跳到主要內容

臺灣博碩士論文加值系統

(44.222.64.76) 您好!臺灣時間:2024/06/15 05:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:鄭浚鳴
研究生(外文):Jun-Ming Zheng
論文名稱:以染色體嵌入技術製備枯草桿菌 γ-PGA 生產株及其發酵生產
論文名稱(外文):Construction of γ-PGA-producing strain bychromosomal integration in Bacillus subtilis andoptimization of fermentative production
指導教授:葉娟美
口試委員:朱文深曾浩洋
口試日期:2014-07-18
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:126
中文關鍵詞:γ-PGA溴化十六烷基三甲銨(CTAB)發酵液定量分析染色體嵌入枯草桿菌Plackett-Burman 因子設計優化培養基
外文關鍵詞:γ-PGACTABfermentation brothquantitative analysischromosome integrationBacillus subtilisPlackett-Burman designoptimized medium
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
γ-PGA 是一種高分子的生物材料,已被運用於食品、醫藥、化妝品、飼料及廢水處理工業上,提高 γ-PGA 的生產有其必要性。
為了提升篩選 γ-PGA 高產轉形株及定量 γ-PGA 之便利性,本研究首先建立一個 γ-PGA 快速定量法,利用 γ-PGA 與溴化十六烷基三甲銨
(CTAB)溶液反應可形成不溶於水、懸浮膠狀混合物,依其濁度制定標準
曲線。標準曲線公式為 y = 0.0055x – 0.0349( x 和 y 表示混合物在 400nm波長下 γ-PGA 的濃度及濁度) ,具有良好的線性。應用比濁法測定 γ-PGA的含量具有快速、簡潔、重現性好等優點,可用於發酵液中 γ-PGA 濃度的檢測。
宿主 Bacillus subtilis WB800 其 γ-PGA 合成相關基因 pgsBCAE 是存在的,但此菌株卻非 γ-PGA 生產株。利用持續型及誘導型高效率的人工合成表現元件(SECS)導入宿主中並使其嵌於 pgsBCAE 基因的上游,使得 Bacillus subtilis WB800 轉形為 γ-PGA 生產株。轉形株中 Bacillus subtilis Dc8006 可穩定的生產高量 γ-PGA,且無須額外補充麩胺酸於培養基 medium A。
為了評估不同培養條件對生產 γ-PGA 的效果,進行 Plackett-Burman
因子設計實驗。檢查十二變量對 Bacillus subtilis Dc8006 其 γ-PGA 生產影響程度。基於統計分析得到預優化培養基,在優化培養基 medium PBD中發酵 γ-PGA 產量可達 35.2 克/升,高於原 medium A 培養基之 γ-PGA產量 1.5 倍。


Poly-γ-glutamic acid (γ-PGA) is a versatile high molecular biopolymer material, which has been applied in food, medical, cosmetic, animal feed,and wastewater industry. Enhanced production of γ-PGA is highly recommended.
In order to enhance the screening of high γ-PGA yielding strain and quantitation of γ-PGA. A rapid quantification of γ-PGA was established in the beginning of this study. CTAB binds specifically to γ-PGA and form a water-insoluble, highly dispersed micelle-like complex, resulting in an increase in turbidity. The turbidity-based calibration curve of γ-PGA was
established as y = 0.0055x – 0.0349 (x and y represent the concentration of γ-PGA and the mixtures turbidity at 400 nm) with a good linearity. The turbidimetric method has advantages of convenience , simplicity and good repeatability and can be used for γ-PGA concentration detecting in the fermentation broth.
The host Bacillus subtilis WB800, which possesses the γ-PGA synthesizing genes, pgsBCAE, on its chromosome cannot produce γ-PGA. The efficient constitutive or inducible synthetic expression control sequence (SECS) was introduced into the upstream region of the pgsBCAE genes, resulted in γ-PGA-producing B. subtilis transformants. The transformant strain B. subtilis Dc8006 stably produced high levels of γ-PGA in medium A without extra glutamate supplement.
To evaluate the effect of different culture parameters on production of γ-PGA, Plackett–Burman factorial design was preceded. Twelve varients were examined for their significance on γ-PGA production. Based on
statistical pre-optimized medium analysis, optimized medium PBD were subjected for fermentation, and achieved 35.2 g/l γ-PGA yield, which is 1.5 times than the original medium A.


