跳到主要內容

臺灣博碩士論文加值系統

(100.28.2.72) 您好!臺灣時間:2024/06/16 08:08
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳昌育
研究生(外文):Chang-Yu Wu
論文名稱:利用乳酸菌與酵母菌共生發酵製備植物性發酵飲品之研究
論文名稱(外文):Study on symbiotic fermentation characteristics of plant-based fermented beverages by lactic acid bacteria and yeasts
指導教授:陳錦樹陳錦樹引用關係
指導教授(外文):Chin-Shun Chen
口試委員:方繼柯文慶
口試委員(外文):Tony J. FangWen-Ching Ko
口試日期:2014-07-10
學位類別:碩士
校院名稱:國立中興大學
系所名稱:食品暨應用生物科技學系所
學門:農業科學學門
學類:食品科學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:英文
論文頁數:188
中文關鍵詞:共生發酵乳酸菌耐滲透壓酵母菌抗氧化活性植物性發 酵飲品感官品評
外文關鍵詞:Symbiotic fermentationlactic acid bacteriaosmotolerant yeastsantioxidative activityplant-based fermented beveragesensory evaluation
相關次數:
  • 被引用被引用:0
  • 點閱點閱:1320
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
已有眾多的研究指出蔬果富含維生素、礦物質、膳食纖維、植物化 合物及抗氧化物質。每天適當地攝取可有效預防高血壓及心臟病等慢性 疾病並降低中風的風險。部分乳酸菌及酵母菌常出現在發酵食品中,其 已被認定是安全且可作為益生菌來促進人體健康。發酵為天然且有價值 的生物技術,可用來改善加工過程中食材的種種特性。 本研究論文之目的在將不同的乳酸菌及酵母菌接種於多種新鮮切 片蔬果上,並加入飲用水及糖混合為基質進行共生發酵來製備植物性發 酵飲品,探討其微生物菌相、醣類和有機酸之組成變化,以及抗氧化、 色澤及感官等特性。 結 果 顯 示 , Lactobacillus plantarum BCRC10069 、 Leuconostoc mesenteroides BCRC12580 及 Schizosaccharomyces pombe BCRC22029 之最適培養條件為糖度 15 oBrix。發酵 1 天後總嗜溫菌及乳酸菌之菌數 可達最高(約 8.5~9.2 log CFU / ml);酵母菌數則在 4~7 天後達最高。可 溶性固形物含量、pH 值、還原糖、葡萄糖、果糖及蔗糖含量會隨時間 下降;然而大部分的有機酸及酒精含量則隨時間而增加。另外,在發酵 液中只量測到少量的蛋白酶活性。 在多種抗氧化活性試驗方面,結果顯示在發酵後抗氧化活性都會上 升。色澤指數在發酵 1 天後最佳;蛋白質及甜菜色素含量也在發酵 1 天 後最高,而後隨著時間下降。根據感官品評的結果發現此類產品在色澤 及香氣上表現較佳。而藉由反應曲面法所獲得的最適配方為添加 4.2 倍 的飲用水稀釋及 10%的砂糖,不過由於只有簡單調整糖度,其喜好性仍 較差於其他市售產品。本研究利用乳酸菌及酵母菌共生發酵所製備之植物性發酵飲品其
擁有良好的營養、抗氧化、色澤及香氣特性。此外,飲用此類產品可藉
益生菌、抗氧化物質、植物化合物及增加蔬果攝取量等方式來達到益生
之目的。


So far, many studies show that fruits and vegetables are rich in vitamins, minerals, dietary fibers, phytochemicals and natural antioxidants. Adequate intake daily can prevent chronical diseases such as hypertension, heart diseases and reduce the risk of stroke. Some lactic acid bacteria and yeasts common in fermented foods have been recognized as safe, and exert several health promoting activities as probiotics. Fermentation has also been regarded as a natural and valuable biotechnology for improving various properties of food components during processing. This study aimed at manufacturing plant-based fermented beverages via symbiotic fermentation by inoculating different strains of lactic acid bacteria and yeasts on fresh-sliced fruits and vegetables, and investigating its microbiota, compositional changes of sugars and organic acids profile, antioxidant, color and sensory properties. According to the results, Lactobacillus plantarum BCRC10069, Leuconostoc mesenteroides BCRC12580 and Schizosaccharomyces pombe BCRC22029 were found suitable to grow under 15 oBrix. After 1 day of fermentation, highest plate counts of total mesophilic bacteria and lactic acid bacteria (8.5~9.2 log CFU / ml) could be obtained. And yeasts can reach the highest after 4~7 days. Total soluble solids, pH-values, reducing sugars, glucose, fructose and sucrose contents were found decreased with time, while most organic acids and ethanol contents increased during fermentation. However, only low level of protease activity could be measured in the beverages. For antioxidant activity assays, the data showed that they became higher after fermentation. Color indexes were preferable, protein and betalain contents achieved highest after 1 day of fermentation then decreased with time. According to the results of sensory analyses, these products had better attributes on color and aroma characteristics. And the best formula was 4.2 times dilution with water and adding 10% of granulated sugar which predicted from response surface methodology. However, its acceptability was still lower than other commercial products. Plant-based fermented beverages that manufactured via symbiotic fermentation by lactic acid bacteria and yeasts in this study were able to guarantee nutritional, antioxidant, color and aroma features. In addition, after drinking, they may exert several health promoting activities via probiotics, antioxidant, phytochemicals and increase the daily intake of fruits and vegetables.

