跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.171) 您好!臺灣時間:2025/01/17 08:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝文瑜
研究生(外文):Wen-Yu Shieh
論文名稱:電化學製備 α-Fe2O3、LiCo2O4和 LiNiPO4塗層應用於薄膜鋰離子二次電池
論文名稱(外文):α-Fe2O3, LiCo2O4, LiNiPO4 coatings prepared by electrochemical method applied in thin film lithium-ion secondary batteries
指導教授:顏秀崗顏秀崗引用關係
口試委員:施漢章林景崎何文賢劉漢章
口試日期:2014-05-26
學位類別:博士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:108
中文關鍵詞:陰極電化學法氧化鐵氧化鈷磷酸鋰鎳
外文關鍵詞:cathodic electrochemical methodα-Fe2O3Lithium cobalt oxideLiNiPO4
相關次數:
  • 被引用被引用:0
  • 點閱點閱:289
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
具輕、薄、短、小、環保與安全等性質之元件設計將是二十一世紀3C(通訊、資訊及消耗性電子產品)時代之主要趨勢,無疑的薄膜鋰電池在未來電力資源供應上扮演極重要的角色,尤其在低成本與高電位之應用下,開發適當的電極材料為現下最主要的考量。本研究擬利用陰極電化學法直接被覆氧化鐵(α-Fe2O3)、氧化鈷(LiCo2O4及LiCoO2)與磷酸鋰鎳(LiNiPO4)鍍膜於不銹鋼基材,並針對其電化學機構、製程參數及鍍層性質作有系統的分析與探討,結果如下所示:
1. 經陰極極化分析,氯化鐵水溶液中存在3個主要電化學反應。從XRD配合TG/DTA得知初鍍膜結構為FeOOH,並於250℃時相變化為晶粒10奈米的α-Fe2O3。若以此α-Fe2O3鍍層為薄膜鋰電池陰極材料,於第一及第二次放電電容量分別為1162、881 mAh/g,且隨著充放電循環次數增加至第20圈後,於晶粒粗化導致鋰離子傳導路徑增加的情況下,放電電容量仍保持於570 mAh/g。
2. 經陰極極化分析,硝酸鋰與硝酸鈷混合水溶液中存在3個主要電化學反應。進一步從XRD配合TGA/DTA結果得知其初鍍膜結構為Co(OH)2 •H2O及LiOH,並於310℃相變化成LiCo2O4,於500℃進一步相變化為LiCoO2與Co3O4,由循環伏安測試的結果得知,LiCo2O4薄膜的氧化、還原電位分別為3.75 V 及3.43 V (vs. Li / Li+),LiCoO2薄膜的氧化、還原電位分別則為3.98 V及3.89 V (vs. Li / Li+),其中LiCo2O4薄膜半電池在電壓3.2至3.8V之間以10 μA/cm2電流密度充放電試驗中,表現出可逆的平均電容量為70 mAhg-1,成功的以低溫、低成本(≦310◦C)電化學方法製備,作為提供薄膜鋰電池在負極上另一選擇。
3. 經陰極極化分析,硝酸鋰、硝酸鎳及磷酸氫氨混合水溶液中存在3個主要電化學反應。從XRD配合TG/DSC得知初鍍膜結構為Ni3(PO4)2.xH2O 及 Li3PO4,經退火過程去除水份後,最後在600℃結合為LiNiPO4結構,過程中發現Ni3(PO4)2.xH2O為化學劑量比時呈現結晶狀態。若以此橄欖石LiNiPO4結構為薄膜鋰電池陰極材料(相對於Sn/Li2O為陽極、鋰金屬為參考電極),由循環伏安測試的結果得知,LiNiPO4薄膜的可逆氧化電位為4.62 V及4.8 V;還原電位為4.5 V、4.67 V及4.72 V。本研究成功的以電化學方法及較低的退火溫度製備LiNiPO4,作為提供鋰電池高電位負極材料未來的新選擇。
The light, thin, short and small devices with environmental protection and safety should be demanded for 3C (communication, computer, and electronics consumer products) in the 21st century. For power resources, the thin film lithium batteries will play an important role on developing low-cost and high voltage applications. As a result, seeking a suitable electrode material would be mainly considered. In this study, the cathodic electrochemical method will be used to coat α-Fe2O3, Lithium cobalt oxide, and LiNiPO4 films on the 304 stainless steel substrate. The electrochemical deposition mechanisms, parameters and the characterization of films will be investigated. The results are drawn as following:
1. Through cathodic polarization tests, three major reactions were verified in FeCl3 aqueous solution. The XRD and TG/DTA diagrams indicated that the coating film was FeOOH, condensed into α-Fe2O3 at 250 °C, and crystallized into particle size 10 nm. The Fe2O3 deposited specimen revealed 1162 for the 1st, 881 for the 2nd, and 570 mAhg-1 for the 20th cycle. However, the reversible capacity was decreased with the increasing discharge/charge current density and cycle number, due to the coarsening of particle size increasing the diffusion path of Li+.