中文摘要......................................................................................................................... i

Abstract ......................................................................................................................... ii
壹、前言........................................................................................................................ 1

一、Bacillus subtilis 之簡介..................................................................................... 1
二、Bacillus subtilis 相關運用................................................................................. 2
三、Bacillus subtilis 遺傳研究................................................................................. 3
四、Bacillus subtilis 表現系統之研究..................................................................... 4
(一) 質體的選擇.................................................................................................... 4
(二) 表現元件之選擇............................................................................................ 5
(三) 轉形方法之選擇............................................................................................ 6
(四) 菌株之選擇.................................................................................................... 6
五、聚胺基酸(Poly amino acids) ............................................................................. 7
六、聚麩胺酸(Poly-γ-glutamic acid; γ-PGA)介紹 .................................................. 8
(一) 聚麩胺酸(γ-PGA)合成原理.......................................................................... 8
(二) 聚麩胺酸(γ-PGA)生產菌株及生合成途徑.................................................. 9
(三) 聚麩胺酸(γ-PGA)合成及相關降解酶基因................................................ 10
(四) 聚麩胺酸(γ-PGA)合成酶複體(Multienzyme)............................................ 13
七、發酵微生物生產 γ-PGA ................................................................................. 14
(一) 培養基成分的影響...................................................................................... 15
(二) 曝氣和攪拌的影響...................................................................................... 16
(三) 提高細胞膜的通透性.................................................................................. 17
(四) 菌血紅素的應用研究.................................................................................. 17
八、Plackett–Burman 實驗設計............................................................................. 18
九、γ-PGA 定量 ..................................................................................................... 19
十、γ-PGA 商業運用及展望 ................................................................................. 20
貳、實驗緣起與目的.................................................................................................. 23

實驗策略...................................................................................................................... 24

參、材料與方法.......................................................................................................... 25

一、菌種與質體...................................................................................................... 25
(一) 菌種.............................................................................................................. 25
(二) 質體.............................................................................................................. 25
二、藥品與試劑...................................................................................................... 28
三、實驗中所使用引子.......................................................................................... 28
四、質體 DNA 之抽取 ......................................................................................... 28
(一) 大腸桿菌質體之抽取.................................................................................. 28
(二) 枯草桿菌質體之抽取.................................................................................. 29
五、染色體 DNA 之抽取 ..................................................................................... 29
六、DNA 分子相關的操作技術 ........................................................................... 30
(一) 聚合酶連鎖反應(Polymerase Chain Reaction, PCR)................................. 30
(二) DNA 分子電泳 ........................................................................................... 30
(三) DNA 分子剪切 ........................................................................................... 31
(四) DNA 分子之膠體回收 ................................................................................ 31
(五) PCR 產物之回收 ........................................................................................ 31
(六) DNA 分子黏合 ........................................................................................... 32
七、大腸桿菌之電轉形法...................................................................................... 32
八、枯草桿菌之轉形法.......................................................................................... 33
(一) 電轉形法...................................................................................................... 33
(二) 自然轉形法.................................................................................................. 34
九、嵌入質體之構築.............................................................................................. 35
(一) pORI-177-6AFP........................................................................................... 35
(二) pORI-177-7AFP........................................................................................... 35
(三) pORI-177-7lacOGFP ................................................................................... 35
(四) pORI-177-6lacOWSY-1.............................................................................. 35
(五) pPGA6......................................................................................................... 36
(六) pPGA7......................................................................................................... 36
(七) pPGA7o....................................................................................................... 36
(八) pPGA6o....................................................................................................... 37
(九) pBL1 誘導型系統 ...................................................................................... 37
(十) pDcPGA6 ..................................................................................................... 37
(十一) pDcPGA7 ................................................................................................. 38
十、Colony PCR 篩選轉形株 ............................................................................... 38
十一、重組質體的序列確認.................................................................................. 38
十二、γ-PGA 分離、分析及快速定量法 ............................................................. 39
(一) γ-PGA 分離、沉澱與純化 ......................................................................... 39
(二) SDS-PAGE 電泳分析.................................................................................. 39
(三) Agarose gel 電泳分析 ................................................................................. 40
(四) γ-PGA 快速定量法建立 ............................................................................. 40
十三、γ-PGA 生產轉形株篩選、馴化 ................................................................. 41
十四、染色體分析.................................................................................................. 41
(一) Single-crossover 分析.................................................................................. 41
(二) Double-crossover 分析 ................................................................................ 42
十五、Plackett-Burman 實驗設計 ......................................................................... 42
(一) 菌種.............................................................................................................. 42
(二) 菌種活化與前培.......................................................................................... 42
(三) 發酵環境...................................................................................................... 43
(四) 分析因子設計.............................................................................................. 43
(五) 資料分析...................................................................................................... 43
(六) 試驗結果評估.............................................................................................. 44