摘要 .................i
Abstract .................iii
Chapter 1
Chapter 2
Introduction .................1
Literature Review .................2
2.1 Vegetables and fruits .................2
2.1.1 Nutrition values and physiological activities of vegetables and fruits .................2
2.1.2 Processing of vegetable and fruit juices and their advantages .................4
2.2 Microorganisms .................4
2.2.1 Lactic acid bacteria (LAB) .................4
2.2.2 Yeast.................23
2.3 Fermentation .................36
2.3.1 Lactic acid fermentation .................36
2.3.2 Alcohol fermentation .................38
2.3.1 Symbiotic fermentation .................40
2.4 Fermented foods .................40
2.4.1 Fermented vegetables and fruits .................40
2.5 Enzymes .................48
2.5.1 Digestive enzymes .................48
2.5.2 Metabolic enzymes .................48
2.5.3 Food enzymes .................49
2.5.4 The food enzyme concept .................49
Chapter 3 Objectives and Experimental Design............50
Chapter 4 Materials and methods.................52
4.1 Materials .................52
4.1.1 Raw materials .................52
4.1.2 Microorganisms .................52
4.1.3 Culture media .................53
4.1.4 Chemicals .................57
4.1.5 Equipment.................58
4.1.6 Software .................59
4.2 Experimental methods .................60
4.2.1 Preparation of stock culture and cell activation .........60
4.2.2 Growth experiments with different sucrose concentration ........61
4.2.3 Manufacture of plant-based enzyme beverages .......61
4.2.2 Microbiological analyses .................62
4.3 Compositional analyses of carbohydrates .................62
4.3.1 Determination of soluble solids contents ..........62
4.3.2 Determination of reducing sugar contents ..........62
4.3.3 Compositional analyses of monosaccharides and disaccharides .................67
4.4 Compositional analyses of acids.................67
4.4.1 pH determination .................67
4.4.2 Compositional analyses of organic acids ...........68
4.5 Compositional analyses of protein and enzyme activity assays .................68
4.5.1 Determination of protein contents .................68
4.5.2 Determination of protease activity .................69
4.6 Antioxidant activity assays .................70
4.6.1 DPPH free radical scavenging ability.................70
4.6.2 Reducing power assay .................70
4.6.3 Trolox equivalent antioxidant capacity (TEAC) .................70
4.6.4 Total phenolic content (TPC assay) ..............71
4.6.5 Total flavonoid content .................71
4.7 Color measurements .................72
4.7.1 Wavelegth scan .................72
4.7.2 Color Intensity .................72
4.7.3 Total color density (TCD) .................72
4.7.4 Browning index (BI.................73
4.8 Other measurements .................73
4.8.1 Determination of ethanol contents.................73
4.8.2 Determination of betalain contents .................73
4.8.3 Response surface methodology .................74
4.9 Sensory analyses .................75
4.9.1 Consumer test .................75
4.9.2 Just-about-right scale .................76
4.9.3 Ranking preference .................77
4.10 Statistical analyses .................77
Chapter 5
Results and discussion .................78
5.1 Growth experiments with different sucrose concentration ..............78
5.2 Appearance changes during fermentation.................85
5.3 The results of microbiological analyses .............85
5.4 Compositional analyses of carbohydrates .............99
5.4.1 Determination of soluble solids contents ..........99
5.4.2 Determination of reducing sugar contents .........101
5.4.3 Compositional analyses of monosaccharides and disaccharides .........103
5.5 Compositional analyses of acids.................108
5.5.1 pH determination .................108
5.5.2 Compositional analyses of organic acids .........111
5.6 Compositional analyses of protein and enzyme activity assays .................125
5.6.1 Determination of protein contents .................125
5.6.2 Determination of protease activity ..............125
5.7 Antioxidant activity assays .................128
5.7.1 DPPH free radical scavenging ability.............128
5.7.2 Reducing power assay .................130
5.7.3 Trolox equivalent antioxidant capacity(TEAC)......130
5.7.4 Total phenolic content (TPC assay) .................133
5.7.5 Total flavonoid content .................133
5.8 Color measurements .................136