2. Through cathodic polarization tests, three major reactions were verified in LiNO3 and Co(NO3)2 aqueous solutions. The XRD and TG/DTA diagrams indicated that the coating film was Co(OH)2 •H2O and LiOH, condensed and further oxidized into nano-sized LiCo2O4 particle after annealed at 310℃, and further decomposed into HT-LiCoO2 and Co3O4 at 500 °C. The Cyclic voltammetry (CV) reveals the oxidation peaks at 3.75 V and 3.98 V, and the reduction peaks at 3.43 V and 3.89 V (vs. Li/Li+) for LiCo2O4 and LiCoO2, respectively. The charge/discharge test of LiCo2O4 shows a discharge plateau around 3.5 V and reveals a reversible capacity of 70 mAhg−1 at 10 μAcm−2 between 3.8 and 3.2 V (vs. Li/Li+). It has been originally prepared by electrochemical synthesis and subsequent annealing at low temperatures (≦310℃) which could provide a suitable choice for preparing thin film lithium ion batteries applied to flexible 3C electronic products of low-cost.
3. Through cathodic polarization tests, three major reactions were verified in LiNO3, NH4H2PO4 and Ni(NO3)2 aqueous solutions. The XRD and TG/DSC diagrams indicated that the coating film was Li3PO4 and Ni3(PO4)2‧xH2O, dehydrated during annealing process and finally combined and reacted into LiNiPO4 after annealed at 600℃, where hydrated Ni3(PO4)2‧xH2O is crystalline when x stoichiumetric. Cyclic voltammetry (CV) and discharge/charge cyclic tests reveal reversible oxidation peaks at 4.62 V and 4.8 V, and reduction peaks at 4.5 V, 4.67 V, and 4.72 V. In this study, LiNiPO4 has been originally prepared by electrochemical synthesis and subsequent annealing at lower temperatures than general process. Though it could provide a new choice for preparing high voltage lithium ion batteries, its reversibility should be further improved.
中文摘要 i
Abstract iii
Contents vi
Figure Contents vii
Table Contents x
Chapter 1 Introduction 1
1.1 Recent development 1
1.2 Applications 3
1.2.1 Smart card: 3
1.2.2 RFID (radio frequency identification) Devices: 4
1.2.3 Thin-Film Medical Products: 5
1.2.4 Semiconductors, integrated circuits: 6
1.3 Fabrication of thin film electrode 7
1.4 Materials for Anode 8
1.5 Materials for Cathode 10
1.4 Objectives of this study 14
Chapter 2 Characterization of Electrolytic Deposited α-Fe2O3 Thin Films on Stainless Steel as Anodes for Li-Ion Batteries 23
2.1. Introduction 23
2.2. Experimental 25
2.2.1 Substrate preparation 25
2.2.2 Cathodic polarization tests and depositions 26
2.2.3 XRD and FE-SEM 26
2.2.4 TG-DTA 27
2.2.5 Electrochemical performance 27
2.2.6 Raman analyses 28
2.3. Results and discussion 28
2.3.1 Cathodic reactions 28
2.3.2 Annealing effects on phase transformation and surface morphology 29
