跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.83) 您好!臺灣時間:2025/01/25 17:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:廖禹盛
研究生(外文):Yu-Sheng Liao
論文名稱:豆豉及鹹蛋白腐乳製作過程中微生物分子鑑定及菌相變化之研究
論文名稱(外文):Molecular identification and relative abundance of microorganisms in douchi and salted egg white sufu during processing
指導教授:譚發瑞劉登城
指導教授(外文):Fa-Jui TanDeng-Cheng Liu
口試委員:陳怡兆廖仁寶
口試日期:2014-07-28
學位類別:碩士
校院名稱:國立中興大學
系所名稱:動物科學系所
學門:農業科學學門
學類:畜牧學類
論文種類:學術論文
論文出版年:2014
畢業學年度:102
語文別:中文
論文頁數:102
中文關鍵詞:
外文關鍵詞:no
相關次數:
  • 被引用被引用:2
  • 點閱點閱:391
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
豆豉為我國傳統之大豆發酵產品,可藉由微生物分泌酵素對大豆進行水解, 使其產生獨特之風味,常作為食品調味之用,也是許多發酵豆製品之起源。豆腐 乳為廣受國人歡迎之豆類發酵食品,具有特殊之風味及質地。鹹蛋白由於其鹽分 含量較高利用性較低,行政院農業委員會畜產試驗所開發以鹹鴨蛋白為基質,接 種經活化之豆豉麴,經發酵熟成後製成之「鹹蛋白腐乳」(salted egg white sufu) 產 品接受性高,惟其製程中微生物菌相變化尚不清楚,故本研究室與畜試所合作, 對此產品進行菌相之研究。試驗一旨在運用總菌數培養基 (plate count agar, PCA) 與真菌通用之馬鈴薯葡萄糖瓊脂培養基 (potato dextrose agar, PDA) 分離及保存豆 豉中微生物,並以 16S rDNA、部分 18S rDNA、黃麴毒素合成基因 C1 區及 omtA 基因來鑑定豆豉 (鹹蛋白腐乳之菌元) 中微生物之種類;試驗二則另以基因選殖 (gene cloning) 方法鑑別製程中之豆豉、腐乳半成品 (發酵 5 天) 及腐乳完成品 (發 酵 5 天及熟成 14 天) 之菌相變化。 結果顯示:試驗一中共可發現 9 種不同外觀型態之菌落,經分離各菌落及單 獨培養並鑑定其品種,結果顯示細菌類主要為芽孢桿菌屬 (Bacillus),其中包含 Bacillus amyloliquefaciens 、 Bacillus licheniformis 、 Bacillus methylotrophicus 及 Bacillus subtilis 等,另有部分之腸球菌屬 (Enterococcus) 菌株;真菌以麴黴屬 (Aspergillus) 中之 Aspergillus oryzae 與 Aspergillus terreus 為主,此結果與許多發酵 豆類食品相似。試驗二結果顯示豆豉中細菌亦是以 Bacillus 為主,佔全體總數比例 之 88.9%,其中包含少許試驗一中未被檢出之 Bacillus sp.、Enterococcus durans 及 Staphylococcus. sp.等;真菌則以 A. oryzae 為主,所含之菌株與試驗一相似。腐乳 半成品中之 Bacillus 屬佔全體總數比例減少至 51.0%,其中豆豉中主要菌株 B. amyloliquefaciens 與 B. subtilis 大幅減少至 6.1%與 14.3%;反之,腸球菌屬及葡萄 球菌屬 (Staphylococcus) 比例分別大幅增加至 16.3%及 20.4%,另外亦於半成品中 檢測出 Enterococcus faecium、Enterococcus lactis 、 Staphylococcus carnosus 及 Terribacillus 等細菌菌株及 uncultured fungus clone 真菌菌株。腐乳成品中 Bacillus 菌株重回優勢,推測可能是因為其具有產生內孢子 (endospore) 之能力,可以存活 於含有較高鹽分及酒精之環境有關,故 E. lactis 及 uncultured Staphylococcus sp. clone 未被檢出,成品中真菌部分僅有檢出 A. oryzae,雖然該菌株非豆豉中主要優 勢菌,然而於最終產品中大量增加,推測該菌較能適應鹹蛋白之基質。綜觀上述, 運用分子技術確實可以快速準確地鑑定鹹蛋白腐乳中微生物種類及菌相,儘管發 酵階段時菌相有較大之變動,但仍是以 Bacillus 與 A. oryzae 為主要之優勢菌。傳 統人工培養法具有可以保留純種菌株之優點,但是亦存在著較費工費時與菌株分 離可能遺漏等問題,因此可依據試驗目的選擇適當操作方法來進行。

Douchi, a traditional fermented soybean product in Taiwan, China, and other areas, as hydrolyzed by the microbial enzymes and producing some unique flavors makes it to be applied as a food seasoning agent and also be the raw materials of manufacturing many other fermented soybean products for years. Sufu, which is a fermented soybean product, is also very popular in many Asian areas due to its subtle textures and unique flavors. Due to a higher salt content, salted egg white is under-utilized. Therefore, the Livestock Research Institute (LRI), Council of Agriculture, Executive Yuan, has been developing a ‘‘salted egg white sufu” which was manufactured using salted egg white as a substrate, inoculated with douchi koji, fermented, and ripened. This product is well-accepted, yet