# 臺灣博碩士論文加值系統

(44.200.86.95) 您好！臺灣時間：2024/05/30 06:02

:::

### 詳目顯示

:

• 被引用:2
• 點閱:144
• 評分:
• 下載:0
• 書目收藏:1
 本實驗探討光滑圓管內部插入彈簧線圈後對工作流體與管壁間之熱傳增強與壓力降之影響，工作流體分為空氣與水等兩種，所採用彈簧線圈之線徑(e)分為 1 mm、1.4 mm 及 1.8 mm 等三種，節徑(p)則分為 18 mm、24 mm及 32 mm 等三種，並依照彈簧線圈與管壁間之緊密程度，配置所需之圓管，因此測試管之內徑(d)分為 12.8 mm、13.4 mm 及 13.8 mm 等三種。此研究不僅探討 Nu 值與 f 值之相關性，同時也進行測試管之三種性能係數(r1 、r2 及r 3 )之比較，其中 r 1 值代表插入彈簧線圈之測試管與光滑圓管間 Nu 值之比值，r 2 值為兩者間 Nu/f 值之比值，而 r 3 則表示兩者間消耗每單位機械摩損功所獲得的熱傳量之比值。對工作流體為空氣而言，量測所得之 Nu 值經由相關性分析後，可得一組經驗公式為 Nu = 0.00585(Re)m [(e / d )2 -0.0042]-0.24 ( p / d )-0.22 ，1m1其中= 0.51 + 6.16( e / d )-23.15( e / d ) 2 ；對水而言，所獲得之熱傳相關性公式為 Nu = 2.55(Re)0.57 (e / d )α ( p / d )-1.13 ，其中 α 3 = -0.17( p / d ) + 0.65 ；而無論工作流體為水或空氣，摩擦因子(f)之經驗公式為 f = 36.13Re −0.36 (e / d )[ln( p / d )]−0.52 。熱傳(空氣與水)量測之結果顯示，Nu 值與 r 1 值均會隨著 p/d 值之增加而減少，但兩者皆會隨著 e/d 值的增加而增大，因此若要得到較大的熱傳效果，須採用較小 p/d 值與較大 e/d 值之彈簧線圈。而在 e/d 值越小與 p/d 值越大之情形下，r 2 值與 r 3 值均會越大。對空氣而言，r 2 與 r 3 值會隨著 Re 值之增加而略微增大；對水而言，此 r 2 與 r 3 值會隨著 Re 值之增加而減小。關鍵字：熱傳增強;彈簧線圈;紐塞數;摩擦因子;性能指數
 Heat transfer and pressure drop data in smooth tubes inserted with various wire coils were measured respectively. Water and air were individually considered as working fluid. The wire diameter (e) and pitch (p) of the wire coilswere in the range 1 - 1.8 mm and 18 - 32 mm respectively. For tightness between the wire coil and tube wall, three tubes with different inner diameters (12.8, 13.4 and 13.8 mm) were adopted. This work not only established correlations of Nu and f, but also examined performance indexes (r 1 , r 2 and r 3 ) of the test tubes. The r 1 represents the ratio of Nu values between a test tube and a smooth tube; the r 2 denotes the ratio of Nu/f values; the r 3 stands for the ratio of heat transfer rates based on per unit of consumed mechanical power. For air, the correlation of Nu value was found to be Nu = 0.00585(Re)m [(e / d )2 -0.0042]-0.24 ( p / d )-0.22 where m1= 0.51 + 6.16( e / d )-23.15( e / d ) 2 . For water, Nu = 2.55(Re)0.57 ( e / d )α3 ( p / d )-1.13= -0.17( p / d ) + 0.65 . For both air and water, a common f correlationwhere α 3 was acquired as follows: f = 36.13Re −0.36 (e / d )[ln( p / d )]−0.52 . The Nu and r 1 values increase with the e/d value, but increase with a decrease of the p/d value.As the e/d value decreases or the p/d values increases, the r 2 and r 3 values tend to increase. For air, the r 2 and r 3 values moderately increase with the Re value. For water, the r 2 and r 3 values decrease with an increase of the Re value.Keywords: heat transfer enhancement;wire coil;Nusselt number;friction factor;performance index
 摘要 ..................................................... iABSTRACT .................................................ii誌謝 ....................................................iii目錄 .................................................... iv表目錄 ..................................................vii圖目錄 .................................................. xi符號表示 ...............................................xiii第一章 緒論 ............................................... 11.1 前言 ................................................. 11.2 文獻回顧 ............................................. 21.3 研究內容與目的 ........................................ 8第二章 實驗設備與過程 ..................................... 92.1. 實驗材料 ............................................ 92.1.1. 測試圓管(銅管) ..................................... 92.1.2. 彈簧線圈(wire coil) ............................... 92.1.3. 特殊橡膠塞 ......................................... 92.1.4. 外管(不鏽鋼管) .................................... 102.2 實驗設備 ............................................ 102.2.1 U 型壓差計(U-tube) ................................ 102.2.2 浮子流量計 ......................................... 102.2.3 鼓風機 ............................................ 