跳到主要內容

臺灣博碩士論文加值系統

(44.220.255.141) 您好!臺灣時間:2024/11/15 02:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:游蕙慈
研究生(外文):Hui-Tzu Yu
論文名稱:補充脈衝光照射之杏香菇對衰老中雌鼠骨質密度與生理活性之影響
論文名稱(外文):Effect of supplementation with pulsed light irradiated Pleurotus ferulae on bone mineral density and biological activities in aging female mice
指導教授:毛正倫毛正倫引用關係
指導教授(外文):Jeng-Leun Mau
口試委員:羅慧珍郭家芬
口試委員(外文):Hui-Chen LoChia-Feng Kuo
口試日期:2014-01-14
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:124
中文關鍵詞:骨質疏鬆症維生素 D2脈衝光照射杏香菇
外文關鍵詞:OsteoporosisVitamin D2pulsed lightPleurotus ferulae
相關次數:
  • 被引用被引用:2
  • 點閱點閱:346
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
骨質疏鬆症 (osteoporosis) 近年來已成為全球關心的公共衛生課題,由於醫學知識的大幅進度,全世界的平均壽命逐漸的增加,因老化所產生的骨質疏鬆症也因此備受重視。骨質疏鬆症是一種骨骼老化的現象,骨骼中的鈣質過量流失是其主要原因,平時雖不會出現明顯的臨床症狀,但診斷發現時疏鬆情形早已相當嚴重。維生素 D 其主要功能為維持體內鈣與磷濃度平衡,並且為腸道對鈣飲食中鈣質的主動吸收作用的調控因子,因此與骨骼健康有密切的關係。菇類所富含的麥角固醇是維生素 D2 之前驅物,可經由陽光中之紫外線照射而轉化成維生素 D2。使用脈衝光取代傳統紫外光照射菇類產生高含量之維生素 D2 只需照射幾秒鐘,維生素 D2 之含量就可以顯著增加,不僅可大幅縮短照射時間、減少成本支出,適合用在商業用途上,進而提升商品價值。
本論文共分成兩大部分來探討,第一個部份為於相同時間點,對衰老中雌鼠餵食不同劑量維生素 D2 之照射杏香菇,第二個部份為於不同時間點開始餵食雌鼠相同劑量高維生素 D2 照射杏香菇,觀察此兩部分對雌鼠骨質密度與生理活性之影響。首先,在探討餵食衰老中雌鼠不同劑量之菇粉對雌鼠骨質造成的結果,於生化代謝指標結果發現,餵食菇粉對造骨細胞活性沒有正向影響,而照射菇粉處理組有提高蝕骨細胞活性的影響;在血清中代謝物分析的結果發現,餵食菇粉可以增加血清中精胺酸、離胺酸、α-酮戊二酸、牛磺酸、肌酸、乳酸和 3-羥基丁酸酯,其中,未照射菇粉可以增加對骨質有益的血清代謝物。在骨參數結果中,發現餵食照射菇粉骨質疏鬆的情形較控制組嚴重,顯示補充照射菇粉對骨質是沒有正向影響,骨質流失的速率反而增加。補充未照射菇粉組別則較照射菇粉在各項骨質參數有較好的結果,但其與控制組相比並無差異,顯示未照射菇粉雖對骨質沒有正向影響,但也不會增加骨質流失的速率。不同起始餵食時間對雌鼠骨質所造成的結果,發現於雌鼠年輕時補充含有維生素 D2 之菇粉,其骨質相關指標結果較衰老時再補充好;但在骨骼生化指標結果顯示,不同時期開始補充對蝕骨細胞活性並沒有影響,推測可能是於小鼠年輕時即補充含有維生素 D2 之菇粉,可幫助其在成長時期骨量的累積,使得在衰老時期骨質流失速率雖相同,但骨質疏鬆情形卻較不嚴重。
綜合以上之結果及前人之研究,顯示食用菇由經脈衝光照射處理後,是安全且毒性小的,可作為良好的天然維生素 D 補充來源,本實驗經過餵食小鼠照射杏香菇粉 48 週後,根據其器官病理切片結果,顯示其肝、腎和子宮等臟器無病理之變化,顯示以脈衝光照射之菇類是安全無毒性的;先前的研究指出,若人體同時補充維生素 D2 與維生素 D3,可能造成兩種型態維生素 D 互相競爭,且維生素 D3比維生素 D2 更能提升血清中維生素 D 濃度,且持續時間也較長。本實驗對雌鼠骨質有反向影響或許可能即是因為同時補充兩種維生素 D 產生的競爭效應而造成的,然而,此推論還需要測定小鼠血清中維生素 D 之狀態,才能了解其實際作用機制。
Osteoporosis is a global public health issue in recent years. Due to the significant progress of medical knowledge and gradual increase of the average life, the aging osteoporosis has become a major concerned. Osteoporosis is a phenomenon of bone aging, which is characterized with a reason excessive loss of bone calcium. Owing to the clinical symptoms of osteoporosis not easily observed, the diagnosis of osteoporosis came only be found in a serious stage. The main function of vitamin D is to maintain the content of calcium and phosphorus concentration in the body. Therefore, especially it plays a crucial role in regulating intestinal calcium absorption from diet. Vitamin D is closely related to bone health. The precursor of vitamin D2 is ergosterol, which is rich on mushrooms and can be transferred to vitamin D2 by UV irradiation of sunlight. Because of high efficiency on translating ergosterol to vitamin D2, the pulsed light has been though to replace the traditional UV irradiation. Moreover, pulsed light can also reduce costs and be much easier to apply on commerce.