its microbial changes during the processing have not been elucidated. Therefore, the objective of the experiment 1 was to isolate, preserve, and molecular identify the microbial strains in douchi by using the plate count agar (PCA), potato dextrose agar (PDA), and 16S, 18S ribosomal RNA gene (rDNA), aflatoxin gene of C1 region and omtA gene methods. The objective of the experiment 2 was to detect the relative abundance of the microorganisms in douchi, semi-finished (fermented for 5 days) and final products (fermented for 5 days and ripened for 14 days) of the salted egg white sufu by the gene cloning method. In the exp. 1, by isolating and identifying the different pure cultures, the results showed that in douchi there were 9 types of colonies with different morphological characteristics which included bacterium of Bacillus amyloliquefaciens, Bacillus licheniformis, Bacillus methylotrophicus, Bacillus subtilis, Enterococcus sp. etc. and fungus of Aspergillus oryzae and Aspergillus terreus. This result was consistent with those observed from the other soybean-fermented foods. In the exp. 2, by the cloning method, it was found Bacillus also dominated in douchi (88.9%) and some strains of Bacillus sp., E. durans and Staphylococcus sp. which were not observed in exp. 1 were detected. Similar to that found in exp. 1, A. oryzae was the dominant fungus detected in douchi. In the semi-finished product, the percentage of Bacillus was reduced to 51.0% and the percentages of B. amyloliquefaciens and B. subtilis were reduced remarkably to 6.1% and 14.3%, respectively. Contrarily, the percentages of Enterococcus and Staphylococcus were increased to 16.3% and 20.4% remarkably. Besides, E. faecium, E. lactis, S. carnosus and Terribacillus and uncultured fungus clone 1016RhFu were the new strains that detected in the semi-finished product. In the final product, Bacillus returned to dominate probably because it can produce some endospores which can survive in a harsh environment with comparatively high salt and ethanol contents. This might also be the reason why E. lactis and uncultured Staphylococcus sp. clone were
not detected. A. oryzae was the only fungi detected in the final product, in which A. oryzae RIB40 became dominant in salted egg white probably due to its adaption of the environment. In conclusion, our result demonstrated that the molecular techniques enable to identify microorganisms and recognize the relative abundance of the microbial strains in the salted egg white sufu faster and more accurately. The relative abundance of the microorganisms might be changed during the processing; however, Bacillus and A. oryzae still dominated. Through the artificial culturing, it is possible to obtain the pure strains from samples; however, some microorganisms might be possibly omitted during the selection of microorganisms. Properly selection the methods base on the needs of experiment should be addressed.