2.3.3 Electrochemical characterization 31
2.4 Conclusions 35
Chapter 3 Electrochemical Synthesis of Lithium Dicobalt Tetraoxide for Thin Film Lithium-Ion Batteries 48
3.1 Introduction 48
3.2 Experimental 50
3.2.1 Substrate preparation 50
3.2.2 Cathodic polarization tests and depositions 50
3.2.3 X-ray diffraction analysis (XRD) and FE-SEM 51
3.2.4 TGA-DTA 51
3.2.5 XPS 52
3.2.6 Electrochemical characterization 52
3.3 Results and discussion 53
3.3.1 Cathodic reactions 53
3.3.2 Cathodic deposition 55
3.3.3 Phase transformations and crystal structures 55
3.3.4 Surface morphology 57
3.3.5 Electrochemical characterization 58
3.4 Conclusions 60
Chapter 4 Electrochemical Synthesis of Lithium Nickel Phosphates for Thin Film Lithium-Ion Batteries 74
4.1 Introduction 74
4.2 Experimental 76
4.2.1 Substrate preparation 76
4.2.2 Cathodic polarization tests and deposition 76
4.2.3 X-ray diffraction analysis (XRD) and FE-SEM analysis 77
4.2.4 TGA-DTA 77
4.2.5 Electrochemical characterization (Electrochemical performance) 78
4.3 Results and discussion 78
4.3.1 Cathodic reactions 78
4.3.2 Cathodic deposition 80
4.3.3 Phase transformations and crystal structures 81
4.3.4 Surface morphology 82
4.3.5 Electrochemical characterization 83
4.4 Conclusions 85
Chapter 5 Summary and conclusions 94
Reference 98
1. M. Wakihara, Material Science and Engineering, R33 109-134 (2001).
2. Walter A. van Schalkwijk, Bruno Scrosati, Kluwer Academic Publishers, New York, Boston, p. 1, 2002.
3. Gold Peak Industries Ltd., Lithium Ion technical handbook.
4. J. M. Tarascon, M. Armand, Nature, Vol. 414 (2001) p. 359.
5. D. W. Murphy, Mat. Res. Bull. 13, (1978), p. 1395.
6. M. Lazzari, B. Scrosati, J. Electrochem. Soc., 127 (1980), p. 773.
7. Will, F. G., US patent 3874958 (1975).
8. Percheron-Guegan, A., Achard, J. C., Sarradin, J., French patent 7516160 (1975).
9. F. R. Kalhammer, A. Kozawa, C. B. Moyer, B. B. Owens, Interface 1 (1996) p. 33.
10. Y. Nishi, K. Katayama, Extended Abstracts of the 8th Int. Mtg. on Lithium batteries, Nagoya, Japan, (1996), p. 13.
11. K. Brandt, Extended Abstracts of the 8th Int. Mtg. on Lithium Batteries, Nagoya, Japan, (1996), p. 9.
12. B. Scrosati, Nature 373 (1995) p. 557.
13. F. Orsini, A. du Pasquier, B. Beaudouin, J. M. Tarascon, M. Trentin, N. Langenhuizen, E. de Beer, P. Notten, J. Power Sources 81–82, p. 918 (1999).
14. http://www.solicore.com/applications.html.
15. T. Handa, S. Shoji, S.Ike, S. Takeda and T. Sekiguchi, 1997 International onference on Sloid-State Sensors and Actuators, Chicago, June 16- 19 (1997).
16. J. B. Bates, G. R. Gruzalski, N. J. Dudney, and C. F. Luck, Solid State Division, ak Ridge National Laboratory Oak Ridge, Tennessee 37831.