肆、結果與討論.......................................................................................................... 45

一、γ-PGA 快速定量法 ......................................................................................... 45
(一) 波長與 γ-PGA 標準液濃度範圍之確立 .................................................... 45
(二) CTAB 溶液濃度的選擇 .............................................................................. 45
(三) 反應時間的影響.......................................................................................... 46
(四) γ-PGA 快速定量法確立 ............................................................................. 46
二、嵌入型載體之構築.......................................................................................... 47
(一) 持續型嵌入載體之構築.............................................................................. 47
(二) 誘導型嵌入載體之構築.............................................................................. 48
三、染色體嵌入策略改造 B. subtilis WB800 生產 γ-PGA .................................. 48
(一) Single-crossover 嵌入持續型及誘導型表現元件...................................... 48
1. 挑選與馴化.................................................................................................. 49
2. 生產能力確認.............................................................................................. 49
3. 誘導型表現系統.......................................................................................... 50
4. 培養基改造.................................................................................................. 51
5. 染色體分析及嵌入機制.............................................................................. 52
6. Single-crossover 嵌入探討.......................................................................... 53
(二) Double-crossover 嵌入持續型表現元件 .................................................... 53
1. 挑選與馴化.................................................................................................. 54
2. 生產能力確認.............................................................................................. 54
3. 染色體分析及嵌入機制.............................................................................. 55
4. Double-crossover 嵌入探討 ........................................................................ 55
四、Plackett–Burman design(PBD) ........................................................................ 55
(一) 轉形株的選擇.............................................................................................. 56
(二) 顯著因子篩選.............................................................................................. 56
(三) 因子效應評估.............................................................................................. 58
(四) B. subtilis Dc8006 生產 γ-PGA................................................................... 59
五、未來展望.......................................................................................................... 60

伍、結論...................................................................................................................... 61

陸、參考文獻............................................................................................................ 112

柒、附錄.................................................................................................................... 120


蘇芳仙,2001。最佳 σA 啟動子及多重啟動子之構築及其於枯草桿菌中之表現。國立中興大學品科學系碩士論文。

王志鵬,2007。開發枯草桿菌持續型及誘導型保線系統已應用於自體、同源及異源蛋白質之表現暨建立芽孢桿菌益生菌表現系統。

Abe, K., Ito, Y., Ohmachi, T., Asada, Y. 1997. Purification and properties of two isozymes of gamma -glutamyltranspeptidase from Bacillus subtilis TAM-4.
Bioscience Biotechnology and Biochemistry, 61(10), 1621-1625.

Ashiuchi, M. 2011. Analytical approaches to poly-gamma-glutamate: quantification, molecular size determination, and stereochemistry investigation. J Chromatogr B Analyt Technol Biomed Life Sci, 879(29), 3096-101.

Ashiuchi, M., Misono, H. 2002. Biochemistry and molecular genetics of poly-gamma-glutamate synthesis. Applied Microbiology and Biotechnology, 59(1), 9-14.

Ashiuchi, M., Misono, H. 2005. Poly-γ-glutamic acid. Poly-γ-glutamic acid. In: Steinbuchel, A., Marchessault, R.H. (Eds.), Biopolymers for medical and pharmaceutical applications, Vol. 1. Wiley–VCH, Weinheim, pp, 619-634.