壹、前言 ...........1
貳、文獻檢討 ...........2
一、豆豉介紹...........2
(一) 豆豉的歷史文化...........2
(二) 豆豉的營養價值...........2
(三) 豆豉的分類 ...........2
(四) 豆豉的生產工藝...........4
(五) 豆豉製作過程微生物的變化...........5
(六) 豆豉生產中存在之瓶頸...........5
二、蛋白質發酵食品之微生物種類...........6
(一) 發酵豆類食品之微生物種類...........6
(二) 發酵肉品之微生物種類...........6
三、微生物之蛋白酶產生與應用...........8
(一) 麴菌屬蛋白酶之產生及應用...........8
(二) 嗜鹽細菌蛋白酶之產生及應用...........9
四、米麴菌之鑑定...........10
五、分子生物技術之應用...........11
(一) 聚合酶鏈鎖反應...........11
(二) 核糖體 DNA 之應用...........13
(三) 基因選殖 (gene cloning) ...........14
(四) 多源基因體 (metagenomics) ...........14
參、材料與方法 ...........16
試驗一、豆豉菌株分離與分子技術鑑定...........16
(一) 豆豉來源...........16
(二) 培養基與培養液配製 ...........16
(三) 菌株之分離純化...........16
(四) 顯微鏡觀察 ...........17
(五) 分離菌株之分子技術鑑定...........18
1.菌株 genomic DNA 之萃取...........19
2.PCR 擴增 16S 與 18S rDNA 片段 ...........20
3.PCR 產物純化...........21
4.DNA 序列定序與資料庫比對...........21
5.米麴菌之鑑定...........23
試驗二:鹹蛋白腐乳製作過程之菌相變化...........26
(一) 豆豉及鴨蛋來源...........26
(二) 鹹蛋白腐乳之製作...........26
1.鹹鴨蛋醃製...........26
2.鹹蛋白塊之製備...........26
3.種麴製作...........27
4.鹹蛋白腐乳發酵及熟成 ...........27
5.鹹蛋白腐乳取樣與前處理方法...........28
(三) 菌相變化之分子技術鑑定...........30
1. 菌株 genomic DNA 之萃取...........31
2. PCR 擴增 16S 與 18S rDNA 片段...........32
3. PCR 產物純化...........34
4. 基因選殖 (gene cloning) ...........34
5. DNA 序列定序與資料庫比對 ...........37
肆、結果與討論...........38
試驗一、豆豉菌株之分離與鑑定 ...........38
(一) 菌株分離純化...........38
(二) 分離菌株外觀型態之肉眼與顯微觀察 ...........38
(三) 分離菌株之分子鑑定...........42
1. PCR 擴增 16S 與 18S rDNA 片段...........42
2. DNA 序列定序、米麴菌之鑑定與資料庫比對 ...........43
試驗二、鹹蛋白腐乳製作過程之菌相變化...........48
(一) 菌相變化之分子鑑定...........48
菌株 genomic DNA 之萃取及 PCR 擴增 16S 與 18S rDNA 片
段...........48
2. 基因選殖 (gene cloning) ...........49
3. DNA 序列定序與資料庫比對...........52
伍、結論...........74
陸、參考文獻: ...........75
柒、附錄...........82



王韋庭。2014。製程中不同發酵及熟成溫度對鹹蛋白腐乳酵素活性及物化與感官 特性之影響。碩士論文。國立中興大學動物科學系。台中。 //曲直。2013。陽江豆豉優選菌株分離鑑定及其蛋白酶結構與特性研究。博士論文。 華南農業大學食品科學系。廣州。 //李偉基。2003。以複合式聚合鏈反應及內轉錄間隔區之核甘酸序列鑑別病原性大 腸桿菌之研究。碩士論文。國立屏東科技大學獸醫學系。屏東。 陳怡兆、陳文賢、涂榮珍。2012。鹹蛋白利用性之研究。中國畜牧學會會誌 41 (增 刊):292。 //康鵬濬。2012。多源基因體學操作階層單位分析指標之評估。碩士論文。國立成 功大學資訊管理研究所。台南。 //童雅玲。2004。米麴菌蛋白酶水解與併用乳酸菌發酵對鯖魚肉機能性之影響。碩 士論文。國立臺灣海洋大學食品科學系。基隆。 路甬祥、包啟安、周嘉華。2007。中國傳統工藝全集:釀造。第 461–472 頁。大象 出版社。鄭州。 //廖宣銘。2006。麴菌 Aspergillus oryzae 生產蛋白質分解酵素及其利用於黃豆粕水 解之研究。碩士論文。東海大學化學工程學系。台中。 廖仁寶、江家豐、黃文瑛、謝昌賢、蕭宗法、吳明哲、李佳音。2006。乳牛瘤胃 微生物多性分析。中國畜牧學會會誌 35 (增刊):123。 //鍾來金。2012。客家傳統豆豉產業的發展與未來:以屏東縣內埔鄉為例。第 21–22, 57–62 頁。碩士論文。國立屏東科技大學客家文化產業研究所。屏東。 龐慶芳、張炳文、孫愛東。2006。中國傳統大豆發酵食品–豆豉功能成分的研究進 展。食品研究與開發27: 185–187。 //Akolkar, A. V., & Desai, A. J. (2010). Catalytic and thermodynamic characterization of protease from Halobacterium sp. SP1(1). Research in Microbiology, 161, 355-362. //Akolkar, A.V., Durai, D., & Desai, A. J. (2010). Halobacterium sp. SP1(1) as a starter culture for accelerating fish sauce fermentation. Journal of Applied Microbiology, 109, 44-53. //Amann, R. I., Ludwig, W., & Schleifer, K. H. (1995). Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiological Reviews,59, 143-169. //Ampe, F., Omar, N. B., Moizan, C., Wacher, C., & Guyot, J. P. (1999). Polyphasic study of the spatial distribution of microorganisms in Mexican pozol, a fermented maize dough, demonstrates the need for cultivation-independent methods to investigate traditional fermentations. Applied and Environmental Microbiology, 65, 5464-5473. //Atanassova, V., Meindl, A., & Ring, C. (2001). Prevalence of Staphylococcus aureus and staphylococcal enterotoxins in raw pork and uncooked smoked ham-a comparison of classical culturing detection and RFLP-PCR. International Journal of Food Microbiology, 68, 