In this study, we investigated the effects of pulsed light irradiated mushroom on bone density and bioactivities in the aging female mice. The first part of the study was to evaluate the dose effect of irradiated mushrooms on female mice. In bone metabolic parameters, mushroom powder without irradiation had no significant effect of on the activity of osteoblast. And irradiated-mushrooms could promote the activity of osteoclast. The results of serum metabolite analysis showed that mushroom powder could significantly increased the content of arginine, lysine, 2-Oxoglutarate, taurine, creatine, lactate, and 3- hydroxybutyrate in the serum. In particular, unirradiated mushroom powder significantly increased the expression of beneficial metabolites for bone matrix in the serum. According to the results of micro-CT bone parameters, mice administrated with the irradiated mushroom powder on the condition of osteoporosis were more serious compared with no supplement control, revealing that irradiated mushroom powder had the effect on raising the rate of bone loss. Moreover, unirradiated mushroom powder trended to have better effect on bone parameters compared with irradiated mushroom powder, though there was no difference between no supplement control and unirradiated mushrooms powder. That is, unirradiated mushroom powder has no significant impact on bone matrix and the rate of bone loss.

The second part of the study was to evaluate the effect of different starting time on feeding female mice. We found that feeding mice on irradiated mushrooms at early time would be much better than at late time. Furthermore, the results of biochemical markers of bone showed that there is no significant effect on the different originated time on feeding. These results suggested that feeding mice on irradiated mushrooms with high content of vitamin D2 at early time could cumulate bone matrix during the growth period of mice. Therefore, mice with the same rate of bone loss during the aging period had the osteoporosis related index still better on early starting time of feeding than late starting time of feeding.

According to the results mentioned above and previons studies, we showed that edible mushrooms products trested with pulsed light irradiation are safe and less toxic. Therefore, these products have been though to be a good source of natural vitamin D2 supplementation. The results of histopathology indicated that there are no pathologic changes in the liver, kidney, uterus and other organs in female mice. Previous studies had point out that supplement vitamin D2 and vitamin D3 to human at the same time could induce the competition on specific binding receptor. However, vitamin D3 exhibit the better effect on promoting the concentration of calcitriol than vitamin D2 and existing longer.

In conclusion, we presumed that the reason of unexpected finding on bone metabolic parameters and micro-CT bone parameters could be due to that the supplemented vitamin D2 and vitamin D3 to mice at the same time might lead to the completion between vitamin D2 and vitamin D3 on specific binding site. However, to identify this presumption, we should measure the content of different types of vitamin D in the serum in the future study.
表次 viii
圖次 ix
前言 1
文獻整理 3
一、 杏香菇 3
二、 骨質疏鬆症介紹 3
三、 骨質疏鬆症定義 6
四、 骨質疏鬆症的分類 7
(一) 原發性骨質疏鬆症 7
(二) 續發性骨質疏鬆症 8
五、 骨細胞生化代謝 8
(一) 造骨細胞 8
(二) 蝕骨細胞 12
六、 骨重塑作用 14
七、 骨質疏鬆症致病因素及治療 16
八、 維生素 D 在維持人體生理機能中扮演重要的角色 18
九、 脈衝光技術於提高食藥用菇類之維生素 D2 含量的應用 22
(一) 麥角固醇 23
(二) 利用脈衝照射刺激提升食藥用菇維生素D2含量 23
(三) 脈衝光照射系統 24
十、 雙磷酸鹽類藥物 24
十一、動物模式 25
研究動機 26
實驗架構 27
材料與方法 28
一、 實驗材料 28
(一) 化學藥品 28
(二) 生化分析試劑組 28
二、 實驗方法及步驟 28
(一) 脈衝光照射杏香菇粉製備 28
(二) 動物飼養條件 29
(三) 實驗設計與分組 29
三、 樣本收集與處理 32
(一) 血液收集 32
(二) 臟器收集與切片 32
(三) 骨骼樣本收集 32
四、 研究測定方法 32
(一) 骨骼生化代謝指標 32
(二) NMR 血清代謝物分析 38
(三) 股骨微電腦斷層掃描 39
(四) 統計分析 40
結果與討論 41
一、 自 44 週齡時開始餵食不同劑量維生素 D2 照射杏香菇粉之結果 41
(一) 體重、相對器官重及股骨長度 41
(二) 臟器 H&E 切片結果 41
(三) 血清骨質代謝生化指標 48
(四) 血液中血清代謝物 62
(五) Micro-CT 照射股骨之骨參數值 69
二、 於不同時間點餵食相同劑量高維生素 D2 照射杏香菇粉之組別 74
(一) 體重、相對器官重及股骨長度 74
(二) 臟器 H&E 切片結果 74
(三) 骨質代謝生化指標 74
(四) 血液中血清代謝物 92
(五) Micro-CT 照射股骨之骨參數值 100
三、 綜合討論 104
結論 109
參考文獻 110
行政院衛生署。2003 。國人膳食營養素參考攝取量及說明(修訂第六版)。台北。台灣。
行政院衛生福利部食品藥物管理署。2012。健康食品之骨質保健功效評估方法。台北。台灣。
行政院衛生福利部國民健康署。2011。骨質疏鬆症臨床治療指引。台北。台灣。