Ashiuchi, M., Nawa, C., Kamei, T., Song, J.J., Hong, S.P., Sung, M.H., Soda, K., Misono, H. 2001a. Physiological and biochemical characteristics of poly gamma-glutamate synthetase complex of Bacillus subtilis. Eur J Biochem,
268(20), 5321-8.

Ashiuchi, M., Nawa, C., Kamei, T., Song, J.J., Hong, S.P., Sung, M.H., Soda, K., Yagi, T., Misono, H. 2001b. Physiological and biochemical characteristics of poly
gamma-glutamate synthetase complex of Bacillus subtilis. European Journal of Biochemistry, 268(20), 5321-5328.

Ashiuchi, M., Shimanouchi, K., Nakamura, H., Kamei, T., Soda, K., Park, C., Sung, M.H., Misono, H. 2004. Enzymatic synthesis of high-molecular-mass poly-gamma-glutamate and regulation of its stereochemistry. Applied and Environmental Microbiology, 70(7), 4249-4255.

Ashiuchi, M., Soda, K., Misono, H. 1999. A poly-gamma-glutamate synthetic system of Bacillus subtilis IFO 3336: gene cloning and biochemical analysis of poly-gamma-glutamate produced by Escherichia coli clone cells. Biochem
Biophys Res Commun, 263(1), 6-12.

Bajaj, I., Singhal, R. 2011. Poly (glutamic acid) - An emerging biopolymer of commercial interest. Bioresource Technology, 102(10), 5551-5561.

Bajaj, I.B., Lele, S.S., Singhal, R.S. 2009. A statistical approach to optimization of fermentative production of poly(gamma-glutamic acid) from Bacillus licheniformis NCIM 2324. Bioresource Technology, 100(2), 826-832.

Bajaj, I.B., Singhal, R.S. 2009. Enhanced Production of Poly (gamma-glutamic acid) from Bacillus licheniformis NCIM 2324 by Using Metabolic Precursors. Applied Biochemistry and Biotechnology, 159(1), 133-141.

Ben-Zur, N., Goldman, D.M. 2007. γ-Poly glutamic acid: a novel peptide for skincare. Cosmetics Toiletries Mag, 122(4), 64-72.

Buescher, J.M., Margaritis, A. 2007. Microbial biosynthesis of polyglutamic acid biopolymer and applications in the biopharmaceutical, biomedical and food industries. Critical Reviews in Biotechnology, 27(1), 1-19.

Candela, T., Fouet, A. 2006. Poly-gamma-glutamate in bacteria. Molecular Microbiology, 60(5), 1091-1098.

Candela, T., Mock, M., Fouet, A. 2005. CapE, a 47-amino-acid peptide, is necessary for Bacillus anthracis polyglutamate capsule synthesis. Journal of Bacteriology, 187(22), 7765-7772.

Candela, T., Moya, M., Haustant, M., Fouet, A. 2009. Fusobacterium nucleatum, the first Gram-negative bacterium demonstrated to produce polyglutamate. Can J Microbiol, 55(5), 627-32.

Cromwick, A.M., Birrer, G.A., Gross, R.A. 1996. Effects of pH and aeration on gamma-poly(glutamic acid) formation by Bacillus licheniformis in controlled batch fermenter cultures. Biotechnology and Bioengineering, 50(2), 222-227.

Du, G.C., Yang, G., Qu, Y.B., Chen, J., Lun, S.Y. 2005. Effects of glycerol on the production of poly(gamma-glutamic acid) by Bacillus licheniformis. Process Biochemistry, 40(6), 2143-2147.

Dubnau, D. 1991. GENETIC COMPETENCE IN BACILLUS-SUBTILIS.
Microbiological Reviews, 55(3), 395-424.

Dubnau, D., Davidoff.R. 1971. FATE OF TRANSFORMING DNA FOLLOWING UPTAKE BY COMPETENT BACILLUS-SUBTILIS. Journal of Molecular Biology, 56(2), 209-&.

Earl, A.M., Losick, R., Kolter, R. 2008. Ecology and genomics of Bacillus subtilis. Trends in Microbiology, 16(6), 269-275.

Eveland, S.S., Pompliano, D.L., Anderson, M.S. 1997. Conditionally lethal Escherichia coli murein mutants contain point defects that map to regions conserved among murein and folyl poly-gamma-glutamate ligases: Identification of a ligase superfamily. Biochemistry, 36(20), 6223-6229.