105-113. //Azokpota, P., Hounhouigan, D. J., & Nago, M. C. (2006). Microbiological and chemical changes during the fermentation of African locust bean (Parkia biglobosa) to produce afitin, iru and sonru, three traditional condiments produced in Benin.International Journal of Food Microbiology, 107, 304-309. //Brewer, M. S. (2000). Traditional preservatives– sodium chloride. In Robinson, R. K.,Batt, C. A., & Patel, P. D. Encyclopedia of food microbiology (pp. 1723-1728).London: Academic Press. //Brown, T. A. (2010). Gene cloning and DNA analysis- an introduction. (6th Edition,pp.5). UK: Wiley-Blackwell. //Carraro, L., Maifreni, M., Bartolomeoli, I., Martino, M. E., Novelli, E., Frigo, F.,Marino, M., & Cardazzo, B. (2011). Comparison of culture-dependent and -independent methods for bacterial community monitoring during Montasio cheese manufacturing. Research in Microbiology, 162, 231-239. //Chaffin, D.O., & Rubens, C.E. (1998). Blue/white screening of recombinant plasmids in Gram-positive bacteria by interruption of alkaline phosphatase gene (phoZ) expression. Gene, 219, 91-99. //Chang, P. K., Ehrlich, K. C., & Hua, S. S. T. (2006). Cladal relatedness among Aspergillus oryzae isolates and Aspergillus flavus S and L morphotype isolates. International Journal of Food Microbiology, 108, 172-177. //Chen, Y. C., Eisner, J. D., Kattar, M. M., Rassoulian-Barrett, S. L., Lafe, K., Yarfitz, S. L., Limaye, A. P., & Cookson, B. T. (2000). Identication of medically important yeasts using PCR-based detection of the DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. Journal of Clinical Microbiology, 38, 2302-2310. //Chen, Y. S., Yanagida, F., & Hsu, J. S. (2006). Isolation and characterization of lactic acid bacteria from dochi (fermented black beans), a traditional fermented food in Taiwan. Applied Microbiology, 43, 229-235. //Cho, S. J., Oh, S. H., Pridmore, R. D., Juillerat, M. A., & Lee, C. H. (2003). Purification and characterization of proteases from Bacillus amyloliquefaciens isolated from traditional soybean fermentation starter. Journal of Agricultural and Food Chemistry, 51, 7664-7670. //Cho, K. M., & Seo, W. T. (2007). Bacterial diversity in a Korean traditional soybean fermented foods (doenjang and ganjang) by 16S rRNA gene sequence analysis. Food Science and Biotechnology, 16, 320-324. //Chou, C., & Tsai, C. (1999). Genetic variation in the intergenic spacer of ribosomal DNA of Imperata cylindrica (L.) Beauv. var. major (Cogongrass) populations in Taiwan. Botanical Bulletin of Academia Sinica, 40, 319-327. //Compaoré, C. S., Nielsen, D. S., Ouoba, L. I. I., Berner, T. S., Nielsen, K. F., Sawadogo-Lingani, H., Diawara, B., Ouédraogo, G. A., Jakobsen, M., & Thorsen, L. (2013). Co-production of surfactin and a novel bacteriocin by Bacillus subtilis subsp. subtilis H4 isolated from Bikalga, an African alkaline Hibiscus sabdariffa seed fermented condiment. International Journal of Food Microbiology, 162,297-307. //Edwards, U., Rogall, T., Blocker, H., Emde, M., & Bottger, E. C. (1989). Isolation and direct complete determination of entire genes. Nucleic Acids Research, 17, 7843-7853. //Escalante, A., Giles-Gomez, M., Hernandez, G., Cordova-Aguilar, M. S., Lopez-Munguia, A., & Gosset, G. (2008). Analysis of bacterial community during the fermentation of pulque, a traditional Mexican alcoholic beverage, using a polyphasic approach. International Journal of Food Microbiology, 124, 126-134. //Essghaier, B., Fardeau, M. L., Cayol, J. L., Hajlaoui, M. R., Boudabous, A., Jijakli, H., & Sadfi‐Zouaoui, N. (2009). Biological control