汪群超。2006。主成份分析原理 (http://web.ntpu.edu.tw/~ccw/statmath/M_pca.pdf)。
林興中。1993。骨質疏鬆症。嘉義醫訊。
林興中。1993。骨質疏鬆症之最近發展。台灣醫界。
范晉嘉。2006。食用菇類中具抗氧化與預防骨質疏鬆症之保健成分-麥角固醇之分析。嘉南藥理科技大學生活系。台南,台灣。
徐煜能、游棟閔、吳明儒。2007。慢性腎臟病與骨病變。腎臟與透析。19卷2期。台北。台灣。
張建邦。1997。多變量分析。三民出版社。台北。台灣。
許晉瑋。2007。奈米化之鈣劑預防骨質疏鬆症之保健功效與安全性評估。中原大學生物醫學工程學系。桃園。台灣。
黃永任、羅淑芬。2004。長期運動訓練對青年期選手骨質密度的影響。
楊南屏、楊榮森、周碧瑟。2008。提早因應高齡化社會的特殊醫療保健需求: 以骨質疏鬆症為例。臺灣公共衛生雜誌。台北。台灣。
楊榮森。1997。骨質疏鬆症-病因、診斷、治療。合記圖書出版社。台北。台灣。
楊榮森。2007。骨質疏鬆症(修訂版)-病因與症狀、診斷、跌倒預防。健康文化事業股份有限公司。台北。台灣。
賴麗容、劉瑞瑤。2012。中老年人髖部骨折簡介。家庭醫學與基層醫療。第二十七卷。第十期。台北。台灣。
薛樹青、呂旭峰。2004。鈣及維生素 D 與骨鬆症。台灣醫界。
Alves, C. R. R., Murai, I. H., Ramona, P., Nicastro, H., Takayama, L., Guimaraes, F., Junior, A. H. L., Irigoyen, M. C., Pereira, R. M. R. & Gualano, B. (2012). Influence of creatine supplementation on bone mass of spontaneously hypertensive rats. Revista Brasileira de Reumatologia, 52(3), 457-461.
Amin, S., LaValley, M. P., Simms, R. W. & Felson, D. T. (1999). The role of vitamin D in corticosteroid induced osteoporosis: a meta‐analytic approach. Arthritis & Rheumatism, 42(8), 1740-1751.
Armas, L. A., Hollis, B. W. & Heaney, R. P. (2004). Vitamin D2 is much less effective than vitamin D3 in humans. Journal of Clinical Endocrinology & Metabolism, 89(11), 5387-5391.
Autier, P., Gandini, S. & Mullie, P. (2012). A systematic review: influence of vitamin D supplementation on serum 25-hydroxyvitamin D concentration. Journal of Clinical Endocrinology & Metabolism, 97(8), 2606-2613.
Bhattacharya, A., Rahman, M., Sun, D. & Fernandes, G. (2007). Effect of fish oil on bone mineral density in aging C57BL/6 female mice. The Journal of Nutritional Biochemistry, 18(6), 372-379.
Biancuzzo, R. M., Young, A., Bibuld, D., Cai, M. H., Winter, M. R., Klein, E. K., Ameri, A., Reitz, R., Salameh, W. & Holick, M. F. (2010). Fortification of orange juice with vitamin D2 or vitamin D3 is as effective as an oral supplement in maintaining vitamin D status in adults. The American journal of clinical nutrition, 91(6), 1621-1626.
Blair, H. C. (1998). How the osteoclast degrades bone. Bioessays, 20(10), 837-846.
Blair, H. C., Teitelbaum, S. L., Ghiselli, R. O. B. E. R. T. & Gluck, S. (1989). Osteoclastic bone resorption by a polarized vacuolar proton pump. Science, 245(4920), 855-857.
Bruder, S. P. & Caplan, A. I. (1990). A monoclonal antibody against the surface of osteoblasts recognizes alkaline phosphatase isoenzymes in bone, liver, kidney, and intestine. Bone, 11(2), 133-139.
Chambers, T. J. & Hall, T. J. (1991). Regulation of osteoclast function. Vitamins and hormones, 46, 40-87.
Chandani, A. K., Scariano, J. K., Glew, R. H., Clemens, J. D., Garry, P. J. & Baumgartner, R. N. (2000). Bone mineral density and serum levels of aminoterminal propeptides and cross-linked N-telopeptides of type I collagen in elderly men. Bone, 26(5), 513-518.
Chiang, S. S., Liao, J. W. & Pan, T. M. (2012). Effect of bioactive compounds in lactobacilli‐fermented soy skim milk on femoral bone microstructure of aging mice. Journal of the Science of Food and Agriculture, 92(2), 328-335.
Choi, M. J, & Chang, K. J. (2013). Effect of dietary taurine and arginine supplementation on bone mineral density in growing female rats. In Taurine 8 (pp. 335-345). Springer New York.
Choi, M. J. & DiMarco, N. M. (2009). The effects of dietary taurine supplementation on bone mineral density in ovariectomized rats. In Taurine 7 (pp. 341-349). Springer New York.
Corpas, E., Harman, S. M. & Blackman, M. R. (1993). Human growth hormone and human aging. Endocrine reviews, 14(1), 20-39.
Cummings, S. R. & Melton, L. J. (2002). Epidemiology and outcomes of osteoporotic fractures. The Lancet, 359(9319), 1761-1767.
Cummings, S. R., Browner, W., Black, D. M., Nevitt, M. C., Genant, H. K., Cauley, J Ensrud, K., Genant, H.K., Palermo, L., Scott, J. & Vogt, T. M. (1993). Bone density at various sites for prediction of hip fractures. The Lancet, 341(8837), 72-75.
de Souza, R. A., Xavier, M., da Silva, F. F., de Souza, M. T., Tosato, M. G., Martin, A. A., de MeloCastiho, J. C., Ribeiro, W. & Silveira Jr, L. (2012). Influence of creatine supplementation on bone quality in the ovariectomized rat model: an FT-Raman spectroscopy study. Lasers in medical science, 27(2), 487-495.