17. W. Y. Liu, Z. W. Fu, Q. Z. Qin, Thin Solid Films 515 (2007) 4045.
18. C. L. Li, B. Zhang, and Z. W. Fu, J. Electrochem. Soc, 153 (9) (2006) E160.
19. S. D. Jones, J. R. Akridge, Solid State Ionics, 86-88 (1996) 1291.
20. B. J. Neudecker, R. A. Zuhr, J. B. Bates, J. Power Sources, 81–82 (1999) 27.
21. J. Scfoonman, E. M. Kelder, J. Power Sources, 68 (1997) 65.
22. R. P. Raffaelle, J. D. Harris, D. Hehemann , D. Scheiman, G. Rybicki, A. F. Hepp, J. Power Sources, 89 (2000) 52.
23. J. Schwenzel, V. Thangadurai, W. Weppner, J. Power Sources, 154 (2006) 232.
24. M. P. Vinod, D. Bahnemann, J. Solid State Electrochem., 6 (2002) 498.
25. N. Kuwata, R. Kumar, K. Toribami, T. Suzuki, T. Hattori, J. Kawamura, Solid State Ionics, 177 (2006) 2827.
26. P. G. Balakrishnan, R. Ramesh, T. P. Kumar, J. Power Sources 155 (2006) p. 401.
27. R. Selim, and P. Bro, J. Electrochem. Soc., 121 (1974) p. 1467.
28. F.W. Dampier, and S.B. Brummer, Electrochim. Acta, 22 (1977) p. 75.
29. M. Nishijima, T. Kagohashi, M. Imanishi, Y. Takeda, O. Yamamoto, S. Kondo, Solid State Ionics, 83 (1996) p. 107.
30. T. Shodai, S. Okada, S. Tobishima, J. Yamaki, Solid State Ionics, 86-87 (1996) p. 785.
31. T. Shodai, Y. Sakurai, T. Suzuki, Solid State Ionics, 122 (1999) p. 85.
32. C. J. Wen, and R. A. Huggins, J. Electrochem. Soc., 128 (1981) p. 1181.
33. C. J. Wen, and R. A. Huggins, Mat. Res. Bull., 15 (1980) p. 1225
34. W. Weppner, R. A. Huggins, J. Electrochem. Soc., 124 (1977) p. 1569.
35. W. Weppner, R. A. Huggins, J. Solid State Chem., 22 (1977) p. 297.
36. M.L. Saboungi, J. Electrochem. Soc., 126 (1979) p. C322.
37. R. Nesper, Prog. Solid State Chem., 20 (1990) p. 1.
38. A. H. Whitehead, J.M. Elliott, J.R. Owen, J. Power Sources, 81-82 (1999) p. 33.
39. J. O. Besenhard, J. Yang, M. Winter, J. Power Sources 68 (1997) p. 87.
40. C. F. Li, W. H. Ho, C. S. Jiang, S. K. Yen, J. Power Sources 196 (2011) 768-775.
41. W. H. Ho, C. F. Li, H. C. Liu, S. K. Yen, J. Power Sources, 175 (2008) p. 897.
42. W. H. Ho, H. C. Liu, H. C. Chen, S. K. Yen, Surface and Coatings Technology 201 (2007) p.7100.
43. H. C. Liu and S. K. Yen, J. Power Sources, 166 (2007) p. 478.
44. Y. N. Nuli, S. L. Zhao, Q. Z. Qin, J. Power Sources, 114 (2003) p. 113.
45. http://www.phy.cmich.edu/people/petkov/nano.html.
46. J. B. Bates, G.R. Gruzalski, N.J. Dudney, C.F. Luck, and X.H. Yu, Solid State Technology, 38 (1993) p. 59.
47. K. Mizushima, P.C. Jones, P.C. Wiseman, and J.B. Goodenough, Mater. Res. Bull., 15 (1980) p. 783.
48. T. Nagaura, and K. Tazawa, Prog. Batt. Sol. Cells, 9 (1990) p. 20.
49. W. Ebner, D. Fouchard, and L. Xie, Solid State Ionics, 69 (1994) p. 238.
50. J.R. Dahn, U.V. Sacken, M.R. Jukow, and H.A. Janaby, J. Electrochemical Society, 138 (1991) p. 2207.
51. T. Ohzuku, A. Ueda, and M. Nagayama, J. Electrochemical Society, 140 (1993) p. 1862.
52. M. Broussely, F. Perton, P. Biensan, J.M. Bodet, J. Labat, A. Lecerf, C. Delmas, A. Rougier, J. P. Peres, 54 (1995) p. 109.
