跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/27 23:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林有祥
研究生(外文):Yu-Hsiang Lin
論文名稱:水熱法合成氧化銅奈米薄片及其硫化氫氣體感測特性
論文名稱(外文):Synthesis of CuO nanosheets by hydrothermal method and their H2S gas sensing properties
指導教授:何永鈞
指導教授(外文):Yung-Chiun Her
口試委員:楊聰仁薛顯宗
口試委員(外文):Tsung-jen YangXian-zong Xue
口試日期:2014-07-11
學位類別:碩士
校院名稱:國立中興大學
系所名稱:材料科學與工程學系所
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:54
中文關鍵詞:水熱法氧化銅硫化氫氣體感測
外文關鍵詞:HydrothermalCuOH2SSensingOriented Attachment
相關次數:
  • 被引用被引用:1
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:38
  • 收藏至我的研究室書目清單書目收藏:0
本論文成功利用一維氧化銅(CuO)奈米薄片 並且觀察其成長機制 再將 CuO,,奈米薄片製作成簡單的氣體感測元件,應用於低濃度硫化氫(H2S)氣體的感測。在水熱合成過程中,我們使用氫氧化鈉、尿素及硝酸銅為前趨物,反應溫度的溫度範圍為 90~180℃,反應時間則控制為 3 小時。在最佳合成條件下,合成出的CuO 奈米薄片約 1 微米、寬度約 500~800 奈米、厚度約 50~80 奈米。根據合成過程中 CuO 奈米薄片形貎變化,可發現其成長是由 OA 機制所控制。透過 XRD與 TEM 的結構分析可知,CuO 奈米薄片為單斜的晶體結構。對低濃度硫化氫的感測中,氧化銅奈米薄片氣體感測元件從室溫到 300℃都具有極佳的感測能力。當通入 H2S 氣體,在 250℃以上或在室溫 25℃的操作溫度,氧化銅奈米薄片氣體感測元件的電流會下降,在 150~200℃的操作溫度,電流則會上升。在室溫,氧化銅奈米薄片氣體感測元件對 2.76ppm 的 H2S 氣體,靈敏度為 1.46,反應時間為 140 秒,回復時間為 173 秒。很明顯的,氧化銅奈米薄片氣體感測器可成功的應用於室溫低濃度 H2S 氣體的感測。

We have successfully synthesized one-dimensional CuO nanosheets by using a hydrothermal method and observed their growth mechanism. The CuO nanosheets were adopted to fabricate a simple gas sensor which can be used for detecting low concentration H2S. The precursors used in the hydrothermal process contained NaOH, urea and copper nitrate. The synthesis temperatures ranged from 90 to 180℃, and reaction time was kept at 3 hours. Under the best synthesis condition, the as-synthesized CuO nanosheets have lengths of around 1000 nm, widths ranging from 500 to 800 nm, and thickness of about 50 to 80 nm. Based on the structural evolution of CuO nanosheets during the synthesis process, we can confirm their growth is governed by the Oriented Attachment(OA) mechanism. The as-synthesized CuO nanosheets were identified as a monoclinic crystal structure by XRD and TEM analysis. The gas sensor device fabricated by CuO nanosheets which exhibited excellent responses to low concentration H2S at operating temperatures ranging from room temperature to 300℃. Upon exposure to H2S gas, the currents of CuO nanosheets gas sensors decreased at operating temperatures above 250℃ or at room temperature, while increased at operating temperatures in between 150 to 200℃. At room temperature, CuO nanosheets gas sensor showed a sensitivity of 1.46, a response time of 140s, and a recovery time of 173s, to 2.76ppm H2S gas. Obviously, CuO nanosheet gas sensor can be used to detect low concentration H2S at room temperature.