of grey mould in strawberry fruits by halophilic bacteria. Journal of applied microbiology, 106, 833-846. //Ettenauer, J. D., Piñar, G., Lopandic, K., Spangl, B., Ellersdorfer, G., Voitl, C., & Sterflinger, K. (2012). Microbes on building materials- evaluation of DNA extraction protocols as common basis for molecular analysis. Science of the Total Environment, 439, 44-53. //Feng, Z., Gao, W., Ren, D., Chena, X., & Li, J. J. (2012). Evaluation of bacterial flora during the ripening of Kedong sufu, a typical Chinese traditional bacteria-fermented soybean product. Journal of the Science of Food and Agriculture, 93, 1471-1478. //Fritz, G. N., Conn, J., Cockburn, A., & Seawright, J. (1994). Sequence analysis of ribosomal DNA internal transcribed spacer 2 from population of Anopheles nuneztovari (Diptera: Culicidae). Molecular Biology and Evolution, 11, 406-416. //Gachet, E., Martin, G. G., Vigneau, F., & Meyer, G. (1999). Detection of genetically modified organisms (GMOs) by PCR: a brief review of methodologies available.Trends in Food Science and Technology, 9, 380-383. //Giraffa, G. (2004). Studying the dynamics of microbial populations during food fermentation. Federation of European Microbiological Societies Microbiology Reviews, 28, 251-260. //Gomi, K, Tanaka, A., Iimura, Y., & Takahashi, K. (1989). Rapid differentiation of four related species of koji molds by agarose-gel electrophoresis of genomic DNA digested with the SmaI restriction enzyme. Journal of General and Applied Microbiology, 35, 225-232. //Guo, J. P., & Ma, Y. (2008). High-level expression, purification and characterization of recombinant Aspergillus oryzae alkaline protease in Pichia pastoris. Protein Expression and Purification, 58, 301-308. //Han, B. Z., Cao, C. F., Rombouts, F. M., & Nout, M. J. R. (2004). Microbial changes during the production of sufu– a Chinese fermented soybean food. Food Control,15, 265-270. //Hinrikson, H. P., Hurst, S. F., Lott, T. J., Warnock, D. W., & Morrison, C. J. (2005).Assessment of ribosomal large-subunit D1-D2, internal transcribed spacer 1, and internal transcribed spacer 2 regions as targets for molecular identification of medically important Aspergillus species. Journal of Clinical Microbiology, 43, 2092-2103. //Holt, J. G., Krieg, R. N., Sneath, P. H. Staley, A., J. T., & Williams, S. T. (1994). Bergey’s manual of determinative bacteriology. (9th ed.). Baltimore: Williams and Wilkins. //Huang, S. L., Weng, Y. N., & Chiou, R. Y. (2001). Survival of Staphylococcus aureus and Escherichia coli as a affected by ethanol and NaCl. Journal of Food Protection,64(4), 546-550. //Jung, J. Y., Lee, S. H., Kim, J. M., Park, M. S., Bae, J. W., Hahn, Y., Madsen, E. L., & Jeon, C. O. (2011). Metagenomic analysis of kimchi, a traditional Korean fermented food. Applied And Environmental Microbiology, 77, 2264-2274. //Juste, A., Thomma, B. P. H. J., & Lievens, B. (2008). Recent advances in molecular techniques to study microbial communities in food-associated matrices and processes. Food Microbiology, 25, 745-761. //Kaewklom, S., Lumlert, S., Kraikul, W., & Aunpad, R. (2013). Control of Listeria monocytogenes on sliced bologna sausage using a novel bacteriocin, amysin,produced by Bacillus amyloliquefaciens isolated from Thai shrimp paste (Kapi). Food Control, 32, 552-557. //Kim, T. W., Lee, J. H., Kim, S. E., Park, M. H., Chang, H. C., & Kim, H. Y. (2009). Analysis of microbial communities in doenjang, a Korean fermented soybean paste,using nested PCR-denaturing gradient gel electrophoresis. International Journal of Food Microbiology, 131,265-271. //Kim, T. W., Lee, J. H., Park, M. H., & Kim, H. Y. (2010). Analysis of bacterial and