Department of Health and Human Services Food and Drug Administration Center for Drug Evaluation and Research. (2005). Guidance for Industry Estimating the Maximum Safe Starting Dose in Initial Clinical Trials for Therapeutics in Adult Healthy Volunteers. Pharmacology and Toxicology.
Diel, I. J., Bergner, R. & Grotz, K. A. (2007). Adverse effects of bisphosphonates: current issues. J Support Oncol, 5(10), 475-482.
Doherty, M. J., Schlag, G., Schwarz, N., Mollan, R. A. B., Nolan, P. C. & Wilson, D. J. (1994). Biocompatibility of xenogeneic bone, commercially available coral, a bioceramic and tissue sealant for human osteoblasts. Biomaterials, 15(8), 601-608.
Ducy, P., Schinke, T. & Karsenty, G. (2000). The osteoblast: a sophisticated fibroblast under central surveillance. Science, 289(5484), 1501-1504.
Ducy, P., Zhang, R., Geoffroy, V., Ridall, A. L. & Karsenty, G. (1997). Osf2/Cbfa1: a transcriptional activator of osteoblast differentiation. Cell, 89(5), 747-754.
Dunn, J., Ott, T. & Clark, W. (1995). Pulsed-light treatment of food and packaging. Food Technology, 49.
Emerton, K.B., Hu, B., Woo, A.A., Sinofsky, A., Hernandez, C., Majeska, R.J., Jepsen, K.J. & Schaffler, M.B. (2010) Osteocyte apoptosis and control of bone resorption following ovariectomy in mice. Bone 46(3): 577-83.
Erben, R. G. (1996). Calcitriol and analogs as bone anabolic agents. Bone, 19(3), 139.
Erben, R.G., Bromm, S. & Stangassinger, M. (1998). Therapeutic efficacy of 1 alpha,25-dihydroxyvitamin D3 and calcium in osteopenic ovariectomized rats:evidence for a direct anabolic effect of 1 alpha, 25-dihydroxyvitamin D3 on bone. Endocrinology 139(10): 4319-4328.
Eriksen, E. F., Brixen, K. & Charles, P. (1995). New markers of bone metabolism: clinical use in metabolic bone disease. European journal of endocrinology, 132(3), 251-263.
Faulkner, K. G., Cummings, S. R., Black, D., Palermo, L., Gluer, C. C. & Genant, H. K. (1993). Simple measurement of femoral geometry predicts hip fracture: the study of osteoporotic fractures. Journal of bone and mineral research, 8(10), 1211-1217.
Ferguson, V. L., Ayers, R. A., Bateman, T. A. & Simske, S. J. (2003). Bone development and age-related bone loss in male C57BL/6J mice. Bone, 33(3), 387-398.
Fini, M., Torricelli, P., Giavaresi, G., Carpi, A., Nicolini, A. & Giardino, R. (2001). Effect of L-lysine and L-arginine on primary osteoblast cultures from normal and osteopenic rats. Biomedicine & pharmacotherapy, 55(4), 213-220.
Fiore, C. E., Cottini, E., Di Salvo, G., Foti, R. & Rastagliesi, M. (1991). The effects of muscle-building exercise on forearm bone mineral content and osteoblast activity in drug-free and anabolic steroids sell-administering young men. Bone and mineral, 13(1), 78-83.
Glatt, V., Canalis, E., Stadmeyer, L. & Bouxsein, M. L. (2007). Age‐related changes in trabecular architecture differ in female and male C57BL/6J mice. Journal of Bone and Mineral Research, 22(8), 1197-1207.
Glendenning, P., Chew, G. T., Seymour, H. M., Gillett, M. J., Goldswain, P. R., Inderjeeth, C. A., Vasikaran, S. D., Taranto, M., Musk, A. A. & Fraser, W. D. (2009). Serum 25-hydroxyvitamin D levels in vitamin D-insufficient hip fracture patients after supplementation with ergocalciferol and cholecalciferol. Bone, 45(5), 870-875.
Goltzman, D. (2002). Discoveries, drugs and skeletal disorders. Nature Reviews Drug Discovery, 1(10), 784-796.
Hanaa, H. & Hamza, A. H. (2009). Potential role of arginine, glutamine and taurine in ameliorating osteoporotic biomarkers in ovariectomized rats. Rep. Opin, 1, 24-35.
Health Canada, (2012). Canadian nutrient file (CNF). Health Canada, Nutrition research division bureau of nutritional sciences, food directorate, health protection branch (HPB), Ottawa, Ont. <http://www.hc-sc.gc.ca/fn-an/nutrition/ fiche-nutri-data/index-eng.php> (date modified 02.10.02.12; last accessed in 2009).
Heaney, R. P., Recker, R. R., Grote, J., Horst, R. L. & Armas, L. A. (2011). Vitamin D3 is more potent than vitamin D2 in humans. Journal of Clinical Endocrinology & Metabolism, 96(3), E447-E452.
Henry, H. L. & Norman, A. W. (1984). Vitamin D: metabolism and biological actions. Annual review of nutrition, 4(1), 493-520.
Henry, H. L. & Norman, A. W. (1995). Vitamin D: Metabolism and biological actions. A syndrome? Lancet, 268:431-434.
Ho, A. (1992). Long term consequences of estrogen and estrogen-progestin replacement. Cancer Causes Control, 3:83-90.