第一章 緒論...............1
第二章 文獻回顧 ...............2
2.1 H2S 特性及危害 ...............2
2.2金屬氧化物半導體氣體感測元件............... 3
2.3金屬氧化物之氣體感測原理............... 4
2.4氧化銅特性及應用............... 6
2.5製備氧化銅奈米材料方法 ...............8
2.5.1靜電紡絲法(electrospinning method) ...............8
2.5.2熱氧化法(thermal oxidation method) ...............8
2.5.3溶凝膠法(sol-gel method ) ...............9
2.5.4氣相沉積法(Chemical Vapor Deposition, CVD)..........9
2.5.5水熱法(hydrothermal synthesis) ...............9
2.5.6水熱法製備氧化銅奈米結構的反應機構 ...............14
2.6水熱法成長 CuO 奈米結構的成長機制 ...............15
2.7氣體分子在氧化銅表面的吸附 ...............19
2.8氧化銅奈米結構對硫化氫的氣感特性與感測機制..............21
2.9研究動機與目的 ...............22
第三章 實驗方法與步驟 ...............23
3.1實驗方法...............23
3.2掃描式電子顯微鏡(SEM)分析...............24
3.3 X光繞射分析儀(XRD) ...............25
3.4場發射穿透式電子顯微鏡(FE-TEM)分析...............25
3.5氣體感測元件製作 ...............25
3.6氣體感測實驗...............25
第四章 結果與討論...............27
4.1反應溫度對氧化銅奈米結構表面形貎的影響 ...............27
4.2氫氧化鈉濃度對氧化銅奈米薄片表面形貎的影響 .............28
4.3尿素濃度對氧化銅奈米薄片表面形貎的影響 ...............30
4.4尿素與氫氧化鈉莫耳數比氧化銅奈米薄片表面形貎的影響.......32
4.5氧化銅奈米薄片最佳合成條件...............33
4.6晶體結構分析 ...............34
4.6.1氧化銅 XRD 分析 ...............34
4.6.2氧化銅奈米薄片 TEM 分析...............34
4.7氧化銅奈米薄片的成長機制 ...............37
4.8氣體感測特性 ...............41
第五章 結論v 50
第六章 參考書目 ...............51


[1] M. M. Arafat, B. Dinan, S. A. Akbar and A. S. M. A. Haseeb, "Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review.," Sensors, pp. 7207-7258, 2012.
[2] L. Skrtic, “Hydrogen Sulfide, Oil and Gas, and People''s Health,” Energy and Resources Group University of California, Berkeley, Berkeley, 2006.
[3] TOSHMS 中區促進會, 局限空間作業災害預防案例手冊, 台北: TOSHMS中區促進會, 2012.
[4] 古紹官, 強制通風應用於石化廠氣體洩漏擴散暨危害消減之初探, 斗六市:國立雲林科技大學防災與環境工程所, 2009.
[5] M. Arafat, B. Dinan, S. A. Akbar and A. S. M. A. Haseeb, "Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides:A Review," Sensors, pp.7207-7258, 2012.
[6] H. W. J. Kyoung Jin Choi, "One-Dimensional Oxide Nanostructures as Gas-Sensing," sensors, pp. 4083-4099, 2010.
[7] C. Wang, L. Yin, L. Zhangemail, D. Xiang and R. Gao, "Sub-ppm H2S sensing at room temperature using CuO thin films," Sensors and Actuators B: Chemical, pp. 90-96, 2010.
[8] C. Wang, L. Yin, . L. Zhang, . D. Xiang and . R. Gao, "Metal Oxide Gas Sensors: Sensitivity and Influencing Factors," sensors, pp. 2088-2106, 2010.
[9] J. B. Forsyth and S. Hull, "The effect of hydrostatic pressure on the ambient temperature structure of CuO," J. Phys.: Condens. Matter, pp. 5257-5261.
[10] W. Xiang, J. Liu, M. Chang and C. Zheng, "The adsorption mechanism of elemental mercury on CuO (110) surface," Chemical Engineering Journal, p. 91– 96, 2012.
[11] M.-Y. Lin, C.-Y. Lee, S.-C. Shiu, I.-J. Wang, J.-Y. Sun, W.-H. Wu, Y.-H. Lin, J.-S. Huang and C.-F. Lin, "Sol–gel processed CuOx thin film as an anode interlayer for inverted polymer solar cells," Organic Electronics, vol. 11, pp. 1828-1834, 2010.