5.8.1 Wavelegth scan .................136
5.8.2 Color Intensity .................136
5.8.3 Total color density (TCD) .................136
5.8.4 Browning index (BI.................146
5.9 Other measurements .................146
5.9.1 Determination of ethanol contents.................146
5.9.2 Determination of betalain contents ..............152
5.10 Sensory analyses .................155
5.10.1 First consumer test .................155
5.10.2 Second consumer test .................159
5.10.3 Third consumer test .................163
5.10.4 Just-about-right scale .................167
5.10.5 Ranking preference .................167
Chapter 6 Conclusion .................172
Chapter 7 Future prospects .................174
Chapter 8 Reference .................175


Anonymous. (1927). Symbiotic Fermentation. The British Medical Journal, 2(3495), 1236-1237. //Anonymous. (2003). Dichloran rose bengal chloramphenicol (DRBC) agar. Progress in Industrial Microbiology, 37, 456-458. Elsevier //Ardhana, M. (2003). The microbial ecology of cocoa bean fermentations in Indonesia. International Journal of Food Microbiology, 86(1-2), 87-99. //Baruzzi, F., Morea, M., Matarante, A., & Cocconcelli, P. S. (2000). Changes in the Lactobacillus community during Ricotta forte cheese natural fermentation. Journal of Applied Microbiology, 89(5), 807-814. //Bihan, H., Mejean, C., Castetbon, K., Faure, H., Ducros, V., Sedeaud, A., & Hercberg, S. (2012). Impact of fruit and vegetable vouchers and dietary advice on fruit and vegetable intake in a low-income population. European Journal of Clinical Nutrition, 66(3), 369-375. //Botstein, D., & Fink, G. R. (2011). Yeast: an experimental organism for 21st Century biology. Genetics, 189(3), 695-704. //Bozoglu, T. F., & Ray, B. (1996). Lactic Acid Bacteria: Current Advances in Metabolism, Genetics and Applications. Springer. //Brat, D., Boles, E., & Wiedemann, B. (2009). Functional expression of a bacterial xylose isomerase in Saccharomyces cerevisiae. Applied Environmental Microbiology, 75(8), 2304-2311. //Cabib, E., Roh, D. H., Schmidt, M., Crotti, L. B., & Varma, A. (2001). The yeast cell wall and septum as paradigms of cell growth and morphogenesis. Journal of Biological Chemistry, 276(23), 19679-19682.
//Carlsen, M. H., Halvorsen, B. L., Holte, K., Bohn, S. K., Dragland, S., Sampson, L., & Blomhoff, R. (2010). The total antioxidant content of more than 3100 foods, beverages, spices, herbs and supplements used worldwide. Nutrition Journal, 9(1), 3-14. //Chen, Y. S., Yanagida, F., & Hsu, J. S. (2006). Isolation and characterization of lactic acid bacteria from dochi (fermented black beans), a traditional fermented food in Taiwan. Letters in Applied Microbiology, 43(2), 229-235. //Cho, J., Lee, D., Yang, C., Jeon, J., Kim, J., & Han, H. (2006). Microbial population dynamics of kimchi, a fermented cabbage product. FEMS Microbiology Letter, 257(2), 262-267. //Cho, K. M., Math, R. K., Islam, S. M., Lim, W. J., Hong, S. Y., Kim, J. M., & Yun, H. D. (2009). Novel multiplex PCR for the detection of lactic acid bacteria during kimchi fermentation. Molecular and Cellular Probes, 23(2), 90-94. //Cocolin, L., Manzano, M., Cantoni, C., & Comi, G. (2000). Development of a rapid method for the identification of Lactobacillus spp. isolated from naturally fermented Italian sausages using a polymerase chain reaction–temperature gradient gel electrophoresis. Letters in Applied Microbiology, 30(2), 126-129. //Corzo, C. A., Waliszewski, K. N., & Welti-Chanes, J. (2012). Pineapple fruit bromelain affinity to different protein substrates. Food Chemistry, 133(3), 631-635. //Dakal, T. C., Solieri, L., & Giudici, P. (2014). Adaptive response and tolerance to sugar and salt stress in the food yeast Zygosaccharomyces rouxii. International Journal of Food Microbiology, 185(18), 140-157. //Daniel, C., Roussel, Y., Kleerebezem, M., & Pot, B. (2011). Recombinant lactic acid bacteria as mucosal biotherapeutic agents. Trends in Biotechnology, 29(10), 499-508. //Dauchet, L., Kesse-Guyot, E., Czernichow, S., Bertrais, S., Estaquio, C., Peneau, S., & Hercberg, S. (2007). Dietary patterns and blood pressure change over 5-y follow-up in the SU.VI.MAX cohort. American Journal of Clinical Nutrition,