Goto, A., Kunioka, M. 1992. BIOSYNTHESIS AND HYDROLYSIS OF
POLY(GAMMA-GLUTAMIC ACID) FROM BACILLUS-SUBTILIS IFO3335.
Bioscience Biotechnology and Biochemistry, 56(7), 1031-1035.

Gryczan, T.J., Contente, S., Dubnau, D. 1978. CHARACTERIZATION OF STAPHYLOCOCCUS-AUREUS PLASMIDS INTRODUCED BY TRANSFORMATION INTO BACILLUS-SUBTILIS. Journal of Bacteriology, 134(1), 318-329.

Hamano, Y. 2010a. Enzymatic Degradation of Poly-Gamma-Glutamic Acid. in: Amino-Acid Homopolymers Occurring in Nature, Springer, pp. 95-117.

Hamano, Y. 2010b. Occurrence and biosynthetic mechanism of poly-glutamic acid. in: Amino-Acid Homopolymers Occurring in Nature, Springer, pp. 77-93.

Hara, T., Nagatomo, S., Ogata, S., Ueda, S. 1992. The DNA sequence of gamma-glutamyltranspeptidase gene of Bacillus subtilis (natto) plasmid pUH1. Appl Microbiol Biotechnol, 37(2), 211-5.

Harwood, C.R. 1989. Bacillus. Springer.

Harwood, C.R. 1992. BACILLUS-SUBTILIS AND ITS RELATIVES -
MOLECULAR BIOLOGICAL AND INDUSTRIAL WORKHORSES. Trends
in Biotechnology, 10(7), 247-256.

Harwood, C.R., Cutting, S.M. 1991. Molecular Biological Methods for Bacillus. Wiley.

Hezayen, F.F., Rehm, B.H.A., Tindall, B.J., Steinbuchel, A. 2001. Transfer of Natrialba asiatica B1T to Natrialba taiwanensis sp nov and description of
Natrialba aegyptiaca sp nov., a novel extremely halophilic, aerobic, non-pigmented member of the Archaea from Egypt that produces extracellular poly(glutamic acid). International Journal of Systematic and Evolutionary Microbiology, 51, 1133-1142.

Hoffmann, T., Troup, B., Szabo, A., Hungerer, C., Jahn, D. 1995. THE ANAEROBIC LIFE OF BACILLUS-SUBTILIS - CLONING OF THE GENES ENCODING THE RESPIRATORY NITRATE REDUCTASE SYSTEM. Fems Microbiology Letters, 131(2), 219-225.

Huang, B., Qin, P., Xu, Z., Zhu, R., Meng, Y. 2011. Effects of CaCl2 on viscosity of culture broth, and on activities of enzymes around the 2-oxoglutarate branch, in Bacillus subtilis CGMCC 2108 producing poly-(gamma-glutamic acid).
Bioresour Technol, 102(3), 3595-8.

Jacobsen, B.J., Zidack, N.K., Larson, B.J. 2004. The role of Bacillus-based biological control agents in integrated pest management systems: Plant diseases. Phytopathology, 94(11), 1272-1275.

Kambourova, M., Tangney, M., Priest, F.G. 2001. Regulation of polyglutamic acid synthesis by glutamate in Bacillus licheniformis and Bacillus subtilis. Applied and Environmental Microbiology, 67(2), 1004-1007.

Kamei, T., Yamashiro, D., Horiuchi, T., Minouchi, Y., Ashiuchi, M. 2010. Identification and Biochemical Characterization of Membranous Short-Chain Polyglutamate from Bacillus subtilis. Chemistry & Biodiversity, 7(6),
1563-1572.

Kimura, K., Itoh, Y. 2003. Characterization of poly-gamma-glutamate hydrolase encoded by a bacteriophage genome: Possible role in phage infection of Bacillus subtilis encapsulated with poly-gamma-glutamate. Applied and
Environmental Microbiology, 69(5), 2491-2497.

Kimura, K., Tran, L.S.P., Do, T.H., Itoh, Y. 2009. Expression of the pgsB Encoding the Poly-gamma-DL-glutamate Synthetase of Bacillus subtilis (natto). Bioscience Biotechnology and Biochemistry, 73(5), 1149-1155.