53. A. Robert Armstrong, Peter G. Bruce Nature 381, (1996) p. 499.
54. D. Ahn, and M. Song, J. The Electrochemical Society, 147 (2000) p. 874.
55. A. Rougier, P. Gravereau, and C. Delmas, J. Electrochemical Society, 143 (1996) p. 1168.
56. G.G. Amatucci, J.M. Tarascon, and L.C. Klein, J. Electrochemical Society, 143 (1996) p. 1114.
57. H. Huang, and P.G. Bruce, J. The Electrochemical Society, 141 (1994) p. L76.
58. H. Huang, and P.G. Bruce, J. Power Sources, 54 (1995) p. 52.
59. A. Yamada, J. Solid State Chem. 122 (1995) p. 160.
60. T. Ohzuku, S. Takeda, M. Iwanaga, J. Power Sources 81(1999) 90.
61. C. Sigala, D. Guyomard, A. Verbaere, Y. Piffard, M. Tournoux, Solid State Ionics 81 (1995) 167.
62. H. Kawai, M. Nagate, H. Tukamoto, A. R. West, J. Power Sources 81 (1999) 67.
63. K. Amine, H. Tukamoto, H. Yasuda, Y. Fujita, J. Power Sources 68 (1997) 604.
64. Y. E. Eli, S. H. Lu, M. A. Rzeznik, J. Electrochem. Soc.145 (1998) 3383.
65. G. T. K. Fey, W. Li, J. R. Dahn, J. Electrochem. Soc. 141 (1994) 2279.
66. R. Santhanam, B. Rambabu, J. Power Sources 195 (2010) 5442-5451.
67. G. T. K. Fey, J. R. Dahn, M. J. Zhang, W. Li, J. Power Sources 68 (1997) 549.
68. J. Barker, M. Y. Saidi, J. L. Swoyer, J. Electrochem. Soc. 150 (2003) A1394.
69. J. Barker, M. Y. Saidi, J. L. Swoyer, Electrochem. Solid State Lett. 6 (2003) A1.
70. S. Vivekanandhan, M. Venkateswarlu and N. Satyanarayana, Nanotech 2004 Conference Technical, 2004.
71. W. F. Howard, R. M. Spontiz, J. Power Sources 165 (2007) 887.
72. J. Wolfenstine, J. Read, J. L. Allen, J. Power Sources 163 (2007) 1070.
73. J. Wolfenstine, J. Allen, J. Power Sources 142 (2005) 389-390.
74. H. Huang, S. C. Yin, T. Kerr, L.F. Nazar, Adv. Mater. 14 (2002) 1525.
75. S. C. Yin, P. Strobel, M. Anne, L. F. Nazar, J. Am. Chem. Soc. 125 (2003) 10402.
76. J. Barker, M. Y. Saidi, US Patent, 5871866, 1999.
77. A. K. Padhi, K. S. Nanjundaswamy, J. B. Goodenough, J. Electrochem. Soc. 144 (1997) 1188-1194.
78. G. Li, H. Azuma, M. Tohda, Electrochem. Solid-State Lett. 5 (2002) A135.
79. G. Jeong, Y. U. Kim, H. Kim, Y. J. Kim, H. J. Sohn, Energy Environ. Sci. 4 (2011) 1986-2002.
80. J. B. Goodenough, Y. Kim, Chem. Mater. 22 (2010) 587-603.
81. J. H. Kim, S. T. Myung, C. S. Yoon, S. G. Kang, Y. K. Sun, Chem. Mater. 16 (2004) 906-914.
82. R. Santhanam, B. Rambabu, J. Power Sources 195 (2010) 5442-5451.
83. H. Xia, Y. S. Meng, L. Lu, G. Ceder, J. Electrochem. Soc. 154 (2007) 737-A743.
84. A. G. Ritchie, J. Power Source 136 (2004) 285-289.
85. J. Schoonman, E. M. Kelder, J. Power Source 68 (1997) 65-68.
86. P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, J.-M. Tarascon, Nature 407 (2000) 496.
87. A. S. Arico, P. G. Bruce, B. Scrosati, J. M. Tarascon, W. V. Schalkwijk, Nat. Mater. 4 (2005) 366.
88. N. A. Goodshall, I. D. Raistric, R. A. Huggins, Res. Bull. 115 (1980) 561.
89. Z. Wang, D. Luan, S. Madhavi, C. M. Li, Chem. Comm., 47 (2011) 8061.
90. J. S. Chen, T. Zhu, X. H. Yang, H. G. Yang, X. W. Lou, J. Am. Chem. Soc., 132 (2011) 13162-13164.
91. D. Larcher, C. Masquelier, D. Bonnin, Y. Chabre, V. Masson, J. B. Leriche, J. M. Tarascon, J. Electrochem. Soc. 150 (2003) A133.