Hock, J. M., Krishnan, V., Onyia, J. E., Bidwell, J. P., Milas, J. & Stanislaus, D. (2001). Osteoblast apoptosis and bone turnover. Journal of Bone and Mineral Research, 16(6), 975-984.
Holick, M. F. (2004). Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. The American journal of clinical nutrition, 80(6), 1678-1688.
Holick, M. F. (2007). Vitamin D deficiency. New England Journal of Medicine,357(3), 266-281.
Holick, M. F., Biancuzzo, R. M., Chen, T. C., Klein, E. K., Young, A., Bibuld, D., Reitz, R., Salameh, W., Ameri, A. & Tannenbaum, A. D. (2008). Vitamin D2 is as effective as vitamin D3 in maintaining circulating concentrations of 25-hydroxyvitamin D. Journal of Clinical Endocrinology & Metabolism, 93(3), 677-681.
Horst, R. L., Napoli, J. L. & Littledike, E. T. (1982). Discrimination in the metabolism of orally dosed ergocalciferol and cholecalciferol by the pig, rat and chick. Biochem. J, 204, 185-189.
Houghton, L. A. & Vieth, R. (2006). The case against ergocalciferol (vitamin D2) as a vitamin supplement. The American journal of clinical nutrition, 84(4), 694-697.
Institute of Medicine (US). Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. (1997). Dietary reference intakes: for calcium, phosphorus, magnesium, vitamin D, and fluoride. National Academies Press.
Jagger, J. (1967). Introduction to research in ultraviolet photobiology.
Jasinghe, V. J., Perera, C. O. & Barlow, P. J. (2006). Vitamin D2 from irradiated mushrooms significantly increases femur bone mineral density in rats. Journal of Toxicology and Environmental Health, Part A, 69(21), 1979-1985.
Jasinghe, V. J., Perera, C. O. & Sablani, S. S. (2007). Kinetics of the conversion of ergosterol in edible mushrooms. Journal of food engineering, 79(3), 864-869.
Jeal, W., Barradell, L. B. & McTavish, D. (1997). Alendronate. Drugs, 53(3), 415-434.
Jeevanandam, M. & Petersen, S. R. (1999). Substrate fuel kinetics in enterally fed traumapatients supplemented with ornithine alpha ketoglutarate. Clinical Nutrition, 18(4), 209-217.
Jeon, S. H., Lee, M. Y., Kim, S. J., Joe, S. G., Kim, G. B., Kim, I. S., Kim, N. S., Hong, C. U., Kim, S. Z., Kim, J. S. & Kang, H. S. (2007). Taurine increases cell proliferation and generates an increase in [Mg 2+] accompanied by ERK 1/2 activation in human osteoblast cells. FEBS letters, 581(30), 5929-5934.
Kalaras, M. D., Beelman, R. B. & Elias, R. J. (2011). Effects of postharvest pulsed UV light treatment of white button mushrooms (Agaricus bisporus) on vitamin D2 content and quality attributes. Journal of agricultural and food chemistry, 60(1), 220-225.
Katzenellenbogen, B. S., Montano, M. M., Le Goff, P., Schodin, D. J., Kraus, W. L., Bhardwaj, B. & Fujimoto, N. (1995). Antiestrogens: mechanisms and actions in target cells. The Journal of steroid biochemistry and molecular biology, 53(1), 387-393.
Keen, R. W., Woodford-Richens, K. L., Lanchbury, J. S. & Spector, T. D. (1998). Allelic variation at the interleukin-1 receptor antagonist gene is associated with early postmenopausal bone loss at the spine. Bone, 23(4), 367-371.
Koyyalamudi, S. R., Jeong, S. C., Song, C. H., Cho, K. Y. & Pang, G. (2009). Vitamin D2 formation and bioavailability from Agaricus bisporus button mushrooms treated with ultraviolet irradiation. Journal of agricultural and food chemistry, 57(8), 3351-3355.
Lal, H., Pandey, R. & Aggarwal, S. K. (1999). Vitamin D: Non-skeletal actions and effects on growth. Nutrition Research, 19(11), 1683-1718.
Lee, G. S., Byun, H. S., Yoon, K. H., Lee, J. S., Choi, K. C. & Jeung, E. B. (2009). Dietary calcium and vitamin D2 supplementation with enhanced Lentinula edodes improves osteoporosis-like symptoms and induces duodenal and renal active calcium transport gene expression in mice. European journal of nutrition, 48(2), 75-83.
Lian, J. B. & Stein, G. S. (2008). Osteoblast biology. Osteoporosis, 1, 21-71.
Lian, J. B., Stein, G. S., Stein, J. L. & Van Wijnen, A. J. (1998). Osteocalcin gene promoter: unlocking the secrets for regulation of osteoblast growth and differentiation. Journal of Cellular Biochemistry, 72(S30‒31), 62-72.
Licata, A. A. (1997). Bisphosphonate therapy. The American journal of the medical sciences, 313(1), 17-22.
Lindsay, R. (1987). The menopause: sex steroids and osteoporosis. Clinical Obstetrics and Gynecology, 30(4), 847-859.
Lindsay, R. (1988). Sex steroids in the pathogenesis and prevention of osteoporosis. Osteoporosis: etiology, diagnosis, and management, 333-358.
Logan, V. F., Gray, A. R., Peddie, M. C., Harper, M. J. & Houghton, L. A. (2012). Long-term vitamin D3 supplementation is more effective than vitamin D2 in maintaining serum 25-hydroxyvitamin D status over the winter months. British Journal of Nutrition, 1(1), 1-7.