85(6), 1650–1656. //de Vries, M. C., Vaughan, E. E., Kleerebezem, M., & de Vos, W. M. (2006). Lactobacillus plantarum—survival, functional and potential probiotic properties in the human intestinal tract. International Dairy Journal, 16(9), 1018-1028. //Di Cagno, R., Coda, R., De Angelis, M., & Gobbetti, M. (2013). Exploitation of vegetables and fruits through lactic acid fermentation.. Food Microbiology, 33(1), 1-10. //Di Cagno, R., Minervini, G., Rizzello, C. G., De Angelis, M., & Gobbetti, M. (2011). Effect of lactic acid fermentation on antioxidant, texture, color and sensory properties of red and green smoothies. Food Microbiology, 28(5), 1062-1071. //Eisenberg, T., Knauer, H., Schauer, A., Buttner, S., Ruckenstuhl, C., Carmona-Gutierrez, D., & Madeo, F. (2009). Induction of autophagy by spermidine promotes longevity. Nature Cell Biology, 11(11), 1305-1314. //Enan, G., el-Essawy, A. A., Uyttendaele, M., & Debevere, J. (1996). Antibacterial activity of Lactobacillus plantarum UG1 isolated from dry sausage Characterization, production and bactericidal action of plantaricin UG1. International Journal of Food Microbiology, 30(3), 189–215. //Eom, H. J., Park, J. M., Seo, M. J., Kim, M. D., & Han, N. S. (2008). Monitoring of Leuconostoc mesenteroides DRC starter in fermented vegetable by random integration of chloramphenicol acetyltransferase gene. Journal of Industrial Microbiology and Biotechnology, 35(9), 953-959. //Eom, H. J., Seo, D. M., & Han, N. S. (2007). Selection of psychrotrophic Leuconostoc spp. producing highly active dextransucrase from lactate fermented vegetables. International Journal of Food Microbiology, 117(1), 61-67. //Ercolini, D., Hill, P. J., & Dodd, C. E. R. (2003). Bacterial Community Structure and Location in Stilton Cheese. Applied Environmental Microbiology, 69(6), 3540-3548. //Floegel, A., Kim, D. O., Chung, S. J., Song, W. O., Fernandez, M. L., Bruno, R. S., & Chun, O. K. (2010). Development and validation of an algorithm to establish a total antioxidant capacity database of the US diet. International Journal of Food Sciences and Nutrition, 61(6), 600-623. //Fukami, K., Funatsu, Y., Kawasaki, K., & Watabe, S. (2004). Improvement of Fish-sauce Odor by Treatment with Bacteria Isolated from the Fish-sauce Mush (Moromi) Made from Frigate Mackerel. Journal of Food Science, 69(2), 45-49. //Garcia-Gimeno, R. M., Hervas-Martinez, C., Rodriguez-Perez, R., & Zurera-Cosano, G. (2005). Modelling the growth of Leuconostoc mesenteroides by Artificial Neural Networks. International Journal of Food Microbiology, 105(3), 317-332. //Gardner, P. T., White, T. A. C., McPhail, D. B., & Duthie, G. G. (2000). The relative contributions of vitamin C, carotenoids and phenolics to the antioxidant potential of fruit juices. Food Chemistry, 63(4), 471–474. //Garvie, E. I. (1979). Proposal of Neotype Strains for Leuconostoc mesenteroides (Tsenkovskii) van Tieghem, Leuconostoc dextranicum (Beijerinck) Hucker and Pederson, and Leuconostoc cremoris (Knudsen and S?rensen) Garvie. International Journal of Systematic Bacteriology, 29(2), 149-151. //Garvie, E. I. (1986). Genus Leuconostoc. P.H.A. Sneath, N.S. Mair, M.E. Sharpe, J.G. Holt (Eds.), Bergey''s Manual of Systematic Bacteriology,The Williams & Wilkins Co., Baltimore, MD, 2. //Gebbers, J.-O. (2007). Atherosclerosis, cholesterol, nutrition, and statins – a critical review. German Medical Science, 5(4), 1-11. //Gevers, D., Danielsen, M., Huys, G., & Swings, J. (2003). Molecular Characterization of tet(M) Genes in Lactobacillus isolates from different types of fermented dry sausage. Applied Environmental Microbiology, 69(2), 1270-1275. //Grobben, G. J., Peters, S. W., Wisselink, H. W., Weusthuis, R. A., Hoefnagel, M. H., Hugenholtz, J., & Eggink, G. (2001). Spontaneous formation of a mannitol-producing variant of Leuconostoc pseudomesenteroides grown in the presence of fructose. Applied Environmental Microbiology, 67(6), 2867-2870. //Gupta, S., Abu-Ghannam, N., & Scannell, A. G. M. (2011). Growth and kinetics of Lactobacillus plantarum in the fermentation of edible Irish brown seaweeds. Food and Bioproducts Processing, 89(4), 346-355. //Harrison, D. E., Strong, R., Sharp, Z. D., Nelson, J. F., Astle, C. M., Flurkey, K., & Miller, R. A. (2009). Rapamycin fed late in life extends lifespan in genetically heterogeneous mice. Nature, 460(7253), 392-395. //He, F. J., Nowson, C. A., Lucas, M., & MacGregor, G. A. (2007). Increased consumption of fruit and vegetables is related to a reduced risk of coronary heart disease: meta-analysis of cohort studies. Journal of Human Hypertension, 21(9), 717-728. //Hestrin, S., & Schramm, M. (1954). Synthesis of cellulose by Acetobacter xylinum. 