fungal communities in Japanese and Chinese-fermented soybean pastes using nested PCR–DGGE. Current Microbiology, 60, 315-320. //Klich, M. A., Yu, J., & Mullaney, E. J. (1987). DNA restriction enzyme fragment polymorphism as a tool for rapid differentiation of Aspergillus flavus from Aspergillus oryzae. Experimental Mycology, 11, 170-175. //Kumura, H., Ishido, T., & Shimazaki, K. (2011). Production and partial purification of proteases from Aspergillus oryzae grown in a medium based on whey protein as an exclusive nitrogen source. Journal of Dairy Science, 94, 657-667. //Kusumoto, K. I., Nogata, Y., & Ohta, H. (2000). Directed deletions in the aflatoxin biosynthesis gene homolog cluster of Aspergillus oryzae. Current Genetics, 37, 104-111. //Lee, S. K., Wang, H. Z., Law, S. H., Wu, R. S., & Kong, R. Y. (2002). Analysis of the 16S–23S rDNA intergenic spacers (IGSs) of marine vibrios for species-specific signature DNA sequences. Marine Pollution Bulletin, 44, 412-420. //Li, Y. Y., Yu, R. C., & Chou, C. C. (2010). Some biochemical and physical changes during the preparation of the enzyme-ripening sufu, a fermented product of soybean curd. Journal of Agricultural and Food Chemistry, 58, 4888-4893. //Mauriello, G., Casaburi, A., Blaiotta, G., & Villani, F. (2004). Isolation and technological properties of coagulase negative staphylococci from fermented sausages of Southern Italy. Meat Science, 67, 149-158. //Meyer, R. (1999). Development and application of DNA analytical methods for the detection of GMOs in food. Food Control, 10, 391-399. //Moy, Y. S., & Chou, C. C. (2010). Changes in the contents of sugars and organic acids during the ripening and storage of sufu, a traditional oriental fermented product of soybean cubes. Journal of Agricultural and Food Chemistry, 58, 12790-12793. //Mullis, K. B., Erlich, H. A., Gelfand, D. H., Horn, G., & Saiki, R. K. (1990). Reacting nucleic acid with oligonucleotide primer in presence of catalytic enzyme dna polymerase; polymerase chain reaction patent. U.S. Patent No. 4965188 A. //Nam, Y. D., Yi, S. H., & Lim, S. I. (2012). Bacterial diversity of cheonggukjang, a traditional Korean fermented food. Food Control, 28, 135-142. //Peng, Y., Huang, Q., Zhang, R. H., & Zhang, Y. Z. (2003). Purification andcharacterization of a fibrinolytic enzyme produced by Bacillus amyloliquefaciens DC-4 screened from douchi, a traditional Chinese soybean food. Comparative Biochemistry and Physiology Part B, 134, 45-52. //Ranjan, R., Grover, A., Kapardar, R. K., & Sharma, R. (2005). Isolation of novel lipolytic genes from uncultured bacteria of pond water. Biochemical and Biophysical Research Communications, 335, 57-65. //Rantsiou, K., & Cocolin, L. (2006). New developments in the study of the microbiota of naturally fermented sausages as determined by molecular methods: A review. International Journal of Food Microbiology, 108, 255-267. //Rigó, K., Varga, J., Tóth, B., Téren, J., Mesterházy, Á., & Kozakiewicz, Z. (2002). Evolutionary relationships within Aspergillus section Flavi based on sequences of the intergenic transcribed spacer regions and the 5.8S rRNA gene. The Journal of General and Applied Microbiology, 48, 9-16. //Rotter, M. (1999). Hand washing and hand disinfection. Hospital Epidemiology and Infection Control 87. //Sanders, M. E., Morelli, L., & Tompkins, T. A. (2003). Sporeformers as human probiotics: Bacillus, Sporolactobacillus and