102.2.4 變頻器 ............................................ 102.2.5 資料擷取儀 ......................................... 112.2.6 加熱電熱棒 ........................................ 112.2.7 恆溫水槽 .......................................... 112.2.8 PID 溫度控制器 ..................................... 112.2.9 循環水泵浦 ......................................... 122.2.10 蒸汽鍋爐(steam boiler) ........................... 122.2.11 圓形恆溫緩衝桶(boiling-water tank) ................ 122.3. 理論模式 ........................................... 122.3.1. Re 值之計算公式 ................................... 132.3.2. Nu 值之計算公式 ................................... 132.3.3. f 值之計算公式 .................................... 132.3.4. 內管壁溫度之修正 .................................. 142.3.5. Nu 增強指數( r1 ) ................................ 172.3.6. Nu 增強與摩擦耗損增加之比值( r2 ) ................. 172.3.7 熱傳量增強與摩擦耗損增加之比值( r3 ) ................ 182.4 量測過程 ............................................ 192.4.1 測試管的實驗架設與加工處理方法 ...................... 192.4.2 供給外管內流體系統的操作程序 ....................... 202.4.3 工作流體之流量控制與調整 ........................... 202.4.4 紀錄系統穩定的測量值 ............................... 20第三章 實驗測量結果與迴歸分析 ............................. 223.1 工作流體之物理特性 ................................... 223.1.1. 空氣 ............................................. 223.1.2. 水 ............................................... 223.2 空氣之熱傳測量結果 ................................... 233.2.1 溫度量測 .......................................... 233.2.2 內部具彈簧線圈之平均紐塞數 .......................... 243.3 空氣之熱傳資料相關性分析 ............................. 253.4 摩擦因子之空氣量測結果 ............................... 263.4.1 空氣壓力降測量之結果 ............................... 263.5 空氣摩擦因子之相關性分析 ............................. 273.6 水之熱傳測量結果 ..................................... 283.6.1 溫度測量 .......................................... 283.6.2 水之平均紐塞數 ..................................... 293.7 水之熱傳資料相關性分析 ............................... 293.8 水之摩擦因子之量測結果 ............................... 303.8.1 水壓降之量測結果 ................................... 303.8.2 代入空氣之相關性公式 ............................... 313.9 性能係數 ............................................ 313.9.1 空氣為工作流體下之性能系數 .......................... 313.9.2 水為工作流體時之性能係數 ........................... 323.10 此研究之結果與文獻中之結果之比較 ..................... 32第四章 實驗量測之不準確度(Uncertainty)分析 ................ 344.1 紐塞數(Nu 值)之不準確度分析 .......................... 344.2 空氣之不準確度分析結果(Nu 值) ........................ 364.3 水之不準確度分析結果(Nu 值) .......................... 364.4 摩擦因子(f 值)之不準確度分析 ......................... 364.5 空氣之不準確度分析結果(f 值) ......................... 374.6 水之不準確度分析結果(f 值) ........................... 38第五章 結論 .............................................. 395.1 結論 ................................................ 395.2 未來展望 ............................................ 41參考文獻 ................................................ 42
 [1] T. S. Ravigururajan, A. E. Bergles, “Development and verification of general correlations for pressure drop and heat transfer in single-phase turbulent flow in enhanced tubes”, Exp. Thermal Fluid Sci, Vol. 13, pp. 55-70, 1996.[2] S. B. Uttarwar and M. R. Rao, “Augmentation of laminar flow heat transfer in tubes by means of wire coil inserts”, J. Heat Transfer, Vo1. 107, pp. 930-935, 1985.[3] A. Garcia, J. P. Solano, P. G. Vicente, A. Viedma, “The influence of artificial roughness shape on heat transfer enhancement: Corrugated tubes, dimpled tubes and wire coils”, Applied Thermal Engineering, Vol. 35, pp. 196-201,2012.[4] A. Garcia, J. P. Solano, P. G. Vicente, A. Viedma, “Enhancement of laminar and transitional flow heat transfer in tubes by means of wire coil inserts”, Int.J. Heat Mass Transfer, Vol. 50, pp. 3167-3189, 2007.[5] S. K. Saha, “Thermal and friction characteristics of laminar flow through rectangular and square ducts with transverse ribs and wire coil insert”, Exp. Thermal Fluid Sci, Vol. 34, pp. 63-72, 2010.