2. Preparation of freeze-dried cells capable of polymerizing glucose to cellulose. Biochemical Journal, 58(2), 345. //Ho, N. W. Y., Chen, Z., & Brainard, A. P. (1998). Genetically engineered Saccharomyces yeast capable of effective cofermentation of glucose and xylose. Applied and Environmental Microbiology, 64(5), 1852–1859. //Holzapfel, W., Franz, C. A. P., Ludwig, W., Back, W., & Dicks, L. T. (2006). The genera Pediococcus and Tetragenococcus. In M. Dworkin, S. Falkow, E. Rosenberg, K.-H. Schleifer & E. Stackebrandt (Eds.), The Prokaryotes (pp. 229-266): Springer US. //Horák, J. (2013). Regulations of sugar transporters: insights from yeast. Current Genetics, 59(1-2), 1-31. //Howell, E. (1985). Enzyme nutrition - the food enzyme concept. Avery. //Huis in''t Veld, J. H. J. (1996). Microbial and biochemical spoilage of foods: an overview. International Journal of Food Microbiology, 33(1), 1-18. //Hung, H. C., Joshipura, K. J., Jiang, R., Hu, F. B., Hunter, D., Smith-Warner, S. A., & Willett, W. C. (2004). Fruit and vegetable intake and risk of major chronic
disease. Journal of the National Cancer Institute, 96(21), 1577-1584. //Hurtado, A., Reguant, C., Bordons, A., & Rozes, N. (2012). Lactic acid bacteria from fermented table olives. Food Microbiology, 31(1), 1-8. //Jarkko Mutanen, Räty, J., Gornov, E., Lehtonen, P., Peiponen, K.-E., & Jaaskelainen, T. (2007). Measurement of color, refractive index, and turbidity of red wines. American Journal of Enology and Viticulture, 58(3), 387-392. //Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J. W., Hahn, Y., & Jeon, C. O. (2011). Metagenomic analysis of kimchi, a traditional Korean fermented food.. Applied Environmental Microbiology, 77(7), 2264-2274. //Kabak, B., & Dobson, A. D. (2011). An introduction to the traditional fermented foods and beverages of Turkey. Critical Review in Food Science and Nutrition, 51(3), 248-260. //Kaeberlein, M. (2009). Spermidine surprise for a long life. Nature Cell Biology, 11(11), 1277-1278. //Kaeberlein, M. (2010a). Lessons on longevity from budding yeast. Nature, 464(7288), 513-519. //Kaeberlein, M. (2010b). Resveratrol and rapamycin: are they anti-aging drugs? Bioessays, 32(2), 96-99. //Kingamkono, R., Sjogren, E., & Svanberg, U. (1999). Enteropathogenic bacteria in faecal swabs of young children fed on lactic acid-fermented cereal gruels. Epidemiology & Infection, 122(01), 23-32. //Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., & Siezen, R. J. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences of the United States of America, 100(4), 1990-1995. //Kobayashi, T., Kajiwara, M., Wahyuni, M., Kitakado, T., Hamada-Sato, N., Imada, C., & Watanabe, E. (2003). Isolation and characterization of halophilic lactic acid bacteria isolated from “terasi” shrimp paste: A traditional fermented seafood product in Indonesia. The Journal of General and Applied Microbiology, 49(5), 279-286. //Kuda, T., Izawa, Y., Yoshida, S., Koyanagi, T., Takahashi, H., & Kimura, B. (2014). Rapid identification of Tetragenococcus halophilus and Tetragenococcus muriaticus, important species in the production of salted and fermented foods, by matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS). Food Control, 35(1), 419-425. //Leandro, M. J., Sychrova, H., Prista, C., & Loureiro-Dias, M. C. (2011). The osmotolerant fructophilic yeast Zygosaccharomyces rouxii employs two plasma-membrane fructose uptake systems belonging to a new family of yeast sugar transporters. Microbiology, 157(Pt 2), 601-608. //Leandro, M. J., Sychrova, H., Prista, C., & Loureiro-Dias, M. C. (2013). ZrFsy1, a high-affinity fructose/H+ symporter from fructophilic yeast Zygosaccharomyces rouxii. PLoS One, 8(7), e68165. //Lee, H., Yoon, H., Ji, Y., Kim, H., Park, H., Lee, J., &Holzapfel, W. (2011). Functional properties of Lactobacillus strains isolated from kimchi. International Journal of Food Microbiology, 145(1), 155-161. //Lei, W. K. A.-A., L. Brime. (1999). Degradation of cyanogenic glycosides by Lactobacillus plantarum strains from spontaneous cassava fermentation and other microorganisms. International Journal of Food Microbiology, 53(2-3), 169–184. //Leite, A. d. O., Miguel, M., xoto, R. P., Rosado, A., Silva, J., & Paschoalin, V. (2013). Microbiological, technological and therapeutic properties of kefir: A natural probiotic beverage. Brazilian Journal of Microbiology 44(2), 341–349. //Lin, Z., & Li, W. H. (2011). The evolution of aerobic fermentation in Schizosaccharomyces pombe was associated with regulatory reprogramming but not nucleosome reorganization. Molecular Biology and Evolution, 28(4), 1407-1413.