Kimura, K., Tran, L.S.P., Uchida, I., Itoh, Y. 2004. Characterization of Bacillus subtilis gamma -glutamyltransferase and its involvement in the degradation of capsule poly-gamma-glutamate. Microbiology-Sgm, 150, 4115-4123.

Kunioka, M. 1997. Biosynthesis and chemical reactions of poly(amino acid)s from microorganisms. Applied Microbiology and Biotechnology, 47(5), 469-475.

Kunst, F., Ogasawara, N., Moszer, I., Albertini, A.M., Alloni, G., Azevedo, V., Bertero, M.G., Bessieres, P., Bolotin, A., Borchert, S., Borriss, R., Boursier, L., Brans,
A., Braun, M., Brignell, S.C., Bron, S., Brouillet, S., Bruschi, C.V., Caldwell, B., Capuano, V., Carter, N.M., Choi, S.K., Codani, J.J., Connerton, I.F., Cummings, N.J., Daniel, R.A., Denizot, F., Devine, K.M., Dusterhoft, A.,
Ehrlich, S.D., Emmerson, P.T., Entian, K.D., Errington, J., Fabret, C., Ferrari, E., Foulger, D., Fritz, C., Fujita, M., Fujita, Y., Fuma, S., Galizzi, A., Galleron, N., Ghim, S.Y., Glaser, P., Goffeau, A., Golightly, E.J., Grandi, G., Guiseppi, G., Guy, B.J., Haga, K., Haiech, J., Harwood, C.R., Henaut, A., Hilbert, H., Holsappel, S., Hosono, S., Hullo, M.F., Itaya, M., Jones, L., Joris, B., Karamata, D., Kasahara, Y., KlaerrBlanchard, M., Klein, C., Kobayashi, Y.,
Koetter, P., Koningstein, G., Krogh, S., Kumano, M., Kurita, K., Lapidus, A., Lardinois, S., Lauber, J., Lazarevic, V., Lee, S.M., Levine, A., Liu, H., Masuda, S., Mauel, C., Medigue, C., Medina, N., Mellado, R.P., Mizuno, M., Moestl,
D., Nakai, S., Noback, M., Noone, D., Oreilly, M., Ogawa, K., Ogiwara, A., Oudega, B., Park, S.H., Parro, V., Pohl, T.M., Portetelle, D., Porwollik, S., Prescott, A.M., Presecan, E., Pujic, P., Purnelle, B., et al. 1997. The complete genome sequence of the Gram-positive bacterium Bacillus subtilis. Nature, 390(6657), 249-256.

Leonard, C.G., Housewright, R.D., Thorne, C.B. 1958. Effects of some metallic ions on glutamyl polypeptide synthesis by Bacillus subtilis. J Bacteriol, 76(5), 499-503.

Makino, S., Uchida, I., Terakado, N., Sasakawa, C., Yoshikawa, M. 1989. Molecular characterization and protein analysis of the cap region, which is essential for
encapsulation in Bacillus anthracis. J Bacteriol, 171(2), 722-30.

Makrides, S.C. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiological Reviews, 60(3), 512-&.

Mitsui, N., Murasawa, H., Sekiguchi, J. 2011. Disruption of the cell wall lytic enzyme CwlO affects the amount and molecular size of poly-gamma-glutamic acid produced by Bacillus subtilis (natto). Journal of General and Applied
Microbiology, 57(1), 35-43.

Nagai, T., Koguchi, K., Itoh, Y. 1997. Chemical analysis of poly-gamma-glutamic acid produced by plasmid-free Bacillus subtilis (natto): Evidence that plasmids are not involved in poly-gamma-glutamic acid production. J Gen Appl Microbiol, 43(3), 139-143.

Palmen, R., Hellingwerf, K.J. 1997. Uptake and processing of DNA by Acinetobacter calcoaceticus--a review. Gene, 192(1), 179-90.

PLACKETT, R.L., BURMAN, J.P. 1946. The design of optimum multifactorial experiments.