[12] F.-N. Meng, X.-P. Di, H.-W. Dong, Y. Zhang, C.-L. Zhu, C. Li and Y.-J. Chen, "Ppb H2S gas sensing characteristics of Cu2O/CuO sub-microspheres at low-temperature," Sensors and Actuators B: Chemical, vol. 182, pp. 197-204, 2013.
[13] S. Steinhauer, E. Brunet, T. Maier, G. Mutinati, A. Köck, O. Freudenberg, C. Gspan, W. Grogger, A. Neuhold and R. Resel, "Gas sensing properties of novel CuO nanowire devices," Sensors and Actuators B: Chemical, vol. 187, pp. 50-57, 2013.
[14] W.-Y. Sunga, W.-J. Kima, S.-M. Leea, H.-Y. Leea, Y.-H. Kim, K.-H. Parkb and S. Lee., "Field emission characteristics of CuO nanowires by hydrogen plasma treatment," Vacuum, vol. 81, pp. 851-856, 2007.
[15] G. Jain and L. Patil, "CuO-doped BSST thick film resistors for ppb level H2S gas sensing at room temperature," Sensors and Actuators B, vol. 123, pp. 246-253, 2007.
[16] A. Chapelle, F. Oudrhiri-Hassani, L. Presmanes, A. Barnabe and P. Tailhades, "CO2 sensing properties of semiconducting copper oxide and spinel ferrite nanocomposite thin film," Applied Surface Science, Vols. 4715-4719, 2010.
[17] A.Das, BonuVenkataramana, D.Partheephan, A.K.Prasad, S.Dhara and A.K.Tyagi, "Facile synthesis of nanostructured CuO for low temperature NO2 sensing," Physica E, vol. 54, pp. 40-44, 2013.
[18] S. Steinhauer, E. Brunet, T. Maier, G. Mutinati and A. Kock, "Suspended CuO nanowires for ppb level H2S sensing in dry and humid atmosphere.," Sensors and Actuators B: Chemical, vol. 186, pp. 550-556, 2013.
[19] N. Ramgir, S. K. Ganapathi, M. Kaur, N. Datta, K. Muthe, D. Aswal, S. Gupta and J. Yakhmi, "Sub-ppm H2S sensing at room temperature using CuO thin films," Sensors and Actuators B: Chemical(, vol. 151, pp. 90-96, 2010.
[20] 郭正次;朝春光, 奈米結構材料科學, 台北: 全華出版社, 2004.
[21] 襲建華;羅煥耿;鍾愛蕾;林逸敏, 你不可不知的奈米科技, 初版 編者, 台灣: 世茂, 2006.
[22] N. Wang , Y. Cai and R. Zhang, "Growth of nanowires," Materials Science and Engineering R, vol. 60, pp. 1-51, 2008.
[23] Y. Zhao, X. He, J. Li, X. Gao and J. Jia, "Porous CuO/SnO2 composite nanofibers fabricated by electrospinning and their H2S sensing properties," Sensors and Actuators B: Chemical, vol. 165, pp. 82-87, 2012.
[24] D. Zappa, E. Comini, R. Zamani, J. Arbiol, J. Morante and G. Sberveglieri, "Preparation of copper oxide nanowire-based conductometric chemical sensors," Sensors and Actuators B: Chemical, vol. 182, p. 7-15, 2013.
[25] Y. Aparna and K. E. R. a. P. S. Subbarao, "Synthesis and Characterization of CuO Nano Particles by Novel Sol-Gel Method," IPCBEE, vol. 48, pp. 156-160, 2012.
[26] S. G., Barreca, Davide, Sada, Cinzia, Gasparotto, Alberto, Maccato, C.Tondello and Eugenio, "Chemical Vapor Deposition of Cu2O and CuO," IEEE SENSORS, pp. 111-113, 2009.
[27] R. I. Walton, "Subcritical solvothermal synthesis of condensed inorganic," Chem. Soc. Rev, vol. 31, pp. 230-238, 2002.
[28] C. Yang, X. Su, J. Wang, X. Cao, S. Wang and L. Zhang., "Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties," Sensors and Actuators B: Chemical, vol. 185, pp. 159-165, 2013.