//Ljungh, A., & Wadstrom, T. (2009). Lactobacillus Molecular Biology: From Genomics to Probiotics. Caister Academic Press. //Lowry, O. H., Rosebrough, N. J., Farr, A. L., & Randall, R. J. (1951). Protein measurement with the Folin Phenol reagent. Journal of Biological Chemistry(193), 265-275. //Lugasi, A., & Hóvári, J. (2003). Antioxidant properties of commercial alcoholic and nonalcoholic beverages. Food / Nahrung, 47(2), 79-86. //Madhavan, A., Srivastava, A., Kondo, A., & Bisaria, V. S. (2012). Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Critical Review in Biotechnology, 32(1), 22-48. //Malien-Aubert, C., Dangles, O., & Amiot, M. J. (2001). Color stability of commercial anthocyanin-based extracts in relation to the phenolic composition. Protective effects by intra- and intermolecular copigmentation. Journal of Agricultural and Food Chemistry, 49(1), 170-176. //Manolopoulou, E., Sarantinopoulos, P., Zoidou, E., Aktypis, A., Moschopoulou, E., & Kandarakis, I. G. (2003). Evolution of microbial populations during traditional Feta cheese manufacture and ripening. International Journal of Food Microbiology, 82(2), 153–161. //Miller, G. L. (1959). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Aanalytical Chemistry, 31(3), 426-428. //Miller, N. J., Diplock, A. T., & Rice-Evans, C. A. (1995). Evaluation of the total antioxidant activity as a marker of the deterioration of apple juice on storage. Journal of Agricultural and Food Chemistry, 43(7), 1794-1801. //Montaño, A., Casado, F. J., Castro, A. d., Sánchez, A. H., & Rejano, L. (2004). Vitamin content and amino acid composition of pickled garlic processed with or without fermentation. Journal of Agricultural and Food Chemistry, 52(24), 7324–7330. //Naessens, M., Cerdobbel, A., Soetaert, W., & Vandamme, E. J. (2005). Leuconostoc dextransucrase and dextran: production, properties and applications. Journal of
Chemical Technology and Biotechnology, 80(8), 845-860. //Nishimura, I., Igarashi, T., Enomoto, T., Dake, Y., Okuno, Y., & Obata, A. (2009). Clinical Efficacy of Halophilic Lactic Acid Bacterium “Tetragenococcus halophilus” Th221 from Soy Sauce Moromi for Perennial Allergic Rhinitis. Allergology International, 58(2), 179-185. //Nout, M. J. R. (2014). Food Technologies: Fermentation. In Y. Motarjemi (Ed.), Encyclopedia of Food Safety (pp. 168-177). Waltham: Academic Press. //Oyaizu, M. (1986). Studies on products of browning reaction - antioxidative activities of products of browning reaction prepared from glucosamine. Japanese Journal of Nutrition, 44(6), 307-315. //Pérez-Lamela, C., García-Falcón, M. S., Simal-Gándara, J., & Orriols-Fernández, I. (2007). Influence of grape variety, vine system and enological treatments on the colour stability of young red wines. Food Chemistry, 101(2), 601-606. //Pérez-Jiménez, J., Neveu, V., Vos, F., & Scalbert, A. (2010). Systematic Analysis of the Content of 502 Polyphenols in 452 Foods and Beverages: An Application of the Phenol-Explorer Database. Journal of Agricultural and Food Chemistry, 58(8), 4959-4969. //Pitt, J. I., & Hocking, A. D. (2009). Fungi and Food Spoilage. Springer. //Pribylova, L., Farkaš, V., Slaninová, I., Montigny, J. d., & Sychrová, H. (2007). Differences in osmotolerant and cell-wall properties of two Zygosaccharomyces rouxii strains. Folia Microbiologica, 52(3), 241–245. //Price, K. R., Casuscelli, F., Colquhouu, I. J., & Rhodes, M. J. C. (1997). Hydroxycinnamic acid esters from broccoli florets. Phytochemistry, 45(8), 1683-1687. //Pulido, R. P., Benomar, N., Cañamero, M. M., Abriouel, H., & Gálvez, A. (2012). Fermentation of caper products. Handbook of Plant-based Fermented Food and Beverage Technology (second ed.), CRC Press, Boca Raton, USA 201–208.