Manolagas, S. C. & Jilka, R. L. (1995). Bone marrow, cytokines, and bone remodeling. Emerging insights into the pathophysiology of osteoporosis. The New England journal of medicine, 332(5), 305-311.
Martini F. H. & Bartholomew E. F. (2000). Essentials of Anatomy and Physiology. Prentice-Hall, Inc., 2nd edition, USA, 141-195.
Martini, F., Bartholomew, E. F., Ober, W. C., Garrison, C. W., Welch, K. & Hutchings, R. (2003). Essentials of anatomy & physiology. Pearson education.
Mattila, P. H., Piironen, V. I., Uusi-Rauva, E. J. & Koivistoinen, P. E. (1995). Contents of cholecalciferol, ergocalciferol, and their 25-hydroxylated metabolites in milk products and raw meat and liver as determined by HPLC. Journal of agricultural and food chemistry, 43(9), 2394-2399.
Mau, J. L., Chen, P. R. & Yang, J. H. (1998). Ultraviolet irradiation increased vitamin D2 content in edible mushrooms. Journal of Agricultural and Food Chemistry, 46(12), 5269-5272.
McCabe, L. R., Last, T. J., Lynch, M., Lian, J., Stein, J. & Stein, G. (1994). Expression of cell growth and bone phenotypic genes during the cell cycle of normal diploid osteoblasts and osteosarcoma cells. Journal of cellular biochemistry, 56(2), 274-282.
Melton, L. J., Atkinson, E. J., O'Connor, M. K., O'Fallon, W. M. & Riggs, B. L. (1998). Bone density and fracture risk in men. Journal of Bone and Mineral Research, 13(12), 1915-1923.
Milhaud, G., Benezech-Lefevre, M. & Moukhtar, M. S. (1978). Deficiency of calcitonin in age related osteoporoses. Biomedicine/[publiee pour l'AAICIG],29(8), 272.
Mishima, S. (1988). The effect of long-term pulsing electromagnetic field stimulation on experimental osteoporosis of rats. Journal of UOEH, 10(1), 31.
Mosekilde, L. (1998). Aging of bone. Reviews in Clinical Gerontology, 8(4), 281-296.
Mundy, G. R. (1999). Bone remodelling and its disorders. Taylor & Francis.
Newmark, H. L., Heaney, R. P. & Lachance, P. A. (2004). Should calcium and vitamin D be added to the current enrichment program for cereal-grain products?. The American journal of clinical nutrition, 80(2), 264-270.
NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy. (2001). Osteoporosis prevention, diagnosis, and therapy. Jama,285(6).
O’Sullivan, A., Willoughby, R. E., Mishchuk, D., Alcarraz, B., Cabezas-Sanchez, C., Condori, R. E., David, D., Encareicion, R., Fatteh, N., Fernandez, J., Farnka, R., Hedderwick, S., McCaughey, C., Ondrush, J., Paez-Martinwz, A.,Rupprucht, C., Velasco-villa, A. & Slupsky, C. M. (2012). Metabolomics of cerebrospinal fluid from humans treated for rabies. Journal of proteome research, 12(1), 481-490.
Oms-Oliu, G., Aguilo-Aguayo, I., Martin-Belloso, O. & Soliva-Fortuny, R. (2010). Effects of pulsed light treatments on quality and antioxidant properties of fresh-cut mushrooms ( Agaricus bisporus ). Postharvest Biology and Technology, 56(3), 216-222.
Orwoll, E. S. & Klein, R. F. (1995). Osteoporosis in men. Endocrine Reviews,16(1), 87-116.
Outila, T. A., Mattila, P. H., Piironen, V. I. & Lamberg-Allardt, C. J. (1999). Bioavailability of vitamin D from wild edible mushrooms (Cantharellus tubaeformis) as measured with a human bioassay. The American journal of clinical nutrition, 69(1), 95-98.
Owen T. A., Aronow M., Shalhoub V., Barone L. M., Wilming L., Tassinari M. S., Kennedy M. B., Pockwinse S., Lian J. B. & Stein G.S. (1990). Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. Journal of cellular physiology, 143(3), 420-430.
Parfitt, A. M. (1992). The two-stage concept of bone loss revisited. Triangle, 31, 99-110.
Phillips, K. M., Horst, R. L., Koszewski, N. J. & Simon, R. R. (2012). Vitamin D4 in mushrooms. PloS one, 7(8), e40702.
Powers, P. S. (1999). Osteoporosis and eating disorders. Journal of pediatric and adolescent gynecology, 12(2), 51-57.
Price, J. S., Jackson, B., Eastell, R., Goodship, A. E., Blumsohn, A., Wright, I., Seoneham, S., Lanyon, L. E. & Russell, R. G. G. (1995). Age related changes in biochemical markers of bone metabolism in horses. Equine Veterinary Journal, 27(3), 201-207.
Prockop, D. J. & Kivirikko, K. I. (1984). Heritable diseases of collagen. The New England journal of medicine, 311(6), 376.
Rapuri, P. B., Gallagher, J. C. & Haynatzki, G. (2004). Effect of vitamins D2 and D3 supplement use on serum 25OHD concentration in elderly women in summer and winter. Calcified tissue international, 74(2), 150-156.
Reagan-Shaw, S., Nihal, M. & Ahmad, N. (2008). Dose translation from animal to human studies revisited. The FASEB Journal, 22(3), 659-661.