92. S. Y. Zeng, K. B. Tang, T. W. Li, J. Colloid Interf. Sci 312 (2007) 513-521.
93. J. J. Xu, G. Jain, Electrochem. Solid State Lett. 5 (2002) A152.
94. Y. Zhao, J. Li, Y. Ding, L. Guan, Chem. Common. 47 (2011) 7416-7418.
95. Q.Q. Xiong, Y. Lu, X.L. Wang?, C.D. Gu, Y.Q. Qiao, J.P. Tu, J. Alloys. Compd. 536 (2012) 219-225.
96. G. Wang, T. Liu, Y. J. Luo, Y. Zhao, Z. Y. Ren, J. B. Bai, H. Wang, J. Alloys. Compd. 509 (2011) L216-L220.
97. Z. Y. Wang, D. Y. Luan, S. Madhavi, Y. Hu, X. W. Lou, Energy Environ. Sci. 5 (2012) 5252-5256.
98. Q. Zhu, N. Chen, F. Tao, Q. M. Pan, J. Mater. Chem., 22 (2012) 15894-15900.
99. C. Gong, D. Chen, X. Jiao, Q. Wang, J. Mater. Chem. 12 (2002) 1844.
100. D. Larcher, D. Bonnin, R. Cortes, I. Rivals, L. Personnaz, J. M. Tarascon, J. Electronchem. Soc. 150 (2003) A1643.
101. H. G. Cha, C. W. Kim, Y. H. Kim, M. H. Jung, E. S. Ji, B. K. Das, J. C. Kim, Y. S. Kang. Thin Solid Films 517 (2009) 1853-1856.
102. J. R. Scheffe, A. Frances, D. M. King, X. Liang, B. A. Branch, A. S. Cavanagh, S. M. George, A. W. Weimer. Thin Solid Films 517 (2008) 1874-1879.
103. T. Sasaki, X. Zeng, N. Koshizaki, Mater. Res. Symp. Proc. 526 (1998) 67 (MRS).
104. J. A Glasscock, P. R. F. Barnes, I. C. Plumb, A. Bendavid, P. J. Martin, Thin Solid Films 516 (2008) 1716-1724.
105. J. Sarradin, M. Ribes, A. Guessous, K. Elkacemi, Solid State Ionics. 112 (1998) 35-40.
106. Q. Q. Xiong, J. P. Tu, Y. Lu, J. Chen, Y. X. Yu, Y. Q. Qiao, X.L. Wang, C. D. Gu, J. Phys. Chem. C 116 (2012) 6495-6502
107. X. Qian, X. Zhang, Y. Bai, T. Li, X. Tang, E. Wang, S. Dong, J. Nanopart. Res 2 (2000) 191.
108. W. H. Ho, S. K. Yen, J. Electrochem. Soc. 152 (2005) A506.
109. W. H. Ho, S. K. Yen, Solid-State Lett. 8 (2005) C134.
110. H. C. Liu, S. K. Yen, J. Power Source 159 (2006) 245.
111. H. C. Liu, S. K. Yen, J. Power Source 159 (2006) 245-248.
112. H. C. Liu, W. H. Ho, C. F. Li, S. K. Yen, J. Electrochem. Soc.155 (2008) E178-182.
113. B. D. Cullity, S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall Inc., 3rded, Chapter 5 (2001) p.170.
114. M. V. Reddy, T. Yu, C. H. Sow, Z. X. Shen, C. W. T. Lim, G. V. S. Rao, B. V. R. Chowdari, Adv. Func. Mater. 17 (2007) 2792-2799.