//Qian, N. (2006). Fruit and Vegetable Smoothies, and Its Processing Method. Faming Zhuanli Shenqing Gongkai Shuomingshu CN 1817192. //Quintana, M. C. D., Garcia, P. G., & Fernandez, A. G. (1999). Establishment of conditions for green table olive fermentation at low temperature. International Journal of Food Microbiology, 51(2-3), 133–143. //Ramos, J., Arino, J., & Sychrova, H. (2011). Alkali-metal-cation influx and efflux systems in nonconventional yeast species. FEMS Microbiology Letter, 317(1), 1-8. //Randazzo, C. L., Restuccia, C., Romano, A. D., & Caggia, C. (2004). Lactobacillus casei, dominant species in naturally fermented Sicilian green olives. International Journal of Food Microbiology, 90(1), 9-14. //Rao, R. S., Prakasham, R. S., Prasad, K. K., Rajesham, S., Sarma, P. N., & Rao, L. V. (2004). Xylitol production by Candida sp.: parameter optimization using Taguchi approach. Process Biochemistry, 39(8), 951-956. //Ravichandran, K., Saw, N. M. M. T., Mohdaly, A. A. A., Gabr, A. M. M., Kastell, A., Riedel, H., & Smetanska, I. (2013). Impact of processing of red beet on betalain content and antioxidant activity. Food Research International, 50(2), 670-675. //Rodriguez, H., Curiel, J. A., Landete, J. M., de las Rivas, B., Lopez de Felipe, F., Gomez-Cordoves, C., & Munoz, R. (2009). Food phenolics and lactic acid bacteria. International Journal of Food Microbiology, 132(2-3), 79-90. //Ryan, L., & Prescott, S. L. (2010). Stability of the antioxidant capacity of twenty-five commercially available fruit juices subjected to an in vitro digestion. International Journal of Food Science & Technology, 45(6), 1191-1197. doi: 10.1111/j.1365-2621.2010.02254.x //Sharma, V., & Mishra, H. N. (2014). Unstructured kinetic modeling of growth and lactic acid production by Lactobacillus plantarum NCDC 414 during fermentation of vegetable juices. LWT - Food Science and Technology. //Singleton, V. L., & Rossi, J. A. (1965). Colorimetry of total phenolics with
phosphomolybdic-phosphotungstic acid reagents. American Journal of Enology and Viticulture, 16(3), 144-158. //Solieri, L., Dakal, T. C., & Bicciato, S. (2014). Quantitative phenotypic analysis of multistress response in Zygosaccharomyces rouxii complex. FEMS Yeast Research, 14(4), 586-600. //Spano, G., Chieppa, G., Beneduce, L., & Massa, S. (2004). Expression analysis of putative arcA, arcB and arcC genes partially cloned from Lactobacillus plantarum isolated from wine. Journal of Applied Microbiology, 96(1), 185-193. //Stamer, J. R. (1983). Lactic acid fermentation of cabbage and cucumbers. Biotechnology Verlag Chemie, Weinheim, Germany. //Stanfel, M. N., Shamieh, L. S., Kaeberlein, M., & Kennedy, B. K. (2009). The TOR pathway comes of age. Biochimica et Biophysica Acta, 1790(10), 1067-1074. //Stelter, P., & Ulrich, H. D. (2003). Control of spontaneous and damage-induced mutagenesis by SUMO and ubiquitin conjugation. Nature, 425(6954), 188-191. //Stevens, K. A., Sheldon, B. W., Klapes, N. A., & Klaenhammer, T. R. (1991). Nisin Treatment for Inactivation of Salmonella Species and Other Gram-Negative Bacteria. Applied and Environmental Microbiology, 57(12), 3613-3615. //Stintzing, F. C., Schieber, A., & Carle, R. (2003). Evaluation of colour properties and chemical quality parameters of cactus juices. European Food Research and Technology, 216, 303-311. //Stratford, M. (2006). Food and Beverage Spoilage Yeasts. In A. Querol & G. Fleet (Eds.), Yeasts in Food and Beverages (pp. 335-379): Springer Berlin Heidelberg. //Suárez-Lepe, J. A., Palomero, F., Benito, S., Calderón, F., & Morata, A. (2012). Oenological versatility of Schizosaccharomyces spp. European Food Research and Technology, 235(3), 375-383. doi: 10.1007/s00217-012-1785-9 //Szeto, Y. T., Tomlinson, B., & Benzie, I. F. (2002). Total antioxidant and ascorbic acid content of fresh fruits and vegetables: implications for dietary planning and food preservation.. British Journal of Nutrition, 87(1), 55-59.
//Tamang, J. P., Tamang, B., Schillinger, U., Franz, C. M., Gores, M., & Holzapfel, W. H. (2005). Identification of predominant lactic acid bacteria isolated from traditionally fermented vegetable products of the Eastern Himalayas. International Journal of Food Microbiology, 105(3), 347-356. //Tamang, J. P., Zalán, Z., Halász, A., Baráth, Á., & Hui, Y. H. (2012). Plant-based fermented foods and beverages of Asia. Fermented Red Beet Juice, Handbook of Plant-based Fermented Food and Beverage Technology (second ed.), CRC Press, Boca Raton, USA 49–90. //Teoh, A. L., Heard, G., & Cox, J. (2004). Yeast ecology of Kombucha fermentation. International Journal of Food Microbiology, 95(2), 119-126. //Thongsanit, J., Tanasupawat, S., Keeratipibul, S., & Jitikavanich, S. (2002). Characterization and identification of Tetragenococcus halophilus and Tetragenococcus muriaticus strains from fish sauce (nam-pla). Japanese Journal of Lactic Acid Bacteria, 13(1), 46-52. //Thunell, R. K. (1995). Taxonomy of the Leuconostocs. Journal of Dairy Science, 78(11), 2514-2522. //Titus, D. (2008). Smoothies! The Original Smoothies Book. Juice Gallery, Chino Hills, CA, USA. //Tortora, G. J., Funke, B. R., & Case, C. L. (2007). Microbiology an introduction, 9ed. 137-138. Benjamin Cummings. //Udomsil, N., Rodtong, S., Tanasupawat, S., & Yongsawatdigul, J. (2010). Proteinase-producing halophilic lactic acid bacteria isolated from fish sauce fermentation and their ability to produce volatile compounds. International Journal of Food Microbiology, 141(3), 186-194. //Valenzano, D. R., Terzibasi, E., Genade, T., Cattaneo, A., Domenici, L., & Cellerino, A. (2006). Resveratrol prolongs lifespan and retards the onset of age-related markers in a short-lived vertebrate. Current Biology, 16(3), 296-300.