Reichrath, J. (2006). The challenge resulting from positive and negative effects of sunlight: how much solar UV exposure is appropriate to balance between risks of vitamin D deficiency and skin cancer?. Progress in biophysics and molecular biology, 92(1), 9-16.
Reszka, A. A., Halasy-Nagy, J. M., Masarachia, P. J. & Rodan, G. A. (1999). Bisphosphonates act directly on the osteoclast to induce caspase cleavage of mst1 kinase during apoptosis A link between inhibition of the mevalonate pathway and regulation of an apoptosis-promoting kinase. Journal of Biological Chemistry, 274(49), 34967-34973.
Riggs, B. L. & Melton 3rd, L. J. (1986). Involutional osteoporosis. The New England journal of medicine, 314(26), 1676.
Riggs, B. L. & Melton III, L. J. (1983). Evidence for two distinct syndromes of involutional osteoporosis. The American journal of medicine, 75(6), 899-901.
Riggs, B. L. (1991). Overview of osteoporosis. Western journal of medicine, 154(1), 63.
Risteli, J., Elomaa, I., Niemi, S., Novamo, A. & Risteli, L. (1993). Radioimmunoassay for the pyridinoline cross-linked carboxy-terminal telopeptide of type I collagen: a new serum marker of bone collagen degradation. Clinical Chemistry, 39(4), 635-640.
Roodman, G. D. (1996). Advances in bone biology: the osteoclast. Endocrine reviews, 17(4), 308-332.
Roodman, G. D. (1999). Cell biology of the osteoclast. Experimental hematology, 27(8), 1229-1241.
Rosen, H. N., Dresner-Pollak, R., Moses, A. C., Rosenblatt, M., Zeind, A. J., Clemens, J. D. & Greenspan, S. L. (1994). Specificity of urinary excretion of cross-linked N-telopeptides of type I collagen as a marker of bone turnover. Calcified tissue international, 54(1), 26-29.
Seitz, L. M. & Paukstelis, J. V. (1977). Metabolites of Alternaria alternata: ergosterol and ergosta-4, 6, 8 (14), 22-tetraen-3-one. Journal of agricultural and food chemistry, 25(4), 838-841.
Seyedin, S. M., Kung, V. T., Daniloff, Y. N., Hesley, R. P., Gomez, B., Nielsen, L. A., Rosen, H. N. & Zuk, R. F. (1993). Immunoassay for urinary pyridinoline: the new marker of bone resorption. Journal of Bone and Mineral Research, 8(5), 635-641.
Shahnazari, M., Yao, W., Dai, W., Wang, B., Ionova-Martin, S. S., Ritchie, R. O., Heeren, D., Burghardt, A. J., Nicolella, D. P., Kimiecik, M. G. & Lane, N. E. (2010) Higher doses of bisphosphonates further improve bone mass, architecture, and strength but not the tissue material properties in aged rats. Bone, 46:1267-1274.
Shanely, R. A., Nieman, D. C., Knab, A. M., Gillitt, N. D., Meaney, M. P., Jin, F., Sha, W. & Cialdella-Kam, L. (2013). Influence of vitamin D mushroom powder supplementation on exercise-induced muscle damage in vitamin D insufficient high school athletes. Journal of sports sciences, 1-10.
Silbermann, M., Weiss, A., Reznick, A. Z., Eilam, Y., Szydel, N. & Gershon, D. (1987). Age-related trend for osteopenia in femurs of female C57BL/6 mice. Comprehensive gerontology. Section A, Clinical and laboratory sciences, 1(1), 45.
Simon, R. R., Borzelleca, J. F., DeLuca, H. & M Weaver, C. (2013). Safety assessment of the post-harvest treatment of button mushrooms (Agaricus bisporus) using ultraviolet light. Food and Chemical Toxicology.
Siris, E. S., Brenneman, S. K., Barrett-Connor, E., Miller, P. D., Sajjan, S., Berger, M. L. & Chen, Y. T. (2006). The effect of age and bone mineral density on the absolute, excess, and relative risk of fracture in postmenopausal women aged 50–99: results from the National Osteoporosis Risk Assessment (NORA). Osteoporosis international, 17(4), 565-574.
Soriano, P., Montgomery, C., Geske, R. & Bradley, A. (1991). Targeted disruption of the c-src proto-oncogene leads to osteopetrosis in mice. Cell, 64(4), 693-702.
Stephensen, C. B., Zerofsky, M., Burnett, D. J., Lin, Y. P., Hammock, B. D., Hall, L. M. & McHugh, T. (2012). Ergocalciferol from mushrooms or supplements consumed with a standard meal increases 25-hydroxyergocalciferol but decreases 25-hydroxycholecalciferol in the serum of healthy adults. The Journal of nutrition, 142(7), 1246-1252.
Stepien, M., O'Mahony, L., O'Sullivan, A., Collier, J., Fraser, W. D., Gibney, M. J., Nugent, A. P. & Brennan, L. (2013). Effect of supplementation with vitamin D2-enhanced mushrooms on vitamin D status in healthy adults. Journal of Nutritional Science, 2, e29.
Takeshita, K., Shibato, J., Sameshima, T., Fukunaga, S., Isobe, S., Arihara, K. & Itoh, M. (2003). Damage of yeast cells induced by pulsed light irradiation. International Journal of Food Microbiology, 85(1), 151-158.
Tapiero, H., Math, G., Couvreur, P. & Tew, K. D, (2002). Glutamine and glutamate. Biomed Pharmacother, 56, 446-457.
