|
[1] S. P. Murarka, and S. W. Hymes, “Copper metallization for ULSL and beyond”, Crit.l Rev. Solid State, 20 (1995) 57-124. [2] A. Cros, M. O. Aboelfotoh, and K. N. Tu, “Formation, oxidation, electronic, and electrical properties of copper silicides”, J. Appl. Phys., 67 (1990) 3328–3336. [3] S. Tsukimoto, T. Morita, M. Moriyama, K. Ito, and M. Murakami, “Formation of Ti Diffusion Barrier Layers in Thin Cu(Ti) Alloy Films”, J. Electrochem. Soc., 34 (2005) 592-599. [4] J. P. Chu, C. H. Lin, and V. S. John, “Barrier-free Cu metallization with a novel copper seed layer containing various insoluble substances”, Vacuum, 83 (2009) 668–671. [5] B. Zhao, K. F. Sun, Z. L. Song, and J. H. Yang, “Ultrathin Mo/MoN bilayer nanostructure for diffusion barrier application of advanced Cu metallization”, Appl. Surf. Sci., 256 (2010) 6003-6006. [6] 朱啟元,張維新,岳瀚,”半導體低介電常數(low k)多孔洞材料之介紹”,台灣大學,化學研究所,2001年。 [7] P. S Ho, ”low k Dielectrics For Submicron Interconnect Applications”, Low k tutorial Taiwan, 2000. [8] 劉柏村,張鼎張,”低介電常數材料應用於導體連線製程技術 的探討”,奈米通訊,第九卷第二期,2002年。 [9] Y. S. Diamand, and S. Lopatin, “Integrated electroless metallization for ULSI”, Electrochimica Acta, 44 (1999) 3639-3649. [10] L. Peters, “Pursuing the perfect low-k dielectrics”, Semiconductor International, 21 (1998) 64. [11] 莊達人,”VLSI製造技術”,高立圖書公司,2006年。 [12] R. S. Muller, T. I. Kamins, and M. chan, “Device electronics for integrated circuits”, 2nd ed., John Wiley & Sons, New York, (1986) 1-56. [13] 楊正杰,張鼎張,鄭晃忠,”銅金屬與低介電常數材料與製程”奈米通訊,第七卷第四期,2000年。 [14] T. Ida, M. Rossnegal, and D. M. Isen, ” Collimated magnetron sputter deposition”, J. Vac. Sci. Technol A, 9 (1991) 261. [15] T. Sakurai, IEEE Trans. Electron Devices, 40 (1993) 118. [16] 邱顯光,蔡明蒔,林鴻志,”雙鑲嵌結構製作技術簡介”,奈米通訊,第六卷第三期,1999年。 [17] K. Kudo et al., “Copper dual damascene interconnects with very low k dielectrics targeting for 130 nm node”, Proc. of IEEE IITC, (2000) 270-272. [18] 林宗新,”無阻障層濺鍍銅薄膜之先進材料分析技術”,2007年。 [19] 吳文發,黃麒峰,”銅製程之擴散阻障層”,奈米通訊,第六卷第四期,2000年。 [20] A. Noya, and K. Sasaki, “Auger Electron Spectroscopy Study on the Characterization and Stability of the Cu9Al4/TiN/Si System”, J. Appl. Phys., 30 (1991) 1760-1763. [21] T. Kouno, H. Niwa, and M. Yamada, “Effect of TiN Microstructure on Barrier Properties in Cu metallization”, J. Electrochem. Soc., 145 (1998) 2164-2167. [22] M. Stavrev, D. Fischer, A. Preub, C. Wenzel, and N. Mattern, “Study of nanocrystalline Ta(N,O) diffusion barriers for use in Cu metallization”, Microelectron. Eng., 33 (1997) 269-275. [23] K. H Min, K. C. Chun, and K. B. Kim, “Comparative Study of Tantalum and Tantalum Nitrides (Ta2N and TaN) as a Diffusion Barrier for Cu Metallization”, J. Vac. Sci. Technol B, 14 (1996) 3263-3269. [24] C. S. Kwon, Y. T. Kim, S. K. Min, and I. H. Choi, “The Characteristics of Nitrogen Implanted Tungsten Film as a New Diffusion Barrier for Metal Organic Chemical Vapor Deposited Cu Metallization”, Jpn. J. Appl. Phys., 34 (1995) 6857-6860. [25] G. He, L. Yao, Z. Song, Y. Li, and K. Xu, “Diffusion barrier performance of nano-structured and amorphous Ru–Ge diffusion barriers for copper metallization”, Vacuum 86 (2012) 965-969. [26] Y. Liu, S. Song, D. Mao, H. Ling, and M. Li, “Diffusion barrier performance of reactively sputtered Ta–W–N between Cu and Si”, Microelectron. Eng., 75 (2004) 309-315. [27] T. K. Eom, W. Sari, T. Cheon, S. H. Kim, and