Rodriguez, J.M., Martinez, M.I., Horn, N., Dodd, H.M. 2003. Heterologous production of bacteriocins by lactic acid bacteria. International Journal of Food Microbiology, 80(2), 101-116.

Sakai, K., Sonoda, C., Murase, K. 2000. Bitterness relieving agent.

Scoffone, V., Dondi, D., Biino, G., Borghese, G., Pasini, D., Galizzi, A., Calvio, C. 2013. Knockout of pgdS and ggt genes improves -PGA yield in B. subtilis. Biotechnology and Bioengineering, 110(7), 2006-2012.

Setlow, P. 2006. Spores of Bacillus subtilis: their resistance to and killing by radiation, heat and chemicals. Journal of Applied Microbiology, 101(3), 514-525.

Shih, I.L., Van, Y.T. 2001. The production of poly-(gamma-glutamic acid) from microorganisms and its various applications. Bioresource Technology, 79(3), 207-225.

Shih, I.L., Van, Y.T., Sau, Y.Y. 2003. Antifreeze activities of poly(gamma-glutamic acid) produced by Bacillus licheniformis. Biotechnology Letters, 25(20), 1709-1712.

Simon, R.D., Weathers, P. 1976. Determination of the structure of the novel polypeptide containing aspartic acid and arginine which is found in Cyanobacteria. Biochim Biophys Acta, 420(1), 165-76.

Soliman, N.A., Berekaa, M.M., Abdel-Fattah, Y.R. 2005. Polyglutamic acid (PGA) production by Bacillus sp SAB-26: application of Plackett-Burman experimental design to evaluate culture requirements. Applied Microbiology
and Biotechnology, 69(3), 259-267.

Stowe, R.A., Mayer, R.P. 1966. EFFICIENT SCREENING OF PROCESS VARIABLES. Industrial & Engineering Chemistry, 58(2), 36-40.

Su, Y., Li, X., Liu, Q., Hou, Z., Zhu, X., Guo, X., Ling, P. 2010. Improved poly-gamma-glutamic acid production by chromosomal integration of the Vitreoscilla hemoglobin gene (vgb) in Bacillus subtilis. Bioresour Technol, 101(12), 4733-6.

Sung, M.H., Park, C., Kim, C.J., Poo, H., Soda, K., Ashiuchi, M. 2005. Natural and edible biopolymer poly-gamma-glutamic acid: Synthesis, production, and applications. Chemical Record, 5(6), 352-366.

Suzuki, T., Tahara, Y. 2003. Characterization of the Bacillus subtilis ywtD gene, whose product is involved in gamma-polyglutamic acid degradation. Journal of Bacteriology, 185(7), 2379-2382.

Taniguchi, M., Kato, K., Shimauchi, A., Ping, X., Fujita, K.I., Tanaka, T., Tarui, Y., Hirasawa, E. 2005. Physicochemical properties of cross-linked poly-gamma-glutamic acid and its flocculating activity against kaolin
suspension. Journal of Bioscience and Bioengineering, 99(2), 130-135.

Tanimoto, H., Fox, T., Eagles, J., Satoh, H., Nozawa, H., Okiyama, A., Morinaga, Y., Fairweather-Tait, S.J. 2007. Acute effect of poly-gamma-glutamic acid on calcium absorption in post-menopausal women. Journal of the American
College of Nutrition, 26(6), 645-649.

Tomsho, J.W., Moran, R.G., Coward, J.K. 2008. Concentration-dependent processivity of multiple glutamate ligations catalyzed by folylpoly-gamma-glutamate synthetase. Biochemistry, 47(34), 9040-50.

Urushibata, Y., Tokuyama, S., Tahara, Y. 2002a. Characterization of the Bacillus subtilis ywsC gene, involved in gamma-polyglutamic acid production. Journal
of Bacteriology, 184(2), 337-343.

Urushibata, Y., Tokuyama, S., Tahara, Y. 2002b. Difference in transcription levels of cap genes for gamma-polyglutamic acid production between Bacillus subtilis IFO16449 and Marburg 168. Journal of Bioscience and Bioengineering, 93(2),252-254.