Brevibacillus. Comprehensive Reviews in Food Science and Food Safety, 2, 101-110. //Sandhya, C., Sumantha, A., Szakacs, G., & Pandey, A. (2005). Comparative evaluation of neutral protease production by Aspergillus oryzae in submerged and solid-state fermentation. Process Biochemistry, 40, 2689-2694. //Shi, J. H., Xiao, Y. P., Li, X. R., Ma, E. B., Du, X. W., & Quan, Z. X. (2009). Analyses of microbial consortia in the starter of Fen Liquor. Applied Microbiology, 48, 478-485. //Strompfova, V., & Laukova, A. (2007). In vitro study on bacteriocin production of Enterococci associated with chickens. Anaerobe, 13, 228-237. //Su, N.W., Wang, M. L., Kwok, K. F., & Lee, M. H. (2005). Effects of temperature and sodium chloride concentration on the activities of proteases and amylases in soy sauce koji. Journal of Agricultural and Food Chemistry, 53, 1521-1525. //Tindall, B. J., Rossello-Mora, Busse, R., H., Ludwig, W., & Kampfer, P. (2010). Notes on the characterization of prokaryote strains for taxonomic purposes. International Journal of Systematic and Evolutionary Microbiology, 60, 249-266. //Tsai, C. C., Lai, C. H., Yuc, B., & Tsen, H. Y. (2008). Use of specific primers based on the 16S–23S internal transcribed spacer (ITS) region for the screening Bifidobacterium adolescentis in yogurt products and human stool samples. Food Microbiology, 14, 219-223. //Tu, R. J., Wu, H. Y., Lock, Y. S., & Chen, M. J. (2010). Evaluation of microbial dynamics during the ripening of a traditional Taiwanese naturally fermented ham. Food Microbiology, 27, 460-467. //Vishwanatha, K.S., Rao, A. G. A., & Singh, S. A. (2009). Characterisation of acid protease expressed from Aspergillus oryzae MTCC 5341. Food Chemistry, 114,402-407. //Wanangkarn, A., Liu, D. C., Swetwiwathana, A., Jindaprasert, A., Phraephaisarn, C.,
Chumnqoen, W., & Tan, F. J. (2014). Lactic acid bacterial population dynamics during fermentation and storage of Thai fermented sausage according to restriction fragment length polymorphism analysis. International Journal of Food Microbiology, 186, 61-67. //Wilson, K. H., Blitchington, R. B., & Green, R. C. (1990). Amplification of bacterial 16S ribosomal DNA with polymerase chain reaction. Journal of Clinical Microbiology, 28, 1942-1946. //Yang, Y., Zhan, Y., Li, Z., Zhu, L. Y., & Chen, J. (2008). Discussion of key technologies of quickly fermented douchi. Modern Food Science and Technology, 24, 819-821. //Yongsawatdigul, J., Rodtong, S., & Raksakulthai, N. (2007). Acceleration of Thai fish sauce fermentation using proteinases and bacterial starter cultures. Journal of Food Science, 72, 382-390. //Yun, J., Kang, S., Park, S., Yoon, H., Kim, M. J., Heu, S., & Ryu, S. (2004). Characterization of a novel amylolytic enzyme encoded by a gene from a soil-derived metagenomic library. Applied and Environmental Microbiology, 70,7229-7235. //Zelazny, A. M., Calhoun, L. B., Li, L., Shea, Y. R., & Fischer, S. H (2005).Identification of Mycobacterium species by secA1 sequences. Journal of Clinical Microbiology, 43, 1051-1058. //Zhang, J. H., Tatsumi, E., Fan, J. F., & Li, L. T. (2007). Chemical components of Aspergillus-type douchi, a Chinese traditional fermented soybean product, change during the fermentation process. International Journal of Food Science and Technology, 42, 263-268. //Zhou, G., Whong, W. Z., Ong, T., & Chen, B. (2000). Development of a fungus-specific PCR assay for detecting low-level fungi in an indoor environment. Molecular and Cellular Probes, 14, 339-348.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top