W. K. Kim, “A bilayer diffusion barrier of Ru/WSixNy for advanced Cu interconnects”, Thin Solid Films 521 (2012) 73–77. [28] C. H. Lin, “Cu(ReTaNx) Copper Alloy Films Suitable for Electronic-Device Manufacturing-Process Simplification”, Jpn. J. Appl. Phys., 51 (2012) 01AC08. [29] J. Li, H. S. Lu, Y. W. Wang, and X. P. Qu, “Sputtered Ru–Ti, Ru–N and Ru–Ti–N films as Cu diffusion barrier”, Microelectron. Eng., 88 (2011) 635–640. [30] K. C. Hsu, D. C. Perng, J. B. Yeh, and Y. C. Wang, “Ultrathin Cr added Ru film as a seedless Cu diffusion barrier for advanced Cu interconnects”, Appl. Surf. Sci., 258 (2012) 7225– 7230. [31] B. T. Liu, J. H. Chen, X. H. Li, K. M. Wang, M. Li, D. Y. Zhao, L. Yang, Q. X. Zhao, L. X. Ma, and X. Y. Zhang, “Investigation of amorphous Ni-Al-N film as diffusion barrier between Cu and SiO2” , J. Alloy. Compd., 509 (2011) 8093-8096. [32] Y. L. Kuo, F. C. Kung, and T. L. Su, “Superior Stability of Ultrathin and Nanocrystalline TiZrN Films as Diffusion Barriers for Cu”, Nanosci. Nanotechnol. Lett., 1 (2009) 37-41. [33] S. T. Lin, and C. Lee, “Characteristics of sputtered Ta-B-N thin film as diffusion barriers between copper and silicon”, Apppl. Surf. Sci., 253 (2006) 1215-1221. [34] K. C. Hsu, D. C. Perng, and Y. C. Wang, “Robust ultra-thin RuMo alloy film as a seedless Cu diffusion barrier”, J. Alloy. Compd., 516 (2012) 102-106. [35] J. S. Fang, J. H. Lin, B. Y. Chen, G. S. Chen, and T. S. Chin, “Low-Resistivity Ru-Ta-C Barriers for Cu Interconnects”, J. Electron. Mater., 41 (2011) 138-143. [36] P. Majumdera, and C. Takoudis, “Reactively sputtered Mo-V nitride thin films as ternary diffusion barrier for copper metallization”, J. Electrochem. Soc., 155 (2008) 703-706. [37] Y. L. Kuo, C. Lee, T, J. C. Lin, Y. W. Yen, and W. H. Lee, “Evaluation of the thermal stability of reactively sputtered (Ti, Zr)Nx nano-thin films as diffusion barriers between Cu and Silicon”, Thin Solid Films, 484 (2005) 265-271. [38] Q. Xie, Y. L. Jiang, K. K. De, C. Detavernier, D. Deduytsche, G. P. Ru, X. P. Qu, and K. N. Tu, “The effect of sputtered W-based carbide diffusion barriers on the thermal stability and void formation in copper thin films”, Microelectron. Eng., 87 (2010) 2535-2539. [39] S. H. Kim, H. T. Kim, S. S. Yim, D. J. Lee, K. S. Kim, H. M. Kim, K. B. Kim, and H. Sohn, “A bilayer diffusion barrier of ALD-Ru/ALD-TaCN for direct plating of Cu”, J. Electrochem. Soc., 155 (2008) H589-H594. [40] P. Majumder and C. Takoudis, “Thermal stability of Ti/Mo and Ti/MoN nanostructures for barrier applications in Cu interconnects”, Nanotechnology, 19 (2008) 205202. [41] Z. X. Song, J. A. Wang, Y. H. Li, F. Ma, K. W. Xu, and S. W. Guo, “The self-formation graded diffusion barrier of Zr/ZrN”, Microelectron. Eng., 87 (2010) 391–393. [42] D. C. Perng, J. B. Yeh, and K. C. Hsu, “Ru/WCoCN as a seedless Cu barrier system for advanced Cu metallization”, Appl. Surf. Sci., 256 (2009) 688–692. [43] L. C. Leu, D. P. Norton, L. McElwee, and T. J. Anderson, “Ir/TaN as a bilayer diffusion barrier for advanced Cu interconnects”, Appl. Phys. Lett., 92 (2008) 111917. [44] S. Rawal, D. P. Norton, K. Kim, T. J. Anderson, and L. McElwee-White, “Ge/HfNx diffusion barrier for Cu metallization on Si”, Appl. Phys. Lett., 89 (2006) 231914. [45] W. Sari, T. K. Eom, S. H. Choi, and