//Vegara, S., Martí, N., Mena, P., Saura, D., & Valero, M. (2013). Effect of pasteurization process and storage on color and shelf-life of pomegranate juices. LWT - Food Science and Technology, 54(2), 592-596. //Vinson, J. A., Hao, Y., Su, X., & Zubik, L. (1998). Phenol Antioxidant Quantity and Quality in Foods:  Vegetables. Journal of Agriculture and Food Chemistry, 46(9), 3630-3634. //Vinson, J. A., Su, X., Zubik, L., & Bose, P. (2001). Phenol Antioxidant Quantity and Quality in Foods:  Fruits. Journal of Agriculture and Food Chemistry, 49(11), 5315-5321. //Watzl, B. (2008). Smoothies – wellness aus der Flasche? Ernährungsumschau, 6(8), 352–353. //Wells, J. M., & Mercenier, A. (2008). Mucosal delivery of therapeutic and prophylactic molecules using lactic acid bacteria. Nature Reviews Microbiology, 6(5), 349-362. //Wilhelm, B. T., Marguerat, S., Watt, S., Schubert, F., Wood, V., Goodhead, I., & Bahler, J. (2008). Dynamic repertoire of a eukaryotic transcriptome surveyed at single-nucleotide resolution. Nature, 453(7199), 1239-1243. //Wood, J., Rogina, B., Lavu, S., Howitz, K., Helfand, S., Tatar, M., & Sinclair, D. (2004). Sirtuin activators mimic caloric restriction and delay ageing in metazoans. Nature, 431(7004), 686-689. //Wootton-Beard, P. C., & Ryan, L. (2011). Improving public health?: The role of antioxidant-rich fruit and vegetable beverages. Food Research International, 44(10), 3135-3148. //Yamaguchi, T., Takamura, H., Matba, T., & Terap, J. (1998). HPLC Method for Evaluation of the Free Radical-scavenging Activity of Foods by Using 1,1-Diphenyl-2-picrylhydrazyl. Bioscience, Biotechnology, and Biochemistry, 62(6), 1201-1204.
//“yeast” Britannica Online Academic Edition. (2012). Britannica Online Academic Edition. //Zhang, D., & Hamauzu, Y. (2004). Phenolics, ascorbic acid, carotenoids and antioxidant activity of broccoli and their changes during conventional and microwave cooking. Food Chemistry, 88(4), 503-509. //Zia-ur-Rehman, Z., Islam, M., & Shah, W. H. (2003). Effect of microwave and conventional cooking on insoluble dietary fibre components of vegetables. Food Chemistry, 80(2), 237-240.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
1. 以乳酸菌發酵生產含 gamma-胺基丁酸之發酵乳及益生菌特性之分析
2. 探討石榴汁發酵製程對抗氧化活性影響探討石榴汁發酵製程對抗氧化活性影響探討石榴汁發酵製程對抗氧化活性影響
3. 乳酸菌發酵檸檬汁之抗氧化活性
4. 利用二階段發酵法製備米糠乳酸發酵飲品及米糠再利用性提升之研究
5. 發酵補充物及凍乾保護劑對乳酸菌發酵豆渣中菌株存活之影響
6. 乳酸桿菌對新鮮鳳梨及香蕉或苦瓜發酵液添加中藥之發酵及其抗氧化活性研究
7. 以複合乳酸菌發酵製備石蓴發酵飲品
8. 以天然農業作物為發酵原料固態培養靈芝菌絲體及所得靈芝菌絲米基開發富含γ-胺基丁酸之乳酸菌發酵產品
9. 使用二階段發酵技術開發富含 γ-胺基丁酸之北蟲草與乳酸菌共發酵飲品
10. 壓榨酵母利用甘蔗糖蜜為基質之菌株篩選、饋料批次培養及儲藏安定性
11. 由台灣發酵食品中分離、鑑定新穎乳酸菌及其對抗發炎效果研究由台灣發酵食品中分離、鑑定新穎乳酸菌及其對抗發炎效果研究由台灣發酵食品中分離、鑑定新穎乳酸菌及其對抗發炎效果研
12. 利用反應曲面法評估經麴菌和乳酸菌發酵黑豆豆渣之最佳發酵條件影響及機能性
13. 台灣藜乳酸菌發酵飲品之開發及其抗氧化能力評估
14. 乳酸菌分離株之抗菌活性與細菌素基因探討及應用
15. 藉由乳酸菌發酵提升桑椹汁之抗氧化力研究