[6] H.Y. Kim, S. Koyama, W. Matsumoto, “Flow pattern and flow characteristics for counter-current two-phase flow in a vertical round tube with wire-coil inserts”, Int. J. Multiphase Flow, Vol. 27, pp. 2063-2081, 2001.[7] P. Naphon, “Effect of coil-wire insert on heat transfer enhancement and pressure drop of the horizontal concentric tubes”, Int. Comm. Heat Mass Transfer, Vol. 33, pp. 753-763, 2006.[8] S. Y. Won, P. M. Ligrani, “Comparisons of flow structure and local numbers in channels with parallel-and crossed-rib tabulators”, Int. J. Heat Mass Transfer, Vo1. 47, pp. 1573-1586, 2004.[9] M. A. Akhavan-Behabadi, R. Kumar, M. R. Salimpour, R. Azimi, “Pressure drop and heat transfer augmentation due to coiled wire inserts during laminar flow of oil inside a horizontal tube”, Int. J. Thermal Sci, Vol. 49, pp. 373-379, 2010.[10] P. Promvonge, “Thermal enhancement in a round tube with snail entry and coil-wire inserts”, Int. Comm. Heat Mass Transfer, Vol. 35, pp. 623-629, 2008.[11] S. Gunes, V. Ozceyhan, O. Buyukalaca, “Heat transfer enhancement in a tube with equilateral triangle cross sectioned coiled wire inserts”, Exp. Thermal Fluid Sci, Vol. 34, pp. 684-691, 2010.[12] P. Promvonge, N. Koolnapadol, M. Pimsarn, C. Thianpong, “Thermal performance enhancement in a heat exchanger tube fitted with inclined vortex rings”, Applied Thermal Engineering, Vol. 62, pp. 285-292, 2014.[13] T. Bali, B. A. Sarac, “Experimental investigation of decaying swirl flow through a circular pipe for binary combination of vortex generators”, Int.Comm. Heat Mass Transfer, Vol. 53, pp. 174-179, 2014.[14] G. H. Junkhan, A. E. Bergles , V. Nirmalan and T. Ravigururajan, “Investigation of turbulators for fire tube boilers”, J. Heat Transfer , Vo1. 107, pp. 354-360, 1985.[15] J. H. Royal and A. E. Bergles, “Augmentation of horizontal in-tube condensation by means of twisted-tape inserts and internally finned tubes”, J.Heat Transfer , Vo1. 100, pp. 17-24, 1978.[16] A. Garcia, P.G. Vicente, A. Viedma, “Experimental study of heat transfer enhancement with wire coil inserts in laminar-transition-turbulent regimes at different prandtl number ”, Int. J. Heat Mass Transfer, Vol. 48, pp. 4640-4651, 2005.[17] M. C. S. Reddy, V. V. Rao, “Experimental investigation of heat transfercoefficient and friction factor of ethylene glycol water based TiO2 nanofluid in double pipe heat exchanger with and without helical coil inserts”, Int. Comm. Heat Mass Transfer, Vol. 50, pp. 68-76, 2014.[18] M. Saeedinia, M. A. Akhavan-Behabadi , M. Nasr, “Experimental study on heat transfer and pressure drop of nanofluid flow in a horizontal coiled wire inserted tube under constant heat flux”, Exp. Thermal Fluid Sci, Vol. 36, pp. 158-168, 2012.[19] G. Sandhu, K. Siddiqui, A. Garcia, “Experimental study on the combinedeffects of inclination angle and insert devices on the performance of a flat-plate solar collector”, Int. J. Heat Mass Transfer, Vol. 71, pp. 251-263, 2014.[20] 黃文傑, “圓管突出環節對空氣熱傳增強的影響”, 國立中興大學機械工程研究所碩士論文, 2004。[21] 王培堂, “圓管內部連續突出環節對水流與管壁間之熱傳增強的影響”,國立中興大學機械工程研究所碩士論文，2005。[22] 陳俊忠, “圓管內部突出環節之圓弧尺寸大小對熱傳增強之影響”, 國立中興大學機械工程研究所碩士論文，2006。[23] 沈其, “熱傳增強管之熱傳性能比較”, 國立中興大學機械工程研究所碩士論文，2013。[24] F. P. Incropera, and D. P. Dewit, Fundamentals of Heat and Mass Transfer, 3th edition, John Wiley & Sons, 1990.[25] S. J. Kline and F. A. McClintock, “Describing uncertainties in single-sample experiments”, Mechanical Engineering, Vol. 75, pp. 3-8, 1953.[26] Y. A. Cengel, Heat transfer : a practical approach , international edition, R. R. Donnelley & Sons, 1998.
 國圖紙本論文
 推文當script無法執行時可按︰推文 網路書籤當script無法執行時可按︰網路書籤 推薦當script無法執行時可按︰推薦 評分當script無法執行時可按︰評分 引用網址當script無法執行時可按︰引用網址 轉寄當script無法執行時可按︰轉寄