S. H. Kim, “Ru/WNx Bilayers as Diffusion Barriers for Cu Interconnects”, Jpn. J. Appl. Phys., 50 (2011) 05EA08. [46] C. X. Yang, S. J. Ding, D. W. Zhang, P. F. Wang, X. P. Qu, and R. Liu, “Improvement of Diffusion Barrier Performance of Ru Thin Film by Incorporating a WHfN Underlayer for Cu Metallization”, Electrochem. Solid State Lett., 14 (2011) H84-H87. [47] Y. Wang, F. Cao, Y. Liu, and M. H. Ding, “Investigation of Zr–Si–N/Zr bilayered film as diffusion barrier for Cu ultralarge scale integration metallization”, Appl. Phys. Lett., 92 (2008) 032108. [48] Q. Xie, X. P. Qu, J. J. Tan, Y. L. Jiang, M. Zhou, T. Chen, and G.P. Ru, “Superior thermal stability of Ta/TaN bi-layer structure for copper metallization”, Appl. Surf. Sci., 253 (2006) 1666–1672. [49] 葉均蔚,陳瑞凱,”高熵合金”,科學發展,377期,2004年5月。 [50] A. L Greer, “Materials Science - Confusion by Design”, Nature, 366 (1993) 303. [51] Y. Zhang, Y. J. Zhou, J. P. Lin, G. L. Chen, and P. K. Liaw, Adv. Eng. Mater., 10 (2008) 534-538. [52] S. Y. Chang, C. Y. Wang, C. E. Li, and Y. C. Huang, “5 nm-Thick (AlCrTaTiZrRu)N0.5 Multi-Component Barrier Layer with High Diffusion Resistance for Cu Interconnects”, Nanosci. Nanotechnol. Lett., 3 (2011) 289-293. [53] M. H. Tsai , J. W. Yeh, and J. Y. Gan, “Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon”, Thin Solid Films, 516 (2008) 5527–5530. [54] S. Y. Chang, C. Y. Wang, M. K. Chen, and C. E Li, “Ru incorporation on marked enhancement of diffusion resistance of multi-component alloy barrier layers”, J. Alloy. Compd., 509 (2011) L85-G89. [55] M. H. Tsai, C. W. Wang, C. W. Tsai, W. J. Shen, J. W. Yeh, J. Y. Gan, and W. W. Wu, “Thermal Stability and Performance of NbSiTaTiZr High-Entropy Alloy Barrier for Copper Metallization”, J. Electrochem. Soc., 158 (2011) H1161-H1165. [56] S. Y Chang, M. K. Chen, and D. S. Chen, “Multiprincipal-Element AlCrTaTiZr-Nitride Nanocomposite Film of Extremely High Thermal Stability as Diffusion Barrier for Cu Metallization”, J. Electrochem. Soc., 156 (2009) G37-G42. [57] S. Y. Chang, C. E. Li, S. C. Chiang, and Y. C. Huang, “4-nm thick multilayer structure of multi-component (AlCrRuTaTiZr)Nx as robust diffusion barrier for Cu interconnects”, J. Alloy. Compd., 515 (2012) 4-7. [58] M. H. Tsai, C. W. Wang, C. H. Lai, J. W. Yeh, and J. Y. Gan, “Thermally stable amorphous (AlMoNbSiTaTiVZr)50N50 nitride film as diffusion barrier in copper metallization” , Appl. Phys. Lett., 92 (2008) 052109. [59] S. Y. Chang, and D. S. Chen, “(AlCrTaTiZr)N/(AlCrTaTiZr)N0.7 bilayer structure of high resistance to the interdiffusion of Cu and Si at 900°C”, Mater. Chem. Phys., 125 (2011) 5-8. [60] A. M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C. M. Whelan, and Y. Travaly, “Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayer”, Adv. Funct. Mater., 20 (2010) 1125-1131. [61] S. Garg, B. Singh, R. Teki, M. W. Lane, and G. Ramanath, “Hydrophobic fluoroalkylsilane nanolayers for inhibiting copper diffusion into silica”, Appl. Phys. Lett., 96 (2010) 143121. [62] P. G. Ganesan, A. P. Singh, and G. Ramanath, “Diffusion barrier properties of carboxyl- and amine-terminated molecular nanolayers”, Appl. Phys. Lett., 85 (2004) 579-581. [63] D. D. Gandhi, U. Tisch, B. Singh, M. Eizenberg, and G. Ramanath, “Ultraviolet-oxidized mercaptan-terminated organosilane nanolayers as diffusion barriers at Cu-silica interfaces”, Appl. Phys. Lett., 91 (2007) 143503. [64] J. P. Chu, and C. H. Lin, “Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization”, Appl. Phys. Lett., 78 (2001) 2467-2469. [65] 張鼎張,鄭晃忠,楊正杰,”銅金屬化製程簡介”,奈米通訊,第五卷第三期,1998年。 [66] 林宗新,”無阻障銅金屬化製程應用”,2008年。 [67] T. Nogami, J. Romero, V. Dubin, D. Brown, and E. Adem, “Characterization of the Cu/barrier metal interface for copper interconnects”, IEEE Xplore, (1998) 298-300. [68] H. Ono, T. Nakano, and T. Ohta, “Diffusion Barrier Effects of Transition Metals for Cu/M/Si Multilayers (M=Cr, Ti, Nb, Mo, Ta, W)”, Appl. Phys. Lett., 64 (1994) 12. [69] I. Sun, M. M. Nicolet, and M. Lumoajarvi, “Thermal Stability of Hafnium and Titanium Nitride Diffusion Barrier in Multilayer Contacts to Silicon”, J. Electrochem. Soc., 103 (1983) 1215-1218. [70] Y. Wang, M. L. Zhang, F. Cao, Y. T. Liu, and L. Shao, “Interficial stability of Cu/Cu(Ru)/Si contact system for barrier-free copper metallization”, J. Alloy. Compd., 509 (2011) L180–L182. [71] J. Koikea, and M. Wada, “Self-forming diffusion barrier layer in Cu–Mn alloy metallization”, Appl. Phys. Lett., 87 (2005) 041911. [72] C. H. Lin, “New Copper Alloy, Cu(SnNx ), Films Suitable for More Thermally Stable, Electrically Reliable Interconnects and Lower-Leakage Current Capacitors”, Jpn. J. Appl. Phys., 50 (2011) 05EA04. [73] C. H. Lin, W. K. Leau, and C. H. Wu, “Copper–Holmium Alloy Film for Reliable Interconnects”, Jpn. J. Appl. Phys., 49 (2010) 05FA03. [74] K. Ito, S. Tsukimoto, T. KABE, K. Tada, and M. Murakami, “Effects of Substrate Materials on Self-Formation of Ti-Rich Interface Layers in Cu(Ti) Alloy Films”, J. Electron, Mater., 36 (2007) 606-613. [75] M. He, and T. M. Lu, “Chapter 7 Self-Forming Barriers”, Metal-Dielectric Interfaces in Gigascale Electronics, (2012) 91-108. [76] D. C. Perng, J. B. Yeh, K. C. Hsu, and S. W. Tsai, “Self-forming AlOx layer as Cu diffusion barrier on porous low-k film”, Thin Solid Films, 518 (2010) 1648-1652. [77] C. H. Lin, W. K. Leau, and C. H. Wu, “High-performance copper alloy films for barrierless metallization”, Appl. Surf. Sci., 257 (2010) 553–557. [78] C. H. Lin, “Cu(ReTaNx ) Copper Alloy Films Suitable for Electronic-Device Manufacturing-Process Simplification”, Jpn. J. Appl. Phys., 51 (2012) 01AC08. [79] J. C. Chuang, S. L. Tu, and M. C. Chen, “Sputtered Cr and reactively sputtered CrN serving as barrier layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 4290-4296. [80] J. P. Manaud , A. Poulon, S. Gomez, and Y. L. Petitcorps, “A comparative study of CrN, ZrN, NbN, and TaN layers as cobalt diffusion barriers for CVD diamond deposition on WC–Co tools”, Surf. Coat. Technol., 202 (2007) 222–231. [81] X. P. Qu, “Improved barrier properties of ultrathin Ru film with TaN interlater for copper metallization”, Appl. Phys. Lett., 88 (2006) 151912. [82] M. T. Wang, Y. C. Lin, and M. C. Chen, “Barrier properties of very thin Ta and TaN layers against Copper diffusion”, J. Electrochem. Soc., 145 (1998) 2538-2545. [83] M. B. Takeyama, T. Itoiy, and A. Noya, “Evolution of Microstructures in Nanocrystalline VN Barrier Leading to Failure in Cu/VN/SiO2/Si Systems”, Jpn. J. Appl. Phys., 49 (2010) 05FA05. [84] T. B. Massalski, “Binary alloy phase diagrams”, American Society for Metals, (1990).
|