115. Y. N. P. Zhang, Z. Guo, P. Munroe, H. Liu, J. Power Source 184 (2008) 456-461.
116. D. Faria, D. L. A., S. V. Silva, M. T., D. Oliveira, J. Raman Spectroscopy, 28 (1997) 873- 878.
117. M. M. Thackeray, W. I. E. David, J. B. Goodenough, Solid State Chem. 55 (1984) 280.
118. M. M. Thackeray, W. I. E. David, J. B. Goodenough, Mater. Res. Bull. 17 (1982) 785.
119. Y. N. P. Zhang, Z. Guo, P. Munroe, H. Liu, J. Power Source 184 (2008) 456-461.
120. T. Nagura, paper presenteed at the 3nd Rechargeable Seminar, March 5-7, Deerfield Beach, FL, (1990).
121. . K. Ozawa, Solid State Ionics, 69 (1994) 212-221.
122. D. R. Sadoway, A. M. Mayes, MRS Bull., 27 (2002) 590-592.
123. G. A. Nazri, MRS Bull., 27 (2002) 628-631.
124. J. M. Tarascon, M. Armand., Nature, 414 (2001) 359-367.
125. R. J. Gummow, M. M. W. I. F. Thackeray, S. H. David, Mater. Res. Bull., 27 (1992) 327.
126. M. Antaya, K. Cearns, J. S. Preston, J. N. Reimers, J. R. Dahn, J. Appl., Phys., 76 (1994) 2779.
127. D. Larcher, M. R. Palac´ın, G. G. Amatucci, J. M. Tarascon, J. Electrochem. Soc., 144 (1997) 408.
128. J. Kim, P. Fulmer, A. Manthiram, Mater. Res. Bull., 34 (1999) 571.
129. O. A. Brylev, O. A. Shlyakhtin, T. L. Kulova, A. M. Skundin, Y. D. Tretyakov, Solid State Ionics, 156 (2003) 291.
130. K. Mizhshima, P. C. Jones, P. J. Wiseman, J. B. Goodenough, Mater. Res. Bull., 15 (1980) 783.
131. J. N. Reimers, J. R. Dahn, J. Electrochem. Soc., 139 (1992) 2091.
132. M. Yoshio, H. Tanaka, K. Tominaga, H. Noguchi, J. Power Sources, 40 (1992) 347.
133. G. G. Amatucci, J. M. Tarascon, L. C. Klein, J. Electrochem. Soc., 143 (1996) 1114.
134. M. M. Thackeray, The 186th Meeting, Electrochem. Soc. Symp., (1994) 10.
135. R. J. Gummow, M. M. Thackeray, Mat. Res. Bull., 27(1992)327.
136. R. J. Gummow, M. M. Thackeray, Solid State Ionics, 53-56(1992)681.
137. E. Rossen, J. N. Reimers, J. R. Dahn, Solid State Ionics, 62(1992)53.
138. R. J. Gummow, D. C. Liles, M. M. Thackeray, W. I. F. David, Mat. Res. Bull., 28 (1993)1177.
139. W. Y. Hsien, S. K. Yen, Surf. Coat. Techol., 2012.
140. Z. P. Xu, H. C. Zeng, J. Mater. Chem. 8 (1998) 2499-2506.
141. W. S. Yoon, K. B. Kim, J. Power Sources, 81-82 (1999) 517-523.
142. 29. C. S. Nimisha, M. Ganapathi, N. Munichandraiah, Vacuum, 83 (2009) 1001-1006.
143. K. Kariatsumari, Next-Gen Batteries Going All-Solid, 2010.
144. V. Koleva, E. Zhecheva, R. Stoyanova, J. Inorg. Chem. 2010, 4091-4099.
145. L. Dimesso, D. Becker, J. Solid Stste Electrochem (2012) 3791-3798.
146. M. Minakshi, P. Singh, D. Appadoo, Electrochimica Acta 56 (2011) 4356-4360.
147. W. Y. Shieh, T. C. Chang, S. K. Yen, J. Electrochemical Society, 160 (2013) A1128-A1133.
148. L. Dimesso, C. Spanheimer, W. Jaegermann, Solid State Sciences 14 (2012) 1372-1377.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