Wang, Q.J., Chen, S.W., Zhang, J.B., Sun, M., Liu, Z.D., Yu, Z.I. 2008. Co-producing lipopeptides and poly-gamma-glutamic acid by solid-state fermentation of Bacillus subtilis using soybean and sweet potato residues and its bliocontrol
and fertilizer synergistic effects. Bioresource Technology, 99(8), 3318-3323.

Westers, L., Westers, H., Quax, W.J. 2004. Bacillus subtilis as cell factory for pharmaceutical proteins: a biotechnological approach to optimize the host organism. Biochimica Et Biophysica Acta-Molecular Cell Research, 1694(1-3), 299-310.

Wu, Q., Xu, H., Liang, J.F., Yao, J. 2010. Contribution of Glycerol on Production of Poly(gamma-Glutamic Acid) in Bacillus subtilis NX-2. Applied Biochemistry
and Biotechnology, 160(2), 386-392.

Wu, Q., Xu, H., Shi, N.N., Yao, J., Li, S., Ouyang, P.K. 2008. Improvement of poly(gamma-glutamic acid) biosynthesis and redistribution of metabolic flux with the presence of different additives in Bacillus subtilis CGMCC 0833.
Applied Microbiology and Biotechnology, 79(4), 527-535.

Wu, S.C., Wong, S.L. 2002. Engineering of a Bacillus subtilis strain with adjustable levels of intracellular biotin for secretory production of functional streptavidin.
Appl Environ Microbiol, 68(3), 1102-8.

Yamanaka, K., Maruyama, C., Takagi, H., Hamano, Y. 2008. Epsilon-poly-L-lysine dispersity is controlled by a highly unusual nonribosomal peptide synthetase. Nat Chem Biol, 4(12), 766-72.

Yamashiro, D., Yoshioka, M., Ashiuchi, M. 2011a. Bacillus subtilis pgsE (Formerly ywtC) Stimulates Poly-gamma-Glutamate Production in the Presence of Zinc. Biotechnology and Bioengineering, 108(1), 226-230.

Yao, J., Jing, J., Xu, H., Liang, J.F., Wu, Q., Feng, X.H., Ouyang, P.K. 2009. Investigation on enzymatic degradation of gamma-polyglutamic acid from Bacillus subtilis NX-2. Journal of Molecular Catalysis B-Enzymatic, 56(2-3), 158-164.

Yao, J., Xu, H., Shi, N.N., Cao, X., Feng, X.H., Li, S., Ouyang, P.K. 2010. Analysis of Carbon Metabolism and Improvement of gamma-Polyglutamic Acid Production from Bacillus subtilis NX-2. Applied Biochemistry and
Biotechnology, 160(8), 2332-2341.

Yong, X.Y., Raza, W., Yu, G.H., Ran, W., Shen, Q.R., Yang, X.M. 2011. Optimization of the production of poly-gamma-glutamic acid by Bacillus amyloliquefaciens C1 in solid-state fermentation using dairy manure compost and monosodium
glutamate production residues as basic substrates. Bioresource Technology, 102(16), 7548-7554.

Yoon, S.H., Hwan Do, J., Lee, S.Y., Nam Chang, H. 2000. Production of poly-gamma-glutamic acid by fed-batch culture of Bacillus licheniformis. Biotechnology Letters, 22(7), 585-588.

Zakataeva, N.P., Nikitina, O.V., Gronskiy, S.V., Romanenkov, D.V., Livshits, V.A. 2010. A simple method to introduce marker-free genetic modifications into the chromosome of naturally nontransformable Bacillus amyloliquefaciens strains. Appl Microbiol Biotechnol, 85(4), 1201-9.

Zhang, D., Feng, X.H., Zhou, Z., Zhang, Y., Xu, H. 2012a. Economical production of poly(gamma-glutamic acid) using untreated cane molasses and monosodium glutamate waste liquor by Bacillus subtilis NX-2. Bioresource Technology,
114, 583-588.

Zhang, H.L., Zhu, J.Z., Zhu, X.C., Cai, J., Zhang, A.Y., Hong, Y.Z., Huang, J., Huang, L., Xu, Z.N. 2012b. High-level exogenous glutamic acid-independent production of poly-(gamma-glutamic acid) with organic acid addition in a new
isolated Bacillus subtilis C10. Bioresource Technology, 116, 241-246.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top