 1 圓管內部連續突出環節對水流與管壁間之熱傳增強 2 圓管內部突出環節之圓弧尺寸大小對熱傳增強之影響 3 熱傳增強管之熱傳性能比較 4 圓管內垂直擾流棒之熱傳增強 5 普朗特數與環節溝徑對具內部環節圓管之熱傳增強之影響 6 圓管內部突出環節之熱傳增強 7 三角翼類型渦流產生器對加熱管道內流場結構及熱傳效益之實驗研究 8 圓管內部突出環節對熱傳增強之模擬分析 9 圓管內部突出環節之溝徑對熱傳與壓降之影響 10 不同類型渦流產生器的壓降及熱傳量測 11 縱向擾流棒之數量對一個渦捲式熱交換器之熱傳影響 12 一個渦捲式熱交換器之熱傳增強 13 奈米流體強制對流熱傳增益研究 14 螺旋式葉片應用於熱交換器之熱傳性能分析研究 15 內鰭管紊流流動之實驗分析

 無相關期刊

 1 胡錦濤時期中國對非洲的援助政策之研究（2003-2013） 2 峨眉雞、北京油雞、絲羽烏骨雞和興大選育土雞 育成期社會地位建立及害怕反應之探討 3 兩階段水熱法合成 p-CeO2/n-ZnO 異質接面奈米複合材料及其二氧化氮氣體感測特性 4 藉由 Electro-Fenton 法降解含乙醯胺基酚之廢水 5 利用原子轉移自由基反應控制高分子之幾何構型應用 6 楚系簡帛文字意符互作研究 7 在光折變晶體中光強度對光調制不穩定性圖案演變的影響 8 法國社會黨及人民運動聯盟之核能發電政策比較研究 9 貿易商如何避免被「去中間化」？ 10 G 公司的品牌經營管理與行銷經驗 11 應用全面生產管理推動企業流程再造之研究 以某工具機製造廠為例~~以某工具機製造廠為例 ~ 12 企業文化對員工投入與工作績效之影響--以信任為中介變項 13 手持式無線充電裝置效率之探討 14 結合里德米勒碼之降低運算複雜度且具有錯誤更正能力之部分傳輸序列技術 15 高音質無線藍芽立體雙聲道揚聲器之研究

 簡易查詢 | 進階查詢 | 熱門排行 | 我的研究室