[29] V. Beni, X. Liu, M. Willander, Z. H. Ibupoto and . K. Khun, "Synthesis of Novel CuO Nanosheets and Their Non-Enzymatic Glucose Sensing Applications," sensors, vol. 13, pp. 7926-7938, 2013.
[30] M. Faisal, S. B. Khan, M. M. Rahman, A. Jamal and A. Umar, "Ethanol chemi-sensor: Evaluation of structural; optical and sensing propertiesof CuO nanosheets," Materials Letters, vol. 65, pp. 1400-1403, 2011.
[31] H. Xu, G. Zhu, D. Zheng, C. Xi, X. Xu and X. Shen, "Porous CuO superstructure: Precursor-mediated fabrication; gas sensing and photocatalytic properties," Journal of Colloid and Interface Science, vol. 383, pp. 75-81, 2012.
[32] J. Zhao, J. Y. c and M. Yang, "Hydrothermal synthesis and magnetic properties of CuO hollow," Materials Research Bulletin, vol. 48, p. 83–87, 2014.
[33] Q. Shao, L.-Y. Wang, X.-J. Wang, M.-C. Yang, S.-S. Ge, X.-K. Yang and J.-X. Wang, "Hydrothermal synthesis and photocatalytic property of porous CuO hollow microspheres via PS latex as templates," Solid State Sciences, vol. 20, pp.29-35, 2013.
[34] J. Zhao, S. Liu, S. Yang and S. Yang, "Hydrothermal synthesis and ferromagnetism of CuO nanosheets," Applied Surface Science, vol. 257, pp.9678-9681, 2011.
[35] R. Li, J. Du, Y. Luan, Y. Xue, H. Zou, G. Zhuang and Z. Li, "Ionic liquid precursor-based synthesis of CuO nanoplates for gas sensing and amperometric sensing applications," Sensors and Actuators B: Chemical, vol. 168, pp. 156-164,2012.
[36] Y.-J. Chen, F.-n. Meng, H.-l. Yu, C.-l. Zhu, T.-s. Wang, P. Gao and Q.-y. Ouyang, "Sonochemical synthesis and ppb H2S sensing performances of CuO nanobelts," Sensors and Actuators B: Chemical, vol. 176, pp. 15-21, 2013.
[37] K.-M. Kim, H.-M. Jeong, H.-R. Kim, K.-I. Choi, H.-J. Kim and J.-H. Lee, "Selective Detection of NO2 Using Cr-Doped CuO Nanorods," Sensors, vol. 12, pp. 8013-802, 2012.
[38] M. Dar, Q. Ahsanulhaq, Y. Kim, J. Sohn, W. Kim and H. Shin, "Versatile synthesis of rectangular shaped nanobat-like CuO nanostructures by," Applied Surface Science, vol. 255, p. 6279–6284, 2009.
[39] C. Yang, X. Su, J. Wang, X. Cao, S. Wang and L. Zhang, "Facile microwave-assisted hydrothermal synthesis of varied-shaped CuO nanoparticles and their gas sensing properties," Sensors and Actuators B: Chemical, vol. 185,pp. 159-165, 2013.
[40] Y. ZOU, Y. LI, N. ZHANG and X. LIU, "Flower-like CuO synthesized by CTAB-assisted hydrothermal method," Indian Academy of Sciences, vol. 34, pp.967-971, 2011.
[41] 汪信;劉孝恒, 奈米材料化學, 台北市: 五南圖書出版公司, 2006.
[42] P. W. Voorhees, "The Theory of Ostwald Ripening," Journal of Statistical Physics, vol. 38, pp. 231-253, 1985.
[43] L. G. Rui Yang, "Preparation and capacitances of oriented attachment CuO," Solid State Communications, vol. 134, p. 729–733, 2005.
[44] Cruccolini, R. Narducci and R. Palombari, "Gas adsorption effects on surface conductivity of nonstoichiometric CuO," Sensors and Actuators B, vol. 98, p. 227–232, 2004.
[45] R. I. Walton, "Subcritical solvothermal synthesis of condensed inorganic," The Royal Society of Chemistry, pp. 230-238, 2002.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