Tatara, M. R., Brodzki, A., Krupski, W., Sliwa, E., Silmanowicz, P., Majcher, P., Pierzynoeski, S. G. & Studzinski, T. (2005). Effects of alpha-ketoglutarate on bone homeostasis and plasma amino acids in turkeys. Poultry science, 84(10), 1604-1609.
Teichmann, A., Dutta, P. C., Staffas, A. & Jagerstad, M. (2007). Sterol and vitamin D2 concentrations in cultivated and wild grown mushrooms: Effects of UV irradiation. LWT-Food Science and Technology, 40(5), 815-822.
Teitelbaum, S. L. (2000). Bone resorption by osteoclasts. Science, 289(5484), 1504-1508.
Teti, A., Grano, M., Colucci, S., Cantatore, F. P., Loperfido, M. C. & Zallone, A. Z. (1991). Osteoblast-osteoclast relationships in bone resorption: osteoblasts enhance osteoclast activity in a serum-free coculture system. Biochem. Biophys. Res. Co, nnsun, 179, 634-640.
Thomas, T., Barou, O., Vico, L., Alexandre, C. & Lafage‐Proust, M. H. (1999). Recurrence of vertebral fracture with cyclical etidronate therapy in osteoporosis: histomorphometry and X‐Ray microanalysis evaluation. Journal of Bone and Mineral Research, 14(2), 198-205.
Tondravi, M. M., McKercher, S. R., Anderson, K., Erdmann, J. M., Quiroz, M., Maki, R. & Teitelbaum, S. L. (1997). Osteopetrosis in mice lacking haematopoietic transcription factor PU. 1. Nature, 386, 81 - 84
Torricelli, P., Fini, M., Giavaresi, G., Giardino, R., Gnudi, S., Nicolini, A. & Carpi, A. (2002). L-arginine and L-lysine stimulation on cultured human osteoblasts. Biomedicine & pharmacotherapy, 56(10), 492-497.
Tortora G. J. (1999). Principles of Human Anatomy. Benjamin/Cummings Science Publishing, 8, 547-562.
Tripkovic, L., Lambert, H., Hart, K., Smith, C. P., Bucca, G., Penson, S., Chope, G., Hypponen, E., Berry, J., Vieth, R. & Lanham-New, S. (2012). Comparison of vitamin D2 and vitamin D3 supplementation in raising serum 25-hydroxyvitamin D status: a systematic review and meta-analysis. The American journal of clinical nutrition, 95(6), 1357-1364.
Tsai, K. S. (1997). Osteoporotic fracture rate, bone mineral density, and bone metabolism in Taiwan. Journal of the Formosan Medical Association= Taiwan yi zhi, 96(10), 802.
Tsukii, K., Shima, N., Mochizuki, S. I., Yamaguchi, K., Kinosaki, M., Yano, K., Shibata, O., Udagawa, N., Yasuda, H., Suda, T. & Higashio, K. (1998). Osteoclast differentiation factor mediates an essential signal for bone resorption induced by 1α, 25-dihydroxyvitamin D3 , prostaglandin E2 , or parathyroid hormone in the microenvironment of bone. Biochemical and biophysical research communications, 246(2), 337-341.
Wallimann, T., Tokarska-Schlattner, M. & Schlattner, U. (2011). The creatine kinase system and pleiotropic effects of creatine. Amino acids, 40(5), 1271-1296.
Wang, M., Yao, Y., Kuang, D. & Hampson, D. R. (2006). Activation of family C G-protein-coupled receptors by the tripeptide glutathione. Journal of Biological Chemistry, 281(13), 8864-8870.
Weinstein, R. S. & Manolagas, S. C. (2000). Apoptosis and osteoporosis. The American journal of medicine, 108(2), 153-164.
Weljie, A. M., Newton, J., Mercier, P., Carlson, E. & Slupsky, C. M. (2006). Targeted profiling: quantitative analysis of 1H NMR metabolomics data. Analytical Chemistry, 78(13), 4430-4442.
Wemer, C., Assum, T., Echtler, S., Meiser, B., Angermann, C. E., Gartner, F. & Stempfle, H. U. (1998). Effect of calcitriol on trabecular bone loss after cardiac transplantation. Journal of the American College of Cardiology, 31, 157.
WHO. (1994). Report of a World Health Organization Study Group: assessment of fracture risk and its application to screening for postmenopausal osteoporosis. WHO Technical Report Series 843.
Wilson, S., Solomon, S. E. & Thorp, B. H. (1998). Bisphosphonates: a potential role in the prevention of osteoporosis in laying hens. Research in veterinary science, 64(1), 37-40.
Wowern, N. V., Klausen, B. & Kollerup, G. (1994). Osteoporosis: a risk factor in periodontal disease. Journal of periodontology, 65(12), 1134-1138.
Yoneda, Y. U. K. I. O. & Hinoi, E. I. I. C. H. I. (2003). Functional expression of machineries for glutamate signaling in bone. Nihon yakurigaku zasshi. Folia pharmacologica Japonica,122, 14P.
You, Y. S., Lin, C. Y., Liang, H. J., Lee, S. H., Tsai, K. S., Chiou, J. M., Chen, Y. C., Tsao, C. K. & Chen, J. H. (2013). Association between metabolome and low bone mineral density in Taiwanese women determined by 1H NMR Spectroscopy. Journal of Bone and Mineral Research.
Zhao, Y., Zou, B., Shi, Z., Wu, Q. & Chen, G. Q. (2007). The effect of 3-hydroxybutyrate on the in vitro differentiation of murine osteoblast MC3T3-E1 and in vivo bone formation in ovariectomized rats. Biomaterials, 28(20), 3063-3073.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top