[52] S. Y. Chang, C. Y. Wang, C. E. Li, and Y. C. Huang, “5 nm-Thick
(AlCrTaTiZrRu)N0.5 Multi-Component Barrier Layer with High Diffusion Resistance for Cu Interconnects”, Nanosci. Nanotechnol. Lett., 3 (2011) 289-293.
[53] M. H. Tsai , J. W. Yeh, and J. Y. Gan, “Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon”, Thin Solid Films, 516 (2008) 5527–5530.
[54] S. Y. Chang, C. Y. Wang, M. K. Chen, and C. E Li, “Ru
incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers”, J. Alloy. Compd., 509 (2011) L85-G89.
[55] M. H. Tsai, C. W. Wang, C. W. Tsai, W. J. Shen, J. W. Yeh, J. Y.
Gan, and W. W. Wu, “Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization”, J. Electrochem. Soc., 158 (2011) H1161-H1165.
[56] S. Y Chang, M. K. Chen, and D. S. Chen, “Multiprincipal-Element
AlCrTaTiZr-Nitride Nanocomposite Film of Extremely High Thermal Stability as Diffusion Barrier for Cu Metallization”, J. Electrochem. Soc., 156 (2009) G37-G42.
[57] S. Y. Chang, C. E. Li, S. C. Chiang, and Y. C. Huang, “4-nm thick
multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects”, J. Alloy. Compd., 515 (2012) 4-7.
[58] M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, and J. Y. Gan,
“Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization” , Appl. Phys. Lett., 92 (2008) 052109.
[59] S. Y. Chang, and D. S. Chen, “(AlCrTaTiZr)N/(AlCrTaTiZr)N0.7
bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C”, Mater. Chem. Phys., 125 (2011) 5-8.
[60] A. M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. M.
Whelan, and Y. Travaly, “Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayer”, Adv. Funct. Mater., 20 (2010) 1125-1131.
[61] S. Garg, B. Singh, R. Teki, M. W. Lane, and G. Ramanath,
“Hydrophobic fluoroalkylsilane nanolayers for inhibiting copper diffusion into silica”, Appl. Phys. Lett., 96 (2010) 143121.
[62] P. G. Ganesan, A. P. Singh, and G. Ramanath, “Diffusion barrier
properties of carboxyl- and amine-terminated molecular nanolayers”, Appl. Phys. Lett., 85 (2004) 579-581.
[63] D. D. Gandhi, U. Tisch, B. Singh, M. Eizenberg, and G.
Ramanath, “Ultraviolet-oxidized mercaptan-terminated organosilane nanolayers as diffusion barriers at Cu-silica interfaces”, Appl. Phys. Lett., 91 (2007) 143503.
[64] J. P. Chu, and C. H. Lin, “Self-assembled near-zero-thickness
molecular layers as diffusion barriers for Cu metallization”, Appl. Phys. Lett., 78 (2001) 2467-2469.
[65] 張鼎張,鄭晃忠,楊正杰,”銅金屬化製程簡介”,奈米通訊,第五卷第三期,1998年。
[66] 林宗新,”無阻障銅金屬化製程應用”,2008年。
[67] T. Nogami, J. Romero, V. Dubin, D. Brown, and E. Adem, “Characterization of the Cu/barrier metal interface for copper interconnects”, IEEE Xplore, (1998) 298-300.
[68] H. Ono, T. Nakano, and T. Ohta, “Diffusion Barrier Effects of Transition Metals for Cu/M/Si Multilayers (M=Cr, Ti, Nb, Mo, Ta, W)”, Appl. Phys. Lett., 64 (1994) 12.
[69] I. Sun, M. M. Nicolet, and M. Lumoajarvi, “Thermal Stability of Hafnium and Titanium Nitride Diffusion Barrier in Multilayer Contacts to Silicon”, J. Electrochem. Soc., 103 (1983) 1215-1218.
[70] Y. Wang, M. L. Zhang, F. Cao, Y. T. Liu, and L. Shao,
“Interficial stability of Cu/Cu(Ru)/Si contact system for barrier-free copper metallization”, J. Alloy. Compd., 509 (2011) L180–L182.
[71] J. Koikea, and M. Wada, “Self-forming diffusion barrier layer in
Cu–Mn alloy metallization”, Appl. Phys. Lett., 87 (2005) 041911.
[72] C. H. Lin, “New Copper Alloy, Cu(SnNx ), Films Suitable for
More Thermally Stable, Electrically Reliable Interconnects and Lower-Leakage Current Capacitors”, Jpn. J. Appl. Phys., 50 (2011) 05EA04.
[73] C. H. Lin, W. K. Leau, and C. H. Wu, “Copper–Holmium Alloy
Film for Reliable Interconnects”, Jpn. J. Appl. Phys., 49 (2010) 05FA03.
[74] K. Ito, S. Tsukimoto, T. KABE, K. Tada, and M. Murakami,
“Effects of Substrate Materials on Self-Formation of Ti-Rich Interface Layers in Cu(Ti) Alloy Films”, J. Electron, Mater., 36 (2007) 606-613.
[75] M. He, and T. M. Lu, “Chapter 7 Self-Forming Barriers”,
Metal-Dielectric Interfaces in Gigascale Electronics, (2012) 91-108.
[76] D. C. Perng, J. B. Yeh, K. C. Hsu, and S. W. Tsai, “Self-forming
AlOx layer as Cu diffusion barrier on porous low-k film”, Thin Solid Films, 518 (2010) 1648-1652.
[77] C. H. Lin, W. K. Leau, and C. H. Wu, “High-performance copper
alloy films for barrierless metallization”, Appl. Surf. Sci., 257 (2010) 553–557.
[78] C. H. Lin, “Cu(ReTaNx ) Copper Alloy Films Suitable for
Electronic-Device Manufacturing-Process Simplification”, Jpn. J. Appl. Phys., 51 (2012) 01AC08.
[79] J. C. Chuang, S. L. Tu, and M. C. Chen, “Sputtered Cr and reactively
sputtered CrN serving as barrier layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 4290-4296.
[80] J. P. Manaud , A. Poulon, S. Gomez, and Y. L. Petitcorps, “A
comparative study of CrN, ZrN, NbN, and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools”, Surf. Coat. Technol., 202 (2007) 222–231.
[81] X. P. Qu, “Improved barrier properties of ultrathin Ru film with
TaN interlater for copper metallization”, Appl. Phys. Lett., 88 (2006) 151912.
[82] M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier properties of very
thin Ta and TaN layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 2538-2545.
[83] M. B. Takeyama, T. Itoiy, and A. Noya, “Evolution of
Microstructures in Nanocrystalline VN Barrier Leading to Failure in Cu/VN/SiO2/Si Systems”, Jpn. J. Appl. Phys., 49 (2010) 05FA05.
[84] T. B. Massalski, “Binary alloy phase diagrams”, American Society